Example 1
In the following example, attempting to sum more than one summand at a time results in an error.
>

$\mathrm{sum}\left({i}^{2}\,i\,i\right)$

Solution:
To sum more than one summand at at time, use the map command.
>

$\mathrm{map}\left(\mathrm{sum}\,\left[{i}^{2}\,i\right]\,i\right)$

$\left[\frac{{1}}{{3}}{}{{i}}^{{3}}{}\frac{{1}}{{2}}{}{{i}}^{{2}}{\+}\frac{{1}}{{6}}{}{i}{\,}\frac{{1}}{{2}}{}{{i}}^{{2}}{}\frac{{1}}{{2}}{}{i}\right]$
 (2.1) 
Example 2
In the following example, attempting to calculate the sum of $i\+j$over both index variables results in an error. This statement is not welldefined.
>

$\mathrm{sum}\left(i\+j\,i\=1..3\,j\=6..8\right)$

Solution:
Depending on the interpretation, one possible solution is to express the sum in the following manner: if the indices are meant to be sequenced individually, then the following statement corrects the error and produces the intended result.
>

$\mathrm{sum}\left(\mathrm{sum}\left(i\+j\,i\=1..3\right)\,j\=6..8\right)$

Otherwise, if the indices are meant to be sequenced in tandem, then the following statement corrects the error and produces the intended result.
>

$\mathrm{sum}\left(\mathrm{eval}\left(i\+j\,j\=i\+5\right)\,i\=1..3\right)$

Example 3
The following example uses the solve command to solve a linear system, however the braces have been omitted around the list of expressions and the list of variables.
>

$\mathrm{solve}\left(32ast;xplus;13ast;yplus;42ast;zequals;50comma;87ast;xplus;190ast;yplus;112ast;zequals;940comma;10ast;xplus;10ast;ysol;4plus;10ast;zequals;10comma;xcomma;ycomma;z\right)semi;$

Solution:
Enclosing the list of expressions and the list of variables in braces fixes the error.
>

$\mathrm{solve}\left(\left\{32ast;xplus;13ast;yplus;42ast;zequals;50comma;87ast;xplus;190ast;yplus;112ast;zequals;940comma;10ast;xplus;10ast;ysol;4plus;10ast;zequals;10\right\}comma;\left\{xcomma;ycomma;z\right\}\right)semi;$

$\left\{{x}{\=}\frac{{1548}}{{3115}}{\,}{y}{\=}\frac{{3232}}{{623}}{\,}{z}{\=}{}\frac{{2473}}{{3115}}\right\}$
 (2.4) 