 Saturating Inductor - MapleSim Help

# Online Help

###### All Products    Maple    MapleSim

Home : Support : Online Help : MapleSim : MapleSim Component Library : Electrical : Analog : Passive : Inductors : componentLibrary/electrical/analog/passive/inductors/SaturatingInductor

Saturating Inductor

Simple model of an inductor with saturation  Description This model approximates the behavior of an inductor with the influence of saturation, that is, the value of the inductance depends on the current flowing through the inductor. The inductance decreases as current increases. Equations $\mathrm{\Psi }={L}_{\mathrm{act}}i$ $i={i}_{p}=-{i}_{n}$ $v={v}_{p}-{v}_{n}=\stackrel{.}{\mathrm{\Psi }}$ $\left({L}_{\mathrm{act}}-{L}_{\infty }\right)\frac{i}{{I}_{\mathrm{par}}}=\left({L}_{0}-{L}_{\infty }\right)\mathrm{atan}\left(\frac{i}{{I}_{\mathrm{par}}}\right)$ Variables

 Name Units Description Modelica ID $v$ $V$ Voltage drop across the inductor v ${v}_{x}$ $V$ Voltage at pin $x$, $x\in \left\{n,p\right\}$ x.v $i$ $A$ Current flowing from pin p to pin n i ${i}_{x}$ $A$ Current into pin $x$, $x\in \left\{n,p\right\}$ x.i ${I}_{\mathrm{par}}$ $A$ Constant current solved during initialization Ipar ${L}_{\mathrm{act}}$ $H$ Actual inductance Lact $\mathrm{\Psi }$ $\mathrm{Wb}$ Magnetic flux Psi Connections

 Name Description Modelica ID $p$ Positive pin p $n$ Negative pin n Parameters

 Name Default Units Description Modelica ID ${I}_{\mathrm{nom}}$ $1$ $A$ Nominal current Inom ${L}_{\mathrm{nom}}$ $1$ $H$ Nominal inductance at Nominal current Lnom ${L}_{0}$ $2{L}_{\mathrm{nom}}$ $H$ Inductance near current=0 Lzer ${L}_{\infty }$ $\frac{1}{2}{L}_{\mathrm{nom}}$ $H$ Inductance at large currents Linf Modelica Standard Library The component described in this topic is from the Modelica Standard Library. To view the original documentation, which includes author and copyright information, click here.

 See Also