ByLaplaceTransform - Maple Help

Online Help

All Products    Maple    MapleSim


Student[ODEs][Solve]

  

ByLaplaceTransform

  

Solve a linear ODE using the Laplace transform

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

ByLaplaceTransform(ODE, IC, y(x))

Parameters

ODE

-

a linear ordinary differential equation

IC

-

set; a set of two initial conditions

y

-

name; the dependent variable

x

-

name; the independent variable

Description

• 

The ByLaplaceTransform(ODE, IC, y(x)) command finds the solution of a linear ordinary differential equation ODE with initial conditions IC by using the Laplace transform.

Examples

withStudentODEsSolve:

ode1diffxt,t,t+2diffxt,t+2xt=0

ode1ⅆ2ⅆt2xt+2ⅆⅆtxt+2xt=0

(1)

ic1evaldiffxt,t,t=0=2,x0=1

ic1ⅆⅆtxtt=0|ⅆⅆtxtt=0=−2,x0=1

(2)

ByLaplaceTransformode1,ic1,xt

xt=ⅇtcostⅇtsint

(3)

ode2diffxt,t,t+diffxt,t6xt=sint

ode2ⅆ2ⅆt2xt+ⅆⅆtxt6xt=sint

(4)

ic2evaldiffxt,t,t=0=2,x0=3

ic2ⅆⅆtxtt=0|ⅆⅆtxtt=0=2,x0=−3

(5)

ByLaplaceTransformode1,ic2,xt

xt=3ⅇtcostⅇtsint

(6)

ode3diffxt,t,t+4diffxt,t+4xt=exp2t

ode3ⅆ2ⅆt2xt+4ⅆⅆtxt+4xt=ⅇ2t

(7)

ic3evaldiffxt,t,t=0=2,x0=1

ic3ⅆⅆtxtt=0|ⅆⅆtxtt=0=−2,x0=1

(8)

ByLaplaceTransformode1,ic3,xt

xt=ⅇtcostⅇtsint

(9)

ode4diffxt,t,t6diffxt,t+13xt=t

ode4ⅆ2ⅆt2xt6ⅆⅆtxt+13xt=t

(10)

ic4evaldiffxt,t,t=0=2,x0=1

ic4ⅆⅆtxtt=0|ⅆⅆtxtt=0=−2,x0=1

(11)

ByLaplaceTransformode1,ic4,xt

xt=ⅇtcostⅇtsint

(12)

ode5diffxt,t,t+4diffxt,t+4xt=exp2t

ode5ⅆ2ⅆt2xt+4ⅆⅆtxt+4xt=ⅇ2t

(13)

ic5evaldiffxt,t,t=0=2,x0=2

ic5ⅆⅆtxtt=0|ⅆⅆtxtt=0=−2,x0=2

(14)

ByLaplaceTransformode1,ic5,xt

xt=2ⅇtcost

(15)

Compatibility

• 

The Student[ODEs][Solve][ByLaplaceTransform] command was introduced in Maple 2021.

• 

For more information on Maple 2021 changes, see Updates in Maple 2021.

See Also

dsolve

inttrans[laplace]

Student

Student[ODEs]

Student[ODEs][Solve]