Systems of ODEs - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


ODE Steps for Systems of ODEs

 

Overview

Examples

Overview

• 

This help page gives a few examples of using the command ODESteps to solve systems of ordinary differential equations.

• 

See Student[ODEs][ODESteps] for a general description of the command ODESteps and its calling sequence.

Examples

withStudent:-ODEs:

high_order_ode1diffyx,x,x,x+3diffyx,x,x+4diffyx,x+2yx=0

high_order_ode1ⅆ3ⅆx3yx+3ⅆ2ⅆx2yx+4ⅆⅆxyx+2yx=0

(1)

ODEStepshigh_order_ode1

Let's solveⅆ3ⅆx3yx+3ⅆ2ⅆx2yx+4ⅆⅆxyx+2yx=0Highest derivative means the order of the ODE is3ⅆ3ⅆx3yxCharacteristic polynomial of ODEr3+3r2+4r+2=0Roots of the characteristic polynomialr=−1,−1I,−1+ISolution fromr=−1y1x=ⅇxSolutions fromr=−1Iandr=−1+Iy2x=ⅇxsinx,y3x=ⅇxcosxGeneral solution of the ODEyx=c__1y1x+c__2y2x+c__3y3xSubstitute in solutions and simplifyyx=ⅇxc__1+c__2sinx+c__3cosx

(2)

macroY=y1x,y2x:

sys2diffY,x=`%.`Matrix7,1,`-`4,3,Y

sys2ⅆⅆxy1xⅆⅆxy2x=71−43·y1xy2x

(3)

ODEStepssys2

sys3diffY,x=Matrix1,2,3,2·Y+1,expx

sys3ⅆⅆxy1xⅆⅆxy2x=y1x+2y2x+13y1x+2y2x+ⅇx

(4)

ODEStepssys3

sys4diffwx,x=wx+2zx,diffzx,x=3wx+2zx+expx

sys4ⅆⅆxwx=wx+2zx,ⅆⅆxzx=3wx+2zx+ⅇx

(5)

ODEStepssys4

See Also

diff

Int

Student

Student[ODEs]

Student[ODEs][ODESteps]