Homogeneous Diophantine - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : Number Theory : Homogeneous Diophantine

NumberTheory

  

HomogeneousDiophantine

  

solution to Minkowski's linear forms

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

HomogeneousDiophantine(ineqs, xvars, yvars)

HomogeneousDiophantine(real_cfs, real_errors)

HomogeneousDiophantine(padic_cfs, adicities, padic_errors)

HomogeneousDiophantine(real_cfs, real_errors, padic_cfs, adicities, padic_errors)

Parameters

ineqs

-

inequality or set of inequalities with abs or valuep

xvars

-

name or set of names

yvars

-

name or set of names

real_cfs, padic_cfs

-

convertible to a Matrix of real numbers

adicities

-

convertible to a Vector of prime numbers

real_errors

-

convertible to a Vector of real numbers

padic_errors

-

convertible to a Vector of positive integers

Description

• 

The HomogeneousDiophantine function finds a solution x1,,xn,y1,,ym over the integers to a set of inequalities of the form

a1,1x1+a1,nxn+...y1err1

...

aj,1x1+aj,nxn+...yjerrj

  

or   

padic:−valuepaj+1,1x1+aj+1,nxn+...yj+1,pj+1pj+1errj+1

...

padic:−valuepam,1x1+am,nxn+...ym,pmpmerrm

  

where padic:−valuep is the p-adic valuation.

• 

The inequalities can be described explicitly, corresponding to the first calling sequence, or implicitly, corresponding to the other calling sequences.

• 

If the first calling sequence is used, then the return value is of the form

x1=s1,...,xn=sn,y1=t1,...,ym=tm

• 

If the other calling sequences are used, then the return value is a two-element list corresponding to the x values and the y values,

s1,...,sn,t1,...,tm

Examples

withNumberTheory:

HomogeneousDiophantineabssqrt2xy103,x,y

x=5741,y=8119

(1)

withpadic:

HomogeneousDiophantineabs313z1+πz2s2104,absexp1z1+212z2s1102,z1,z2,s1,s2

z1=7484,z2=−2534,s2=2833,s1=16760

(2)

An equivalent matrix form calling sequence is:

HomogeneousDiophantineexp1,212,313,π,102,104

7484,−2534,16760,2833

(3)

The solutions may be different but both are valid.

Both abs and valuep may be used in the same system.

HomogeneousDiophantineabslog2x+log5y+312zr102,valuepsin5x+1log7y+exp5zv,559,x,y,z,r,v

x=−3050,y=−2175,z=4450,r=2093,v=−13

(4)

The error list for the p-adic cases are negatives of the exponents on the adicities.

HomogeneousDiophantinelog2,log5,312,102,sin5,1log7,exp5,5,9

−3050,−2175,4450,2093,−13

(5)

Compatibility

• 

The NumberTheory[HomogeneousDiophantine] command was introduced in Maple 2016.

• 

For more information on Maple 2016 changes, see Updates in Maple 2016.

See Also

isolve

NumberTheory

NumberTheory[InhomogeneousDiophantine]

padic[valuep]