Important: The evalm command has been deprecated. Matrix algebra expressions involving Matrices such as $A\xb7B$ are evaluated directly, eliminating the need for the additional step of applying evalm. For additional information, see Linear Algebra Computations in Maple.
>

$\mathrm{alias}\left(\mathrm{Id}=\mathrm{`\&*`}\left(\right)\right)\:$

>

$S\u2254\mathrm{array}\left(\left[\left[1\,2\right]\,\left[3\,4\right]\right]\right)\:$

>

$T\u2254\mathrm{array}\left(\left[\left[1\,1\right]\,\left[2\,1\right]\right]\right)\:$

>

$\mathrm{evalm}\left(S+2T\right)$

$\left[\begin{array}{cc}{3}& {4}\\ {7}& {2}\end{array}\right]$
 (1) 
>

$\mathrm{evalm}\left({S}^{2}\right)$

$\left[\begin{array}{cc}{7}& {10}\\ {15}& {22}\end{array}\right]$
 (2) 
>

$\mathrm{evalm}\left(\mathrm{sin}\left(S\right)\right)$

$\left[\begin{array}{cc}{\mathrm{sin}}{}\left({1}\right)& {\mathrm{sin}}{}\left({2}\right)\\ {\mathrm{sin}}{}\left({3}\right)& {\mathrm{sin}}{}\left({4}\right)\end{array}\right]$
 (3) 
>

$\mathrm{evalm}\left(S\phantom{\rule[0.0ex]{0.3em}{0.0ex}}\&*\phantom{\rule[0.0ex]{0.3em}{0.0ex}}T\right)$

$\left[\begin{array}{cc}{5}& {\mathrm{1}}\\ {11}& {\mathrm{1}}\end{array}\right]$
 (4) 
>

$\mathrm{evalm}\left(\left(A\phantom{\rule[0.0ex]{0.3em}{0.0ex}}\&*\phantom{\rule[0.0ex]{0.3em}{0.0ex}}B\right)\phantom{\rule[0.0ex]{0.3em}{0.0ex}}\&*\phantom{\rule[0.0ex]{0.3em}{0.0ex}}\left(2B\right)B\phantom{\rule[0.0ex]{0.3em}{0.0ex}}\&*\phantom{\rule[0.0ex]{0.3em}{0.0ex}}\mathrm{Id}\right)$

${2}{}\left({A}\phantom{\rule[0.0ex]{0.3em}{0.0ex}}{\&*}\phantom{\rule[0.0ex]{0.3em}{0.0ex}}{{B}}^{{2}}\right){}{B}{}{\mathrm{Id}}$
 (5) 
>

$\mathrm{evalm}\left(\mathrm{`\&*`}\left(A\,B\,0\right)\right)$
