 Rotational Bearing Friction - MapleSim Help

# Online Help

###### All Products    Maple    MapleSim

Home : Support : Online Help : MapleSim : MapleSim Component Library : 1-D Mechanical : Rotational : Bearings and Gears : componentLibrary/1Dmechanics/rotational/bearingsGears/BearingFriction

Rotational Bearing Friction

Coulomb friction in bearings  Description The Rotational Bearing Friction (or Bearing Friction) component models Coulomb friction in bearings, i.e., a frictional torque acting between a flange and the housing. Torque Table The ${\mathrm{\tau }}_{\mathrm{pos}}$ parameter is a two-dimensional table (array) that specifies the torque at given angular velocities. Each row has the form $\left[w,\mathrm{\tau }\left(w\right)\right]$. The first column must be ordered, $0\le {w}_{1}<{w}_{2}<\cdots <{w}_{m}$. To add rows, right-click on the value and select Edit Matrix Dimension. Only linear interpolation is supported.

Connections

 Name Description Modelica ID ${\mathrm{flange}}_{a}$ Flange of left shaft flange_a ${\mathrm{flange}}_{b}$ Flange of right shaft flange_b $\mathrm{support}$ support $\mathrm{heatPort}$ heatPort

Parameters

General Parameters

 Name Default Units Description Modelica ID ${\mathrm{\tau }}_{\mathrm{pos}}$ $\left[0.,1.\right]$ $1$ Positive sliding friction characteristic tau_pos $\mathrm{peak}$ $1$ $1$ $\mathrm{peak}{\mathrm{\tau }}_{\mathrm{pos}}\left[1,2\right]$ is the maximum friction torque at $\mathrm{\omega }=0$ peak Use Heat Port $\mathrm{false}$ True (checked) means heat port is enabled useHeatPort Use Support Flange $\mathrm{false}$ True (checked) enables the support flange useSupport

Advanced Parameters

 Name Default Units Description Modelica ID ${\mathrm{\omega }}_{\mathrm{small}}$ $1·{10}^{10}$ $\frac{\mathrm{rad}}{s}$ The velocity reinitializes when $\left|\mathrm{\omega }\right|\le {\mathrm{\omega }}_{\mathrm{small}}$ w_small ${K}_{\mathrm{locked}}$ $0$ $1$ Gain driving the relative motion between the friction elements to 0 when locked. This parameter should only be non-zero when using the model with fixed-step integration. K_locked

 Modelica Standard Library The component described in this topic is from the Modelica Standard Library. To view the original documentation, which includes author and copyright information, click here.

 See Also