Student[ODEs][Solve]
ByLaplaceTransform
Solve a linear ODE using the Laplace transform
Calling Sequence
Parameters
Description
Examples
Compatibility
ByLaplaceTransform(ODE, IC, y(x))
ODE
-
a linear ordinary differential equation
IC
set; a set of two initial conditions
y
name; the dependent variable
x
name; the independent variable
The ByLaplaceTransform(ODE, IC, y(x)) command finds the solution of a linear ordinary differential equation ODE with initial conditions IC by using the Laplace transform.
with⁡StudentODEsSolve:
ode1≔diff⁡x⁡t,t,t+2⁢diff⁡x⁡t,t+2⁢x⁡t=0
ode1≔ⅆ2ⅆt2x⁡t+2⁢ⅆⅆtx⁡t+2⁢x⁡t=0
ic1≔eval⁡diff⁡x⁡t,t,t=0=−2,x⁡0=1
ic1≔ⅆⅆtx⁡tt=0|ⅆⅆtx⁡tt=0=−2,x⁡0=1
ByLaplaceTransform⁡ode1,ic1,x⁡t
x⁡t=ⅇ−t⁢cos⁡t−ⅇ−t⁢sin⁡t
ode2≔diff⁡x⁡t,t,t+diff⁡x⁡t,t−6⁢x⁡t=sin⁡t
ode2≔ⅆ2ⅆt2x⁡t+ⅆⅆtx⁡t−6⁢x⁡t=sin⁡t
ic2≔eval⁡diff⁡x⁡t,t,t=0=2,x⁡0=−3
ic2≔ⅆⅆtx⁡tt=0|ⅆⅆtx⁡tt=0=2,x⁡0=−3
ByLaplaceTransform⁡ode1,ic2,x⁡t
x⁡t=−3⁢ⅇ−t⁢cos⁡t−ⅇ−t⁢sin⁡t
ode3≔diff⁡x⁡t,t,t+4⁢diff⁡x⁡t,t+4⁢x⁡t=exp⁡2⁢t
ode3≔ⅆ2ⅆt2x⁡t+4⁢ⅆⅆtx⁡t+4⁢x⁡t=ⅇ2⁢t
ic3≔eval⁡diff⁡x⁡t,t,t=0=−2,x⁡0=1
ic3≔ⅆⅆtx⁡tt=0|ⅆⅆtx⁡tt=0=−2,x⁡0=1
ByLaplaceTransform⁡ode1,ic3,x⁡t
ode4≔diff⁡x⁡t,t,t−6⁢diff⁡x⁡t,t+13⁢x⁡t=t
ode4≔ⅆ2ⅆt2x⁡t−6⁢ⅆⅆtx⁡t+13⁢x⁡t=t
ic4≔eval⁡diff⁡x⁡t,t,t=0=−2,x⁡0=1
ic4≔ⅆⅆtx⁡tt=0|ⅆⅆtx⁡tt=0=−2,x⁡0=1
ByLaplaceTransform⁡ode1,ic4,x⁡t
ode5≔diff⁡x⁡t,t,t+4⁢diff⁡x⁡t,t+4⁢x⁡t=exp⁡−2⁢t
ode5≔ⅆ2ⅆt2x⁡t+4⁢ⅆⅆtx⁡t+4⁢x⁡t=ⅇ−2⁢t
ic5≔eval⁡diff⁡x⁡t,t,t=0=−2,x⁡0=2
ic5≔ⅆⅆtx⁡tt=0|ⅆⅆtx⁡tt=0=−2,x⁡0=2
ByLaplaceTransform⁡ode1,ic5,x⁡t
x⁡t=2⁢ⅇ−t⁢cos⁡t
The Student[ODEs][Solve][ByLaplaceTransform] command was introduced in Maple 2021.
For more information on Maple 2021 changes, see Updates in Maple 2021.
See Also
dsolve
inttrans[laplace]
Student
Student[ODEs]
Download Help Document
What kind of issue would you like to report? (Optional)