Example 1
In the following example, it is unclear whether the argument $i$represents the summand or the index.
>

$\mathrm{sum}\left(i\right)$

Solution:
For this example, assume the intention was for the summand and index to both be $i\.$ You must explicitly state both arguments for sum.
>

$\mathrm{sum}\left(i\,i\right)$

$\frac{{1}}{{2}}{}{{i}}^{{2}}{}\frac{{1}}{{2}}{}{i}$
 (2.1) 
Example 2
In the following example, the polynomial to be factored has not been supplied to the factor command.
>

$\mathrm{factor}\left(\right)$

Solution:
Include polynomial to be factored.
>

$\mathrm{factor}\left(6{x}^{2}plus;18\cdot x24\right)$

${6}{}\left({x}{\+}{4}\right){}\left({x}{}{1}\right)$
 (2.2) 
Example 3
In this example, the procedure Adder has been defined with two parameters, a and b.
>

$\mathrm{Adder}\u2254\mathbf{proc}\left(a\colon\colon \mathrm{integer}comma;b\right)aplus;b\mathbf{end}\mathbf{proc}semi;$

${\mathrm{Adder}}{:=}{\mathbf{proc}}\left({a}{::}{\mathrm{integer}}{\,}{b}\right)\phantom{\rule[0.0ex]{0.5em}{0.0ex}}{a}{\+}{b}\phantom{\rule[0.0ex]{0.5em}{0.0ex}}{\mathbf{end\; proc}}$
 (2.3) 
Here, the second argument is missing.
>

$\mathrm{Adder}\left(3\right)$

Solution:
Add the missing second argument.
>

$\mathrm{Adder}\left(3\,2.5\right)$

Example 4
Without the second argument, it is unclear which variable is supposed to be eliminated
>

$\mathrm{eliminate}\left(\left\{{x}^{2}\+{y}^{2}1\,{x}^{3}{y}^{2}x\+xy3\right\}\right)$

Solution:
Add the missing second argument.
>

$\mathrm{eliminate}\left(\left\{{x}^{2}\+{y}^{2}1\,{x}^{3}{y}^{2}x\+xy3\right\}\,x\right)$

$\left[\left\{{x}{\=}\frac{{3}}{{}{2}{}{{y}}^{{2}}{\+}{y}{\+}{1}}\right\}{\,}\left\{{}{7}{}{{y}}^{{4}}{\+}{4}{}{{y}}^{{6}}{\+}{6}{}{{y}}^{{3}}{}{4}{}{{y}}^{{5}}{\+}{4}{}{{y}}^{{2}}{}{2}{}{y}{\+}{8}\right\}\right]$
 (2.5) 