 Air Gap DC - MapleSim Help

Air Gap DC

Linear air gap model of a DC machine Description The Air Gap DC component models the air gap of a DC machine, without saturation effects. Induced excitation voltage is calculated from the derivative of the magnetic flux, where flux is the excitation inductance multiplied by the excitation current. The induced armature voltage is found by multiplying flux by angular velocity.
 Equations ${i}_{a}={i}_{\mathrm{ap}}=-{i}_{\mathrm{an}}$ ${i}_{e}={i}_{\mathrm{ep}}=-{i}_{\mathrm{en}}$ ${v}_{\mathrm{ai}}={v}_{\mathrm{ap}}-{v}_{\mathrm{an}}=\mathrm{Turns_Ratio}{\mathrm{\psi }}_{e}w$ ${v}_{\mathrm{ei}}={v}_{\mathrm{ep}}-{v}_{\mathrm{en}}=\left\{\begin{array}{cc}0& \mathrm{quasiStationary}\\ {\stackrel{.}{\mathrm{\psi }}}_{e}& \mathrm{otherwise}\end{array}$ ${\mathrm{\psi }}_{e}={L}_{e}{i}_{e}$ $w={\stackrel{.}{\mathrm{\phi }}}_{\mathrm{flange}}-{\stackrel{.}{\mathrm{\phi }}}_{\mathrm{support}}$ ${\mathrm{\tau }}_{\mathrm{elec}}=\mathrm{Turns_Ratio}{\mathrm{\psi }}_{e}{i}_{a}={\mathrm{\tau }}_{\mathrm{support}}=-{\mathrm{\tau }}_{\mathrm{flange}}$

Variables

 Name Units Description Modelica ID ${i}_{a}$ $A$ Armature current ia ${i}_{e}$ $A$ Excitation current ie ${\mathrm{\psi }}_{e}$ $\mathrm{Wb}$ Excitation flux psi_e ${\mathrm{\tau }}_{\mathrm{elec}}$ $Nm$ Torque induced by electrical current tauElectrical ${v}_{\mathrm{ai}}$ $V$ Induced armature voltage vai ${v}_{\mathrm{ei}}$ $V$ Voltage drop across field excitation inductance vei $w$ $\frac{\mathrm{rad}}{s}$ Angular velocity w

Connections

 Name Description Modelica ID $\mathrm{flange}$ Rotation flange flange $\mathrm{support}$ Support at which the reaction torque is acting support ${\mathrm{pin}}_{\mathrm{ap}}$ Positive armature pin pin_ap ${\mathrm{pin}}_{\mathrm{ep}}$ Positive excitation pin pin_ep ${\mathrm{pin}}_{\mathrm{an}}$ Negative armature pin pin_an ${\mathrm{pin}}_{\mathrm{en}}$ Negative excitation pin pin_en

Parameters

 Name Default Units Description Modelica ID $\mathrm{quasiStationary}$ True (checked) means ignore electrical transients quasiStationary $\mathrm{Turns Ratio}$ $1$ Ratio of armature turns over number of turns of the excitation winding turnsRatio ${L}_{e}$ $H$ Excitation inductance Le

 Modelica Standard Library The component described in this topic is from the Modelica Standard Library. To view the original documentation, which includes author and copyright information, click here.