This example shows some simple calling sequences
>

$\left[\mathrm{Grid}:\mathrm{Seq}\left(i\,i=1..4\right)\right]$

$\left[{1}{\,}{2}{\,}{3}{\,}{4}\right]$
 (1) 
>

$A\u2254\mathrm{Array}\left(\left[1\,2\,3\,4\,5\right]\right)$

${A}{\u2254}\left[\begin{array}{ccccc}{1}& {2}& {3}& {4}& {5}\end{array}\right]$
 (2) 
>

$\left[\mathrm{Grid}:\mathrm{Seq}\left(F\left(i\right)\,i=A\right)\right]$

$\left[{F}{}\left({1}\right){\,}{F}{}\left({2}\right){\,}{F}{}\left({3}\right){\,}{F}{}\left({4}\right){\,}{F}{}\left({5}\right)\right]$
 (3) 
In this example, we define two procedures such that Seq will not be able to automatically find all definitions to send to external nodes. The remote operation is not fully defined.
>

$\mathrm{myfunc1}\u2254x\mapsto {x}^{2}$

${\mathrm{myfunc1}}{\u2254}{x}{\mapsto}{{x}}^{{2}}$
 (4) 
>

$\mathrm{myfunc2}\u2254x\mapsto \mathrm{myfunc1}\left(x\right)+x$

${\mathrm{myfunc2}}{\u2254}{x}{\mapsto}{\mathrm{myfunc1}}{}\left({x}\right){+}{x}$
 (5) 
>

$\left[\mathrm{Grid}:\mathrm{Seq}\left(\mathrm{myfunc2}\left(i\right)\,i=1..3\right)\right]$

$\left[{\mathrm{myfunc1}}{}\left({1}\right){+}{1}{\,}{\mathrm{myfunc1}}{}\left({2}\right){+}{2}{\,}{\mathrm{myfunc1}}{}\left({3}\right){+}{3}\right]$
 (6) 
The myfunc1 procedure was not defined in the external nodes. It needs to be set.
>

$\mathrm{Grid}:\mathrm{Set}\left(\mathrm{myfunc1}\right)$

>

$\left[\mathrm{Grid}:\mathrm{Seq}\left(\mathrm{myfunc2}\left(i\right)\,i=1..3\right)\right]$

$\left[{2}{\,}{6}{\,}{12}\right]$
 (7) 
In this example, the work required for the computation at j=1 is much less than the computation at j=9. The sequence of heavy computations at the end of the list may require an adjustment to the default tasksize
>

$\mathrm{time}\left[\mathrm{real}\right]\left(\mathrm{Grid}:\mathrm{Seq}\left(\mathrm{add}\left(i\,i=1..{10}^{\mathrm{min}\left(7\,j\right)}\right)\,j=1..9\right)\right)$

>

$\mathrm{time}\left[\mathrm{real}\right]\left(\mathrm{Grid}:\mathrm{Seq}\left['\mathrm{tasksize}'=1\right]\left(\mathrm{add}\left(i\,i=1..{10}^{\mathrm{min}\left(7\,j\right)}\right)\,j=1..9\right)\right)$
