Rotational Elasto-Backlash 2 - MapleSim Help

Home : Support : Online Help : MapleSim : MapleSim Component Library : 1-D Mechanical : Rotational : Springs and Dampers : componentLibrary/1Dmechanics/rotational/springsDampers/ElastoBacklash2

Rotational Elasto-Backlash 2

Backlash connected in series to linear spring and damper (backlash is modeled with elasticity) Description The Rotational Elasto-Backlash 2 component consists of a backlash element connected in series with a spring and damper elements which are connected in parallel. The spring constant must be positive. In the backlash region no torque is exerted. Outside this region, contact is present and the contact torque is computed with a linear spring/damper characteristic. If the backlash parameter $b$ is smaller than ${b}_{\mathrm{\epsilon }}$, the backlash is ignored and the component reduces to a spring/damper element in parallel. During initialization, the backlash characteristic is replaced by a continuous approximation in the backlash region.

Connections

 Name Description Modelica ID ${\mathrm{flange}}_{a}$ Left flange of compliant 1-dim. rotational component flange_a ${\mathrm{flange}}_{b}$ Right flange of compliant 1-dim. rotational component flange_b $\mathrm{heatPort}$ heatPort

Parameters

General Parameters

 Name Default Units Description Modelica ID $b$ $0$ $\mathrm{rad}$ Total backlash b $c$ $100000$ $N\frac{m}{\mathrm{rad}}$ Spring constant (c > 0 required) c $d$ $0$ $Nm\frac{s}{\mathrm{rad}}$ Damping constant d ${\mathrm{\phi }}_{\mathrm{rel0}}$ $0$ $\mathrm{rad}$ Unstretched spring angle phi_rel0 Use Heat Port $\mathrm{false}$ True (checked) means heat port is enabled useHeatPort

 Name Default Units Description Modelica ID ${\mathrm{\phi }}_{\mathrm{nom}}$ $1·{10}^{-4}$ $\mathrm{rad}$ Nominal value of ${\mathrm{\phi }}_{\mathrm{rel}}$ phi_nominal $\mathrm{prefer}$ Prioritize ${\mathrm{\phi }}_{\mathrm{rel}}$ and ${w}_{\mathrm{rel}}$ as states stateSelect
 Name Value Units Description Modelica ID ${b}_{\mathrm{\epsilon }}$ $1·{10}^{-10}$ $\mathrm{rad}$ Minimum backlash bEps