EvolutionaryVector - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


JetCalculus[EvolutionaryVector] - form the evolutionary part of a vector field

Calling Sequences

     EvolutionaryVector(X)

Parameters

     X         - a vector field or a generalized vector field on a fiber bundle

 

Description

Examples

Description

• 

Let π:E  M be a fiber bundle and let πk:JkE M be the associated jet bundle. Let (xi, uα, uiα, uijα, ...,uij  mα) be the local coordinates on JkE and let X = Aj   xi +Bβ    uβ (*) be a generalized vector field on E. The coefficients Ai and Bβ are functions on jet space. Then the evolutionary part of X is the generalized vertical vector field Xev = Bβ Aℓuℓβ    uβ.  Every vector field decomposes as a sum of its evolutionary and total parts X = Xtot + Xev .

• 

The evolutionary part of a projectable vector field X has the following geometric interpretation (The vector (*) is projectable if Ai=Aixj and Bβ = Bβ(xi, uα)). Let φt:E  E be the flow of X. Then φt covers a map ψt:MM. If σ:ME is a section of E, then the induced flow in the space of sections is defined by the section σtx=φtσψtx. The derivative of σt, evaluated at t = 0, yields Xev .

• 

The command EvolutionaryVector is part of the DifferentialGeometry:-JetCalculus package.  It can be used in the form EvolutionaryVector(...) only after executing the commands with(DifferentialGeometry) and with(JetCalculus), but can always be used by executing DifferentialGeometry:-JetCalculus:-EvolutionaryVector(...).

Examples

withDifferentialGeometry:withJetCalculus:

 

Example 1.

Create the 1st order jet space of 2 independent variables x,y and 2 dependent variables u, v.

DGsetupx,y,u,v,J22,1:

 

Define a vector X1 and compute its total and evolutionary parts totX1and evolX1. Check that X1 = totX1+evolX1.

J22 > 

X1D_x

X1D_x

(2.1)
J22 > 

totX1TotalVectorX1

totX1D_x+u1D_u+v1D_v

(2.2)
J22 > 

evolX1EvolutionaryVectorX1

evolX1u1D_uv1D_v

(2.3)
J22 > 

totX1&plusevolX1

D_x

(2.4)

 

Define a vector X2 and compute its total and evolutionary parts totX2 and evolX2. Check that X2 = totX2+evolX2.

J22 > 

X2D_u

X2D_u

(2.5)
J22 > 

totX2TotalVectorX2

totX20D_x

(2.6)
J22 > 

evolX2EvolutionaryVectorX2

evolX2D_u

(2.7)
J22 > 

totX2&plusevolX2

D_u

(2.8)

 

Define a vector X3 and compute its total and evolutionary parts totX3 and evolX3. Check that X3 = totX3+ evolX3.

J22 > 

X3evalDGaD_x+bD_y+cD_u+dD_v

X3aD_x+bD_y+cD_u+dD_v

(2.9)
J22 > 

totX3TotalVectorX3

totX3aD_x+bD_y+u1a+u2bD_u+v1a+v2bD_v

(2.10)
J22 > 

evolX3EvolutionaryVectorX3

evolX3u1a+u2bcD_uv1a+v2bdD_v

(2.11)
J22 > 

totX3&plusevolX3

aD_x+bD_y+cD_u+dD_v

(2.12)

 

Example 2.

In this example we illustrate the geometric interpretation of the evolutionary part of a projectable vector field. First define a 3-dimensional bundle E over a two dimensional base. Define the base space M separately.

J22 > 

DGsetupx,y,M:DGsetupx,y,u,E,2:

 

Define a vector field X4 and compute its evolutionary part evolX4. Define the projection Y4 of the vector field X4 onto the base manifold M.

E > 

X4evalDGyD_x+xD_y+uD_u

X4yD_x+xD_y+uD_u

(2.13)
E > 

evolX4EvolutionaryVectorX4

evolX4u2xu1yuD_u

(2.14)
E > 

ChangeFrameM

E

(2.15)
M > 

Y4evalDGyD_x+xD_y

Y4yD_x+xD_y

(2.16)

 

Calculate the flow ψt of Y4 and the flow φt of X4.

M > 

ψevalFlowY4,t,t=t

ψx=ysint+xcost,y=ycostxsint

(2.17)
M > 

ΦFlowX4,t

Φx=ysint+xcost,y=ycost+xsint,u=uⅇt

(2.18)

 

Define a section σ of E sending x,y  Ux,y.

E > 

σTransformationM,E,x=x,y=y,u=Ux,y

σx=x,y=y,u=Ux,y

(2.19)

 

Calculate the induced flow on the space of sections.

M > 

sigma_tComposeTransformationsΦ,σ,ψ

sigma_tx=ycostxsintsint+ysint+xcostcost,y=ycostxsintcost+ysint+xcostsint,u=Uysint+xcost,ycostxsintⅇt

(2.20)
M > 

ΣApplyTransformationsigma_t,x,y

Σycostxsintsint+ysint+xcostcost,ycostxsintcost+ysint+xcostsint,Uysint+xcost,ycostxsintⅇt

(2.21)
E > 

evaldiffΣ,t,t=0

0,0,D1Ux,yyD2Ux,yx+Ux,y

(2.22)

 

Compare with the components of evolX4.

E > 

GetComponentsevolX4,D_x,D_y,D_u

0,0,xu2+yu1+u

(2.23)

See Also

DifferentialGeometry

JetCalculus

ApplyTransformation

ComposeTransformations

GetComponents

Prolong

TotalVector

Transformation