Computation of the univariate resultant of two cyclotomic polynomials
>

$\mathrm{p1}\u2254\mathrm{NumberTheory}\left[\mathrm{CyclotomicPolynomial}\right]\left(1501\,x\right)\:$

>

$\mathrm{p2}\u2254\mathrm{NumberTheory}\left[\mathrm{CyclotomicPolynomial}\right]\left(1502\,x\right)\:$

>

$\mathrm{t1}\u2254\mathrm{time}\left(\mathrm{resultant}\left(\mathrm{p1}\,\mathrm{p2}\,x\right)\right)$

${\mathrm{t1}}{\u2254}{0.004}$
 (1) 
Without the probabilistic approach, this is much more expensive
>

$\mathrm{forget}\left(\mathrm{resultant}\right)\:$

>

$\mathrm{\_EnvProbabilistic}\u22540\:$

>

$\mathrm{t2}\u2254\mathrm{time}\left(\mathrm{resultant}\left(\mathrm{p1}\,\mathrm{p2}\,x\right)\right)$

${\mathrm{t2}}{\u2254}{0.316}$
 (2) 
>

$\frac{\mathrm{t2}}{\mathrm{t1}}$

and in fact computation of the resultant bound alone requires more than 10 times the total time required to compute the probabilistic answer on this extreme example.