ProjectedPullback - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


JetCalculus[ProjectedPullback] - pullback a differential bi-form of type (r, s) by a transformation to a differential bi-form of type (r, s)

Calling Sequences

     ProjectedPullback(φ, ω)

Parameters

     φ    - a transformation between two jet spaces

     ω          - a differential bi-form of type r,s defined on the range jet space of φ

 

Description

Examples

Description

• 

Let π:EM be a fiber bundle, with base dimension n and fiber dimension m and let π∞ :J∞E M be the ∞-th jet bundle of E. The space of p -forms ΩpJ∞E decomposes into a direct sum ΩpJ = r+s =p Ωr,sJE, where Ωr,s JE is the space of bi-forms of horizontal degree r and vertical degree s. The precise definition of the space Ωr,sJEis given in the help page for the horizontal exterior derivative. If ω  ΩpJ , then let ωr,s denote the type r,s component of ω in the decomposition (*). The command convert/DGbifom calculates the various bi-graded components of a form ω  ΩpJ .Let FN be another fiber bundle and let φ: JkE  jℓF. Let η be a differential bi-form of type r,s on  JF. Then the projected pullback of η is denote by φω and defined by φη = Φ*ηr,s.

• 

 Two special cases of this general definition should be noted.

[i]  If φ is the prolongation of a projectable transformation from E to F, then the pullback φ* is a bi-degree preserving transformation, that is, if η be a differential bi-form of type r,s on JF, then φ*η is a differential bi-form of type r,s on JF. Hence φη = φ*η.

[ii] Suppose that φ: JkE  jℓF is the prolongation of a point transformation, a contact transformation, a differential substitution or a generalized differential substitution. (See AssignTransformationType for the definitions of these different types of transformations.) Then if η is a differential bi-form of type r,s on JF ,φ*η= ω0+ω1+ ω2++ ωr, where ωi is a bi-form of degree ri, s+i on JkE. In these cases the command ProjectedPullback(φ, ω) returns the type r,s bi-form ω0. 

• 

Use ProjectedPullback to transform a Lagrangian bi-form to a new Lagrangian bi-form using any of the above transformations.

• 

The command ProjectedPullback is part of the DifferentialGeometry:-JetCalculus package.  It can be used in the form ProjectedPullback(...) only after executing the commands with(DifferentialGeometry) and with(JetCalculus), but can always be used by executing DifferentialGeometry:-JetCalculus:-ProjectedPullback(...).

Examples

withDifferentialGeometry:withJetCalculus:

 

First initialize several different jet spaces over bundles E1M1, E2M2, E3M3. The dimension of the base spaces are dim(M1) =2, dim(M2) =1, dim(M3) =3.

DGsetupx,y,u,E1,2:DGsetupt,v,E2,2:DGsetupp,q,r,w,E3,2:

 

Example 1.

Define a transformation φ1:E1E2. This transformation is a projectable transformation and therefore pullbacks by the prolongation of φ1can be calculated directly using the Pullback command.

E3 > 

Φ1TransformationE1,E2,t=x,v=x2u

Φ1:=t=x,v=x2u

(2.1)
E1 > 

prPhi1ProlongΦ1,2

prPhi1:=t=x,v=x2u,v1=x2u1+2xu,v1,1=x2u1,1+4xu1+2u

(2.2)
E1 > 

Tools:-DGinfoprPhi1,TransformationType

projectable,2

(2.3)

 

Pullback the contact 1-form Cv[1] on J2E2 to a contact form on J2E1 -- this can be done with either the Pullback command or the ProjectedPullback command.

E1 > 

PullbackprPhi1,Cv1

2xCu+x2Cu1

(2.4)
E1 > 

ProjectedPullbackprPhi1,Cv1

2xCu+x2Cu1

(2.5)

 

Example 2

Define a point transformation φ1:E1E3 and prolong it to a transformation J1E1  J1E3.

E1 > 

Φ2TransformationE1,E3,p=u,q=y,r=1,w=x

Φ2:=p=u,q=y,r=1,w=x

(2.6)
E1 > 

prPhi2ProlongΦ2,1

prPhi2:=p=u,q=y,r=1,w=x,w1=1u1,w2=u2u1,w3=0

(2.7)

 

Calculate the projected pullback of the type (1, 0) form Dp.

E1 > 

ProjectedPullbackprPhi2,Dp

u1Dx+u2Dy

(2.8)

 

Calculate the projected pullback of the type (1, 1) form Dp Cw1.

E1 > 

ωDp&wedgeCw

ω:=DpCw

(2.9)
E3 > 

ProjectedPullbackprPhi2,ω

DxCuu2u1DyCu

(2.10)

 

To illustrate the definition of the projected pullback we re-derive this result using the usual Pullback command. First convert ω from a bi-form to a form θ1.

E1 > 

θ1convertω,DGform

θ1:=w2dpdqw3dpdr+dpdw

(2.11)

 

Then pullback θ1 using pr φ2.

E3 > 

θ2PullbackprPhi2,θ1

θ2:=dxduu2u1dydu

(2.12)

 

Then convert θ2 back to a bi-form and take the type [1, 1] part.

E1 > 

θ3convertθ2,DGbiform,1,1

θ3:=DxCuu2u1DyCu

(2.13)

 

Example 3

Define a differential substitution φ3:J2E2E1 and prolong it to a transformation J2E3  J2E1.

E1 > 

Φ3TransformationE2,E1,x=v,y=v1,u=v2

Φ3:=x=v,y=v1,u=v2

(2.14)
E2 > 

prPhi3ProlongΦ3,1

prPhi3:=x=v,y=v1,u=v2,u1=v1v1,2v12+v1,12,u2=v1,1v1,2v12+v1,12

(2.15)

 

Calculate the projected pullback of the type (1, 0) form 2Dx +3 Dy

E2 > 

ProjectedPullbackprPhi3,2Dx+3Dy

3v1,1+2v1Dt

(2.16)

 

Calculate the projected pullback of the type (1, 0) form Cu

E2 > 

ProjectedPullbackprPhi3,u1Cu

v12v1,22v12+v1,122Cvv1v1,22v1,1v12+v1,122Cv1

(2.17)

See Also

DifferentialGeometry

JetCalculus

DGinfo

Prolong

Pullback

PushforwardTotalVector

Transformation