P - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


orthopoly

  

P

  

Legendre and Jacobi polynomials

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

P(n, a, b, x)

P(n, x)

Parameters

n

-

non-negative integer

x

-

algebraic expression

a, b

-

rational numbers greater than -1 or nonrational algebraic expressions

Description

• 

The P(n, a, b, x) function computes the nth Jacobi polynomial with parameters a and b evaluated at x.

  

In the case of only two arguments, P(n, x) computes the nth Legendre (spherical) polynomial which is equal to P(n, 0, 0, x).

• 

These polynomials are orthogonal on the interval −1,1 with respect to the weight function wx=1xa1+xb when a and b are greater than -1. They satisfy:

−11wtPm,a,b,tPn,a,b,tⅆt=0nm2a+b+1Γn+a+1Γn+b+12n+a+b+1n!Γn+a+b+1n=m

  

The Jacobi polynomials are undefined for negative integer values of a or b.

• 

Jacobi polynomials satisfy the following recurrence relation:

P0,a,b,x=1,

P1,a,b,x=a2b2+1+a2+b2x,

Pn,a,b,x=2n+a+b1a2b2+2n+a+b22n+a+bxPn1,a,b,x2nn+a+b2n+a+b2n+a1n+b12n+a+bPn2,a,b,xnn+a+b2n+a+b2,for n>1.

Examples

withorthopoly:

P3,x

52x332x

(1)

P30,13

18024734042221205891132094649

(2)

P4,1,34,x

1154+135x4+4185x1264+48825x131024+380835x1432768

(3)

P7,23,74,12

725899033738654705664

(4)

See Also

GAMMA

JacobiP

Legendre

NumberTheory[JacobiSymbol]

NumberTheory[LegendreSymbol]