EpsilonGCD - Maple Help

SNAP

 EpsilonGCD
 compute an epsilon-GCD for a pair of univariate numeric polynomials

 Calling Sequence EpsilonGCD(a, b, z, tau = eps)

Parameters

 a, b - univariate numeric polynomials z - name; indeterminate for a and b tau = eps - (optional) equation where eps is of type numeric and non-negative; stability parameter

Description

 • The EpsilonGCD(a, b, z) command returns a univariate numeric polynomial g with a positive float epsilon such that g is an epsilon-GCD for the input polynomials (a,b). (See [2] for a definition of an epsilon-GCD.)
 This epsilon-GCD g is derived from the stable algorithm of [2] as follows. The algorithm of [2] computes a numerical pseudo remainder sequence (ai,bi) for (a,b) in a weakly stable way, accepting only the pairs that are well-conditioned (because the others produce instability). The maximum index i for which (ai,bi) is accepted yields the epsilon-GCD g=ai provided the norm of bi is small enough in a sense given in [2]. The value of eta depends in particular on the value of bi and on the 1-norm of the residual error at the last accepted step.
 If the problem is poorly conditioned, the EpsilonGCD(a, b, z) command may return FAIL (rather than a meaningless answer). Here, ill-conditioning is a function of the parameter tau. Its default value is the cubic root of the current value of the Digits variable. Decreasing the value of tau yields a more reliable solution. Increasing the value of tau reduces the risk of failure.

Examples

 > $\mathrm{with}\left(\mathrm{SNAP}\right):$
 > $a≔-0.2313432836{z}^{4}+0.003500000000{z}^{3}-0.1753694030{z}^{2}-0.3397276119z-0.0003395522388$
 ${a}{≔}{-}{0.2313432836}{}{{z}}^{{4}}{+}{0.003500000000}{}{{z}}^{{3}}{-}{0.1753694030}{}{{z}}^{{2}}{-}{0.3397276119}{}{z}{-}{0.0003395522388}$ (1)
 > $b≔-0.2313432836{z}^{3}+0.003731343284{z}^{2}-0.1753731343z-0.3395522388$
 ${b}{≔}{-}{0.2313432836}{}{{z}}^{{3}}{+}{0.003731343284}{}{{z}}^{{2}}{-}{0.1753731343}{}{z}{-}{0.3395522388}$ (2)
 > $\mathrm{EpsilonGCD}\left(a,b,z\right)$
 ${0.125000000000000}{}{{z}}^{{3}}{-}{0.00201612903232778}{}{{z}}^{{2}}{+}{0.0947580644934703}{}{z}{+}{0.183467741918054}{,}{2.90497387244780}{×}{{10}}^{{-10}}$ (3)
 > $a≔{z}^{2}+3.1z-2$
 ${a}{≔}{{z}}^{{2}}{+}{3.1}{}{z}{-}{2}$ (4)
 > $b≔2{z}^{3}+1.5$
 ${b}{≔}{2}{}{{z}}^{{3}}{+}{1.5}$ (5)
 > $\mathrm{EpsilonGCD}\left(a,b,z\right)$
 ${\mathrm{FAIL}}$ (6)
 > $\mathrm{DistanceToCommonDivisors}\left(a,b,z\right)$
 ${0.876183368229130}$ (7)

References

 Beckermann, B., and Labahn, G. "A fast and numerically stable Euclidean-like algorithm for detecting relatively prime numerical polynomials." Journal of Symbolic Computation. Vol. 26, (1998): 691-714.
 Beckermann, B., and Labahn, G. "When are two numerical polynomials relatively prime?" Journal of Symbolic Computation. Vol. 26, (1998): 677-689.
 Corless, R.M.; Gianni, P.M.; Trager, B.M.; and Watt, S.M. "The singular value decomposition for polynomial systems." ISSAC'95, pp. 195-207. ACM Press, 1995.
 Karmarkar, N., and Lakshman, Y.N. "Approximate polynomial greatest common divisors and nearest singular polynomials." ISSAC'96, pp. 35-39. ACM Press, 1996.