Interpolation - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

CurveFitting

 PolynomialInterpolation
 compute an interpolating polynomial

 Calling Sequence PolynomialInterpolation(xydata, v, opts) PolynomialInterpolation(xdata, ydata, v, opts)

Parameters

 xydata - list, Array, DataFrame, or Matrix of the form [[x1,y1], [x2,y2], ..., [xn,yn]]; data points xdata - list, Array, DataSeries, or Vector of the form [x1, x2, ..., xn]; independent values ydata - list, Array, DataSeries, or Vector of the form [y1, y2, ..., yn]; dependent values v - name or numeric value opts - (optional) equation of the form form=option where option is one of Lagrange, monomial, Newton, or power; specify keyword describing form of output

Description

 • The PolynomialInterpolation routine returns the polynomial of degree less than or equal to $n-1$ in variable v that interpolates the points $\left\{\left(\mathrm{x1},\mathrm{y1}\right),\left(\mathrm{x2},\mathrm{y2}\right),...,\left(\mathrm{xn},\mathrm{yn}\right)\right\}$.  If v is a numerical value, the value of the polynomial at this point is returned.
 • You can call the PolynomialInterpolation routine in two ways.
 The first, PolynomialInterpolation(xydata, v, opts), accepts a list, Array, or Matrix, $[[\mathrm{x1},\mathrm{y1}],[\mathrm{x2},\mathrm{y2}],...,[\mathrm{xn},\mathrm{yn}]]$, of data points.
 The second, PolynomialInterpolation(xdata, ydata, v, opts), accepts two lists, two Arrays, or two Vectors. In this form, the first set of data contains the independent values, $[\mathrm{x1},\mathrm{x2},...,\mathrm{xn}]$, and the second set contains the dependent values, $[\mathrm{y1},\mathrm{y2},...,\mathrm{yn}]$.  Each element must be of type algebraic and all of the independent values must be distinct.

Examples

 > $\mathrm{with}\left(\mathrm{CurveFitting}\right):$
 > $\mathrm{PolynomialInterpolation}\left(\left[\left[0,0\right],\left[1,3\right],\left[2,1\right],\left[3,3\right]\right],z\right)$
 $\frac{{3}}{{2}}{}{{z}}^{{3}}{-}{7}{}{{z}}^{{2}}{+}\frac{{17}}{{2}}{}{z}$ (1)
 > $\mathrm{PolynomialInterpolation}\left(\left[0,2,4,7\right],\left[2,a,1,3\right],3\right)$
 $\frac{{19}}{{70}}{+}\frac{{3}{}{a}}{{5}}$ (2)
 > $\mathrm{PolynomialInterpolation}\left(\left[0,2,4,7\right],\left[2,a,1,3\right],z,\mathrm{form}=\mathrm{Lagrange}\right)$
 ${-}\frac{\left({z}{-}{2}\right){}\left({z}{-}{4}\right){}\left({z}{-}{7}\right)}{{28}}{+}\frac{{a}{}{z}{}\left({z}{-}{4}\right){}\left({z}{-}{7}\right)}{{20}}{-}\frac{{z}{}\left({z}{-}{2}\right){}\left({z}{-}{7}\right)}{{24}}{+}\frac{{z}{}\left({z}{-}{2}\right){}\left({z}{-}{4}\right)}{{35}}$ (3)