 HasArc - Maple Help

GraphTheory

 HasArc
 check if digraph contains specified arc
 HasEdge
 check if graph contains specified edge Calling Sequence HasArc(G, e) HasArc(G, a) HasEdge(G, e) HasEdge(G, a) Parameters

 G - graph e - edge - a set of two vertices in G a - arc (directed edge) - a list of two vertices in G Description

 • If e = {u,v} then HasEdge(G,e) returns true if the undirected graph G contains the (undirected) edge {u,v}, and false otherwise.
 • If a = [u,v], a directed edge, HasEdge(G,a) returns true if the undirected graph G has the undirected edge {u,v} in it.
 • If a = [u,v], HasArc(G,a) returns true if the directed graph G has the directed edge from vertex u to v in it, and false otherwise.
 • If e = {u,v}, HasArc(G,a) returns true if the directed graph G has both edges [u,v] and [v,u] in it, and false otherwise.
 • Because the data structure for a graph is an array of sets of neighbors, the test for edge membership uses binary search and hence the cost is O(log k) where k is the number of neighbors. Examples

 > $\mathrm{with}\left(\mathrm{GraphTheory}\right):$
 > $G≔\mathrm{Graph}\left(\left\{\left\{1,2\right\},\left\{2,3\right\},\left\{3,4\right\},\left\{4,1\right\}\right\}\right)$
 ${G}{≔}{\mathrm{Graph 1: an undirected graph with 4 vertices and 4 edge\left(s\right)}}$ (1)
 > $\mathrm{HasEdge}\left(G,\left\{1,2\right\}\right)$
 ${\mathrm{true}}$ (2)
 > $\mathrm{HasEdge}\left(G,\left[2,1\right]\right)$
 ${\mathrm{true}}$ (3)
 > $\mathrm{HasEdge}\left(G,\left\{1,3\right\}\right)$
 ${\mathrm{false}}$ (4)
 > $N≔\mathrm{Graph}\left(\left\{\left[1,2\right],\left[2,3\right],\left[3,4\right],\left[4,1\right]\right\}\right)$
 ${N}{≔}{\mathrm{Graph 2: a directed graph with 4 vertices and 4 arc\left(s\right)}}$ (5)
 > $\mathrm{HasArc}\left(N,\left[1,2\right]\right)$
 ${\mathrm{true}}$ (6)
 > $\mathrm{HasArc}\left(N,\left[2,1\right]\right)$
 ${\mathrm{false}}$ (7)
 > $\mathrm{HasEdge}\left(G,\left[1,3\right]\right)$
 ${\mathrm{false}}$ (8)