ChangeGradedComponent - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


LieAlgebras[ChangeGradedComponent] - change one or more components of a graded Lie algebra

Calling Sequences

     ChangeGradedComponent(alg, newcomponent, newalg)

  

Parameters

   alg          - a  name or string, the name of an initialized Lie algebra 𝔤

   newcomponent - a list, specifying the new graded components

   newalg       - a name or string, the name of a new graded Lie algebra to be created

  

 

Description

See Also

Description

• 

Let 𝔤 be a graded Lie algebra with (for example) grading 𝔤 = 𝔤2  𝔤1  𝔤0  𝔤1 𝔤2 𝔤3 . With newcomponent given by (for example) [2 = h], where h is a list of vectors in 𝔤2, the command ChangeGradedComponent will return the structure equations for the new graded Lie algebra𝔤 = 𝔤2  𝔤1 𝔤0  𝔤1  h 𝔤3 .

Examples

with(DifferentialGeometry): with(LieAlgebras):

 

Example 1.

Define a 9-dimensional Lie algebra alg1 with grading 𝔤3  𝔤2 𝔤1 𝔤0, where 𝔤3= e1, e2, 𝔤2 = e3, 𝔤1 = e4 ,e5 and 𝔤0 = e6 ,e7 , e8, e9. Here are the structure equations:

StrEq := [[x1, x6] = -x1, [x1, x8] = -x2, [x2, x7] = -x1, [x2, x9] = -x2, [x3, x4] = -x1, [x3, x5] = -x2, [x3, x6] = -(1/3)*x3, [x3, x9] = -(1/3)*x3, [x4, x5] = x3, [x4, x6] = -(2/3)*x4, [x4, x8] = -x5, [x4, x9] = (1/3)*x4, [x5, x6] = (1/3)*x5, [x5, x7] = -x4, [x5, x9] = -(2/3)*x5, [x6, x7] = x7, [x6, x8] = -x8, [x7, x8] = x6-x9, [x7, x9] = x7, [x8, x9] = -x8];

StrEq:=x1,x6=x1,x1,x8=x2,x2,x7=x1,x2,x9=x2,x3,x4=x1,x3,x5=x2,x3,x6=13x3,x3,x9=13x3,x4,x5=x3,x4,x6=23x4,x4,x8=x5,x4,x9=13x4,x5,x6=13x5,x5,x7=x4,x5,x9=23x5,x6,x7=x7,x6,x8=x8,x7,x8=x6x9,x7,x9=x7,x8,x9=x8

(1)

 

Use the keyword grading to specify the grading of this algebra. Initialize.

LD1 := LieAlgebraData(StrEq, [x1, x2, x3, x4, x5, x6, x7, x8, x9], alg1, grading = [-3, -3, -2, -1, -1, 0, 0, 0, 0]);

LD1:=e1,e6=e1,e1,e8=e2,e2,e7=e1,e2,e9=e2,e3,e4=e1,e3,e5=e2,e3,e6=13e3,e3,e9=13e3,e4,e5=e3,e4,e6=23e4,e4,e8=e5,e4,e9=13e4,e5,e6=13e5,e5,e7=e4,e5,e9=23e5,e6,e7=e7,e6,e8=e8,e7,e8=e6e9,e7,e9=e7,e8,e9=e8

(2)

DGsetup(LD1);

Lie algebra: alg1

(3)

 

Note that the vectors e6, e7 define a 2-dimensional subalgebra of 𝔤0.

alg1 > 

LieBracket(e6, e7);

e7

(4)

 

Therefore we can replace all of 𝔤0 with just e6, e7. The result is a 7-dimensional graded Lie algebra which is a sub-algebra of the one we started with.

alg1 > 

newLD1a := ChangeGradedComponent(alg1, [0 = [e6, e7]], newalg1);

newLD1a:=e1,e6=e1,e2,e7=e1,e3,e4=e1,e3,e5=e2,e3,e6=13e3,e4,e5=e3,e4,e6=23e4,e5,e6=13e5,e5,e7=e4,e6,e7=e7

(5)
alg1 > 

DGsetup(newLD1a);

Lie algebra: newalg1

(6)
alg1 > 

Tools:-DGinfo("Grading");

3,3,2,1,1,0,0

(7)

See Also

DifferentialGeometry, LieAlgebras, TanakaProlongation