Moment - Maple Help

Statistics

 Moment
 compute moments

 Calling Sequence Moment(A, n, ds_options) Moment(X, n, rv_options)

Parameters

 A - X - algebraic; random variable or distribution n - algebraic; order ds_options - (optional) equation(s) of the form option=value where option is one of ignore, origin, or weights; specify options for computing the moment of a data set rv_options - (optional) equation(s) of the form option=value where option is one of numeric or origin; specifies options for computing the moment of a random variable

Description

 • The Moment function computes the moment of order n of the specified random variable or data set.
 • The first parameter can be a data set (e.g., a Vector), a Matrix data set, a distribution (see Statistics[Distribution]), a random variable, or an algebraic expression involving random variables (see Statistics[RandomVariable]).
 • The second parameter can be any Maple expression.

Computation

 • All computations involving data are performed in floating-point; therefore, all data provided must have type realcons and all returned solutions are floating-point, even if the problem is specified with exact values.
 • By default, all computations involving random variables are performed symbolically (see option numeric below).

Data Set Options

 The ds_options argument can contain one or more of the options shown below. More information for some options is available in the Statistics[DescriptiveStatistics] help page.
 • ignore=truefalse -- This option controls how missing data is handled by the Moment command. Missing items are represented by undefined or Float(undefined). So, if ignore=false and A contains missing data, the Moment command will return undefined. If ignore=true all missing items in A will be ignored. The default value is false.
 • weights=Vector -- Data weights. The number of elements in the weights array must be equal to the number of elements in the original data sample. By default all elements in A are assigned weight $1$.
 • origin=algebraic -- By default, the moment is computed about 0. If this option is present, the moment will be calculated about the specified point. If A is a Matrix, then you can specify several origins instead, one for each column of the matrix. This is accomplished by passing a list or Vector as the value of the origin option.

Random Variable Options

 The rv_options argument can contain one or more of the options shown below. More information for some options is available in the Statistics[RandomVariables] help page.
 • numeric=truefalse -- By default, the moment is computed symbolically. To compute the moment numerically, specify the numeric or numeric = true option.
 • origin=algebraic -- By default, the moment is computed about 0. If this option is present, the moment will be calculated about the specified point.

Examples

 > $\mathrm{with}\left(\mathrm{Statistics}\right):$

Compute the third moment of the beta distribution with parameters 3 and 5.

 > $\mathrm{Moment}\left('\mathrm{Β}'\left(3,5\right),3\right)$
 $\frac{{1}}{{12}}$ (1)
 > $\mathrm{Moment}\left('\mathrm{Β}'\left(3,5\right),3,\mathrm{numeric}\right)$
 ${0.08333333333}$ (2)
 > $\mathrm{Moment}\left('\mathrm{Β}'\left(3,5\right),3,\mathrm{origin}=\frac{1}{2}\right)$
 ${-}\frac{{1}}{{96}}$ (3)
 > $\mathrm{Moment}\left('\mathrm{Β}'\left(3,5\right),3,\mathrm{origin}=\frac{1}{2},\mathrm{numeric}\right)$
 ${-0.01041666667}$ (4)

Generate a random sample of size 100000 drawn from the above distribution and compute the third moment.

 > $A≔\mathrm{Sample}\left('\mathrm{Β}'\left(3,5\right),{10}^{5}\right):$
 > $\mathrm{Moment}\left(A,3\right)$
 ${0.0833620461074444}$ (5)
 > $\mathrm{Moment}\left(A,3,\mathrm{origin}=\frac{1}{2}\right)$
 ${-0.0105063541487697}$ (6)

Compute the standard error of the third moment for the normal distribution with parameters 5 and 2.

 > $X≔\mathrm{Normal}\left(5,2\right)$
 ${X}{≔}{\mathrm{Normal}}{}\left({5}{,}{2}\right)$ (7)
 > $B≔\mathrm{Sample}\left(X,{10}^{6}\right):$
 > $\left[\mathrm{Moment}\left(X,3\right),{\mathrm{StandardError}}_{{10}^{6}}\left(\mathrm{Moment},X,3,\mathrm{origin}=0\right)\right]$
 $\left[{185}{,}\frac{\sqrt{{9465}}}{{500}}\right]$ (8)
 > $\left[\mathrm{Moment}\left(X,3,\mathrm{numeric}\right),{\mathrm{StandardError}}_{{10}^{6}}\left(\mathrm{Moment},X,3,\mathrm{origin}=0,\mathrm{numeric}\right)\right]$
 $\left[{185.}{,}{0.1945764631}\right]$ (9)
 > $\left[\mathrm{Moment}\left(B,3\right),\mathrm{StandardError}\left(\mathrm{Moment},B,3,\mathrm{origin}=0\right)\right]$
 $\left[{184.777649882669}{,}{0.194465203777126283}\right]$ (10)

Create a beta-distributed random variable $Y$ and compute the third moment of $\frac{1}{Y+2}$.

 > $Y≔\mathrm{RandomVariable}\left('\mathrm{Β}'\left(5,2\right)\right):$
 > $\mathrm{Moment}\left(\frac{1}{Y+2},3,\mathrm{numeric}\right)$
 ${0.05113729747}$ (11)

Verify this using simulation.

 > $C≔\mathrm{Sample}\left(\frac{1}{Y+2},{10}^{5}\right):$
 > $\mathrm{Moment}\left(C,3\right)$
 ${0.0511287210305800}$ (12)

Compute the average moment of a weighted data set.

 > $V≔⟨\mathrm{seq}\left(i,i=57..77\right),\mathrm{undefined}⟩:$
 > $W≔⟨2,4,14,41,83,169,394,669,990,1223,1329,1230,1063,646,392,202,79,32,16,5,2,5⟩:$
 > $\mathrm{Moment}\left(V,3,\mathrm{weights}=W\right)$
 ${Float}{}\left({\mathrm{undefined}}\right)$ (13)
 > $\mathrm{Moment}\left(V,3,\mathrm{weights}=W,\mathrm{ignore}=\mathrm{true}\right)$
 ${302374.062434479}$ (14)

Consider the following Matrix data set.

 > $M≔\mathrm{Matrix}\left(\left[\left[3,1130,114694\right],\left[4,1527,127368\right],\left[3,907,88464\right],\left[2,878,96484\right],\left[4,995,128007\right]\right]\right)$
 ${M}{≔}\left[\begin{array}{ccc}{3}& {1130}& {114694}\\ {4}& {1527}& {127368}\\ {3}& {907}& {88464}\\ {2}& {878}& {96484}\\ {4}& {995}& {128007}\end{array}\right]$ (15)

We compute the second moment of each of the columns.

 > $\mathrm{Moment}\left(M,2\right)$
 $\left[\begin{array}{ccc}{10.8000000000000}& {1.23843740000000}{×}{{10}}^{{6}}& {1.25796309322000}{×}{{10}}^{{10}}\end{array}\right]$ (16)

We compute the second moment of each column with origin 3.

 > $\mathrm{Moment}\left(M,2,'\mathrm{origin}=3'\right)$
 $\left[\begin{array}{ccc}{0.600000000000000}& {1.231922}{×}{{10}}^{{6}}& {1.25789649208000}{×}{{10}}^{{10}}\end{array}\right]$ (17)

We compute the second moment of each column with three different origins.

 > $\mathrm{Moment}\left(M,2,'\mathrm{origin}=\left[3,1000,100000\right]'\right)$
 $\left[\begin{array}{ccc}{0.600000000000000}& {63637.4000000000}& {3.78950932200000}{×}{{10}}^{{8}}\end{array}\right]$ (18)

References

 Stuart, Alan, and Ord, Keith. Kendall's Advanced Theory of Statistics. 6th ed. London: Edward Arnold, 1998. Vol. 1: Distribution Theory.

Compatibility

 • The A parameter was updated in Maple 16.