EfficientRepresentation - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


SumTools[Hypergeometric]

  

EfficientRepresentation

  

construct the four efficient representations of a hypergeometric term

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

EfficientRepresentation[1](H, n)

EfficientRepresentation[2](H, n)

EfficientRepresentation[3](H, n)

EfficientRepresentation[4](H, n)

Parameters

H

-

hypergeometric term of n

n

-

variable

Description

• 

Let H be a hypergeometric term of n. The EfficientRepresentation[i](H,n) calling sequence constructs the ith efficient representation of H of the form Hn=αnVnQn where alpha is a constant, Qn is a product of Gamma-function values and their reciprocals. Additionally,

1. 

Qn has the minimal number of factors,

2. 

Vn is a rational function which is minimal in one sense or another, depending on the particular rational canonical form chosen to represent the certificate of Hn.

  

If i=1 then degreedenomV is minimal;

  

if i=2 then degreenumerV is minimal;

  

if i=3 then degreenumerV+degreedenomV is minimal, and degreedenomV is minimal;

  

if i=4 then degreenumerV+degreedenomV is minimal, and degreenumerV is minimal.

  

If EfficientRepresentation is called without an index, the first efficient representation is constructed.

Examples

withSumToolsHypergeometric:

HProduct123k2+6k+42k+34k+5k+14k+3k4k12k14k32k+5k+23k2+1,k=1..n1

Hk=1n13k2+6k+42k+34k+5k+14k+32k4k12k14k32k+5k+23k2+1

(1)

EfficientRepresentation1H,n

64π14nn2+13nn14n+12n+14n12n34Γn+52Γn+2

(2)

EfficientRepresentation2H,n

64π14nn2+13n14n+14n34n+32n+1ΓnΓn12

(3)

EfficientRepresentation3H,n

64π14nn2+13nn14n+14n34n+32Γn+2Γn12

(4)

EfficientRepresentation4H,n

64π14nn2+13n14n+14n34n+32n+1ΓnΓn12

(5)

RegularGammaFormH,n

64π12nΓn+1I33Γn+1+I33Γn+32Γn+54Γn+1Γn+342nΓnΓn14Γn12Γn34Γn+52Γn+2ΓnI33Γn+I33

(6)

References

  

Abramov, S.A.; Le, H.Q.; and Petkovsek, M. "Rational Canonical Forms and Efficient Representations of Hypergeometric Terms." Proc. ISSAC'2003, pp. 7-14. 2003.

See Also

SumTools[Hypergeometric]

SumTools[Hypergeometric][MultiplicativeDecomposition]

SumTools[Hypergeometric][RationalCanonicalForm]

SumTools[Hypergeometric][RegularGammaForm]

SumTools[Hypergeometric][SumDecomposition]