Pump With Loss $—$ Pump with constant displacement and table-based mechanical efficiency

 Equations $T={T}_{0\left(\mathrm{oil}\right)}+{\mathrm{ΔT}}_{\mathrm{system}}$ $q=\frac{{m}_{\mathrm{flow}\left(A\right)}}{{\mathrm{\rho }}_{\mathrm{oil}}\left({p}_{A\left(\mathrm{abs}\right)},T,{v}_{\mathrm{air}}={v}_{\mathrm{gas}\left(\mathrm{oil}\right)},{p}_{\mathrm{sat}}={p}_{\mathrm{sat}}\right)}$ $w={\partial }_{t}\left({\mathrm{\phi }}_{a}\right)$ $\mathrm{Δp}={p}_{A\left(\mathrm{limited}\right)}-{p}_{B\left(\mathrm{limited}\right)}$ ${p}_{A\left(\mathrm{abs}\right)}={p}_{A}+{p}_{\mathrm{atm}\left(\mathrm{oil}\right)}$ ${p}_{A\left(\mathrm{limited}\right)}=\mathrm{max}\left({p}_{A},{p}_{\mathrm{vapour}\left(\mathrm{oil}\right)}-{p}_{\mathrm{atm}\left(\mathrm{oil}\right)}\right)$ ${p}_{B\left(\mathrm{abs}\right)}={p}_{B}+{p}_{\mathrm{atm}\left(\mathrm{oil}\right)}$ ${p}_{B\left(\mathrm{limited}\right)}=\mathrm{max}\left({p}_{B},{p}_{\mathrm{vapour}\left(\mathrm{oil}\right)}-{p}_{\mathrm{atm}\left(\mathrm{oil}\right)}\right)$

Variables

 Name Value Units Description Modelica ID $\mathrm{Δp}$ $\mathrm{Pa}$ Pressure drop dp ${p}_{A\left(\mathrm{limited}\right)}$ $\mathrm{Pa}$ Limited gauge pressure pA_limited ${p}_{B\left(\mathrm{limited}\right)}$ $\mathrm{Pa}$ Limited gauge pressure pB_limited ${p}_{A\left(\mathrm{abs}\right)}$ $\mathrm{Pa}$ Absolute pressure pA_abs ${p}_{B\left(\mathrm{abs}\right)}$ $\mathrm{Pa}$ Absolute pressure pB_abs $q$ $\frac{{m}^{3}}{s}$ Flow rate at connector A q $w$ $\frac{\mathrm{rad}}{s}$ Angular velocity of pump shaft w $T$ $K$ Local temperature T ${p}_{A\left(\mathrm{summary}\right)}$ ${p}_{A}$ $\mathrm{Pa}$ Pressure at port A summary_pA ${p}_{B\left(\mathrm{summary}\right)}$ ${p}_{B}$ $\mathrm{Pa}$ Pressure at port B summary_pB ${\mathrm{Δp}}_{\mathrm{summary}}$ $\mathrm{Δp}$ $\mathrm{Pa}$ Pressure drop summary_dp ${q}_{\mathrm{summary}}$ $q$ $\frac{{m}^{3}}{s}$ Flow rate flowing into port_A summary_q ${P}_{\mathrm{mech}\left(\mathrm{summary}\right)}$ [1] $W$ Mechanical Rotational Power summary_MP ${P}_{\mathrm{hyd}\left(\mathrm{summary}\right)}$ $-\mathrm{Δp}q$ $W$ Hydraulic Power summary_HP ${p}_{\mathrm{sat}}$ [2] $\mathrm{Pa}$ Gas saturation pressure p_sat ${V}_{A}$ VolumeA ${V}_{B}$ VolumeB $\mathrm{Ta}$ Ta ${\mathrm{Ta}}_{1}$ Ta1 $\mathrm{LamnS}$ LamnS $\mathrm{energyLoss}$ energyLoss $\mathrm{fixedTemperature}$ fixedTemperature $\mathrm{fixed}$ fixed $\mathrm{ICP}$ ICP $\mathrm{Rotor}$ Rotor ${w}_{1}$ w1 ${\mathrm{\epsilon }}_{\mathrm{mech}}$ eps_m_table ${\mathrm{const}}_{2}$ const2

[1] ${\stackrel{.}{\varphi }}_{a}{\mathrm{\tau }}_{a}+{\stackrel{.}{\varphi }}_{b}{\mathrm{\tau }}_{b}$

[2] $\mathrm{oil.gasSaturationPressure}\left(T,{\mathrm{oil.v}}_{\mathrm{gas}}\right)$

Connections

 Name Description Modelica ID ${\mathrm{port}}_{A}$ Port A, where oil flows into the component ($0, ${p}_{B}<{p}_{A}$ means $0<\mathrm{Δp}$) port_A ${\mathrm{port}}_{B}$ Port B, where oil leaves the component ($q<0$, ${p}_{B}<{p}_{A}$ means $0<\mathrm{Δp}$) port_B ${\mathrm{flange}}_{a}$ flange_a ${\mathrm{flange}}_{b}$ flange_b $\mathrm{oil}$ oil

Parameters

General Parameters

 Name Default Units Description Modelica ID ${\mathrm{ΔT}}_{\mathrm{system}}$ $0$ $K$ Temperature offset from system temperature dT_system external leakage $\mathrm{true}$ If true, a small amount of oil leaks to the tank components externalLeakage use volume A $\mathrm{true}$ If true, a volume is present at port_A useVolumeA use volume B $\mathrm{true}$ If true, a volume is present at port_B useVolumeB ${G}_{\mathrm{ext}}$ ${10}^{-13}$ $\frac{{m}^{3}}{s\mathrm{Pa}}$ Conductance of external leakage Gext ${G}_{\mathrm{int}}$ $5.·{10}^{-12}$ $\frac{{m}^{3}}{s\mathrm{Pa}}$ Conductance of the internal motor leakage Gint ${\mathrm{D}}_{\mathrm{pump}}$ ${10}^{-4}$ ${m}^{3}$ Displacement per revolution Dpump ${G}_{P\left(\mathrm{int}\right)}$ ${10}^{-13}$ $\frac{{m}^{3}}{s\mathrm{Pa}}$ Conductance of internal leakage GPint $J$ $0.01$ $\mathrm{kg}{m}^{2}$ Moment of inertia J $\mathrm{td}$ $0$ Friction coefficient# td table eps[m] [0,9/10; 1,9/10] Table for mechanical efficiency, eps_m table_eps_m variable mechanical efficiency $\mathrm{true}$ Include variable mechanical efficiency variableMechanicalEfficiency ${\mathrm{\epsilon }}_{\mathrm{mech}\left(\mathrm{const}\right)}$ $\frac{9}{10}$ Mechanical efficiency, if constant value eps_m_constant

Oil Parameters

 Name Default Units Description Modelica ID ${V}_{A}$ ${10}^{-6}$ ${m}^{3}$ Geometric volume at port A volumeA ${V}_{B}$ ${10}^{-6}$ ${m}^{3}$ Geometric volume at port B volumeB