BottomSequence - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


SumTools[Hypergeometric]

  

BottomSequence

  

bottom sequence of a hypergeometric term

 

Calling Sequence

Parameters

Description

Examples

References

Compatibility

Calling Sequence

BottomSequence(T, x, opt)

Parameters

T

-

hypergeometric term in x

x

-

name

opt

-

(optional) equation of the form primitive=true or primitive=false

Description

• 

Consider T as an analytic function in x satisfying a linear difference equation pxTx+1+qxTx=0, where px and qx are polynomials in x. For h and any integer k, let ck,h be the h-th coefficient of the Laurent series expansion for T at x=k. An integer m is called depth of T if ck,h=0 for all h<m and all integers k, and ck,m0 for some k.

• 

The bottom sequence of T is the doubly infinite sequence bx defined as bx=cx,m for all integers x, where m is the depth of T. The command BottomSequence(T, x) returns the bottom sequence of T in form of an expression representing a function of (integer values of) x. Typically, this is a piecewise expression.

• 

The bottom sequence bx is defined at all integers x and satisfies the same difference equation pxbx+1+qxbx=0 as T.

• 

If T is Gosper-summable and S=vT is its indefinite sum found by Gosper's algorithm, then the depth of S is also m. If the optional argument primitive=true (or just primitive) is specified, the command returns a pair v,u, where v is the bottom sequence of T and u is the bottom sequence of S or FAIL if T is not Gosper-summable.

• 

Note that this command rewrites expressions of the form nk in terms of GAMMA functions Γn+1Γk+1Γnk+1.

• 

If assumptions of the form x0<x and/or x<x1 are made, the depth and the bottom of T are computed with respect to the given interval instead of ...

Examples

withSumToolsHypergeometric&colon;

Tnn!

Tnn!

(1)

b,sBottomSequenceT&comma;n&comma;primitive

b,s−1nnΓnn−100n,−1nΓnn−100n

(2)

Note that b is not equivalent to T:

evalb&comma;n=1

0

(3)

evalT&comma;n=1

1

(4)

evalb&comma;n=1

−1

(5)

evalT&comma;n=1

Error, numeric exception: division by zero

However, b satisfies the same difference equation as T:

expandnevalT&comma;n=n+1n+12T

0

(6)

znevalb&comma;n=n+1n+12b

zn−1n+1n+1Γn1n−200n+1n+12−1nnΓnn−100n

(7)

simplifyzassumingn2

0

(8)

simplifyzassuming0n

0

(9)

evalz&comma;n=1

0

(10)

s is an indefinite sum of b:

zevals&comma;n=n+1sb

z−1n+1Γn1n−200n+1−1nΓnn−100n−1nnΓnn−100n

(11)

simplifyzassumingn2

0

(12)

simplifyzassuming0n

0

(13)

evalz&comma;n=1

0

(14)

Now assume that 0n:

b,sBottomSequenceT&comma;n&comma;primitiveassuming0n

b,snΓn+1,Γn+1

(15)

With that assumption, b and T are equivalent, and s is an indefinite sum of both:

simplifybT

0

(16)

simplifyevals&comma;n=n+1sb

0

(17)

Example of a hypergeometric term with parameters:

TΓnnk

TΓnnk

(18)

BottomSequenceT&comma;n

0n−1−1nn+kΓn+10n

(19)

Note that k is considered non-integer.

BottomSequenceT&comma;nassumingk::nonnegint

0n−1−1nn+kΓn+10n

(20)

BottomSequenceevalT&comma;k=2&comma;n

0n112n=203n

(21)

Tbinomial2n3&comma;n4n

T2n3n4n

(22)

b,sBottomSequenceT&comma;n&comma;primitive

b,s0n−112n=018n=14nn2Γ2n12Γn2n2n,0n012n=14nn+1Γ2n1Γn22n

(23)

References

  

S.A. Abramov, M. Petkovsek. "Analytic solutions of linear difference equations, formal series, and bottom summation." Proc. of CASC'07, (2007): 1-10.

  

S.A. Abramov, M. Petkovsek. "Gosper's Algorithm, Accurate Summation, and the Discrete Newton-Leibniz Formula." Proceedings of ISSAC'05, (2005): 5-12.

Compatibility

• 

The SumTools[Hypergeometric][BottomSequence] command was introduced in Maple 15.

• 

For more information on Maple 15 changes, see Updates in Maple 15.

See Also

assuming

binomial

SumTools[DefiniteSum][SummableSpace]

SumTools[Hypergeometric]

SumTools[Hypergeometric][Gosper]