 SphereOfInfluenceGraph - Maple Help

GraphTheory[GeometricGraphs]

 SphereOfInfluenceGraph
 construct a sphere of influence graph Calling Sequence SphereOfInfluenceGraph( P, opts ) Parameters

 P - Matrix or list of lists representing set of points opts - (optional) one or more options as specified below Options

 • vertices = list of integers, strings or symbols
 Specifies the vertices to be used in the generated graph.
 • weighted = true or false
 If weighted=true, the result is a weighted graph whose edge weights correspond to the distance between points using the specified norm. Default is false. Description

 • The SphereOfInfluenceGraph(P, opts) command returns the sphere of influence graph for the point set P.
 • The parameter P must be a Matrix or list of lists representing a set of points. Definition

 • Given a set $P$ of points, center a ball $B\left(p\right)$ at each point $p$ with radius equal to the distance between $p$ and its nearest neighbor in $P$.
 • The sphere of influence graph is the graph whose vertices correspond to points in $P$ and in which an edge between $p$ and $q$ exists if $B\left(p\right)\cap B\left(q\right)$ contains more than one point.
 • The sphere of influence graph is not guaranteed to be connected.
 • The undirected nearest neighbor graph is a subgraph of the sphere of influence graph. Examples

Generate a set of random two-dimensional points amd draw a sphere of influence graph.

 > $\mathrm{with}\left(\mathrm{GraphTheory}\right):$
 > $\mathrm{with}\left(\mathrm{GeometricGraphs}\right):$
 > $\mathrm{points}≔\mathrm{LinearAlgebra}:-\mathrm{RandomMatrix}\left(60,2,\mathrm{generator}=0..100.,\mathrm{datatype}={\mathrm{float}}_{8}\right)$ > $\mathrm{SOIG}≔\mathrm{SphereOfInfluenceGraph}\left(\mathrm{points}\right)$
 ${\mathrm{SOIG}}{≔}{\mathrm{Graph 1: an undirected graph with 60 vertices and 97 edge\left(s\right)}}$ (1)
 > $\mathrm{DrawGraph}\left(\mathrm{SOIG}\right)$  Compatibility

 • The GraphTheory[GeometricGraphs][SphereOfInfluenceGraph] command was introduced in Maple 2020.