>

$\mathrm{with}\left(\mathrm{RandomTools}\right)\:$

Maple generates a list with two elements: an integer in the range $3..10$, and a rational in the same range with denominator 13.
>

$\mathrm{Generate}\left(\left[\mathrm{integer}\left(\mathrm{range}\=3..10\right)\,\mathrm{rational}\left(\mathrm{range}\=3..10\,\mathrm{denominator}\=13\right)\right]\right)$

$\left[{7}{\,}\frac{{84}}{{13}}\right]$
 (1) 
In this case, we instruct Maple to generate the unevaluated function $f$, with two arguments; the first is an integer in the range $3..10$, and the second is a rational in the same range with denominator 17.
>

$\mathrm{Generate}\left(f\left(\mathrm{integer}\left(\mathrm{range}\=3..10\right)\,\mathrm{rational}\left(\mathrm{range}\=3..10\,\mathrm{denominator}\=17\right)\right)\right)$

${f}{}\left({10}{\,}\frac{{57}}{{17}}\right)$
 (2) 
In this case, we generate a function call to the function $\mathrm{Array}$, with as its arguments a range of which the left and right hand sides are randomly generated. The function call is evaluated when it is returned, yielding an actual Array.
>

$\mathrm{Generate}\left(\'\mathrm{Array}\'\left(\mathrm{negint}\left(\mathrm{range}\=10\right)..\mathrm{posint}\left(\mathrm{range}\=10\right)\right)\right)$

For this example, we try to generate the sum of two independent rolls of a sixsided die. You might try to use the flavor $\mathrm{posint}\left(\mathrm{range}=6\right)+\mathrm{posint}\left(\mathrm{range}=6\right)$ but Maple automatically simplifies that to $2\mathrm{posint}\left(\mathrm{range}=6\right)$ before the RandomTools[Generate] command is run. As a consequence, you get a single die roll, multiplied by two. This is shown here by generating a list of 20 such values; note they are all even.
>

$\mathrm{Generate}\left(\mathrm{list}\left(\mathrm{posint}\left(\mathrm{range}\=6\right)\+\mathrm{posint}\left(\mathrm{range}\=6\right)\,20\right)\right)$

$\left[{12}{\,}{10}{\,}{6}{\,}{2}{\,}{10}{\,}{4}{\,}{6}{\,}{4}{\,}{4}{\,}{8}{\,}{6}{\,}{6}{\,}{2}{\,}{4}{\,}{10}{\,}{8}{\,}{10}{\,}{12}{\,}{4}{\,}{6}\right]$
 (3) 
In such a situation, a better solution is to use inert form operators to specify the flavor, and apply the value command after generating the result to combine the values.
>

$\mathrm{value}\left(\mathrm{Generate}\left(\mathrm{list}\left(\mathrm{`\%+`}\left(\mathrm{posint}\left(\mathrm{range}\=6\right)\,\mathrm{posint}\left(\mathrm{range}\=6\right)\right)\,20\right)\right)\right)$

$\left[{8}{\,}{5}{\,}{8}{\,}{7}{\,}{11}{\,}{7}{\,}{11}{\,}{8}{\,}{7}{\,}{5}{\,}{2}{\,}{8}{\,}{7}{\,}{4}{\,}{5}{\,}{6}{\,}{6}{\,}{5}{\,}{9}{\,}{5}\right]$
 (4) 