Volume $—$ Hydraulic volume

This is a model of a volume.

 Equations $\mathrm{msim/FOR}\left(\mathrm{msim/IN}\left(\mathrm{i#1},1..\mathrm{n_ports}\right),{p}_{A}=\mathrm{portB\left[i#1\right].p}\right)$ $\mathrm{\beta }={\mathrm{\beta }}_{\mathrm{oil}}\left({p}_{\mathrm{abs}}={p}_{\mathrm{abs}},T=T,{v}_{\mathrm{air}}={v}_{\mathrm{gas}\left(\mathrm{oil}\right)},{p}_{\mathrm{sat}}={p}_{\mathrm{sat}}\right)$ $\mathrm{\rho }={\mathrm{\rho }}_{\mathrm{oil}}\left({p}_{\mathrm{abs}}={p}_{\mathrm{abs}},T=T\right)$ $T={T}_{0\left(\mathrm{oil}\right)}+{\mathrm{ΔT}}_{\mathrm{system}}$ $V={V}_{0}+{\sum }_{i=1}^{\mathrm{n_ports}}\phantom{\rule[-0.0ex]{5.0px}{0.0ex}}\mathrm{portB\left[i\right].V}$ ${p}_{\mathrm{abs}}={p}_{A}+{p}_{\mathrm{atm}\left(\mathrm{oil}\right)}$ $V{\partial }_{t}\left({p}_{A}\right)=\frac{\mathrm{\beta }\left({m}_{\mathrm{flow}\left(A\right)}+{\sum }_{i=1}^{\mathrm{n_ports}}\phantom{\rule[-0.0ex]{5.0px}{0.0ex}}\mathrm{portB\left[i\right].m_flow}\right)}{\mathrm{\rho }}-\mathrm{\beta }{\partial }_{t}\left(V\right)$

Variables

 Name Value Units Description Modelica ID $V$ ${m}^{3}$ Volume V $\mathrm{\beta }$ $\mathrm{Pa}$ Bulk modulus beta $T$ $K$ Temperature T $\mathrm{\rho }$ $\frac{\mathrm{kg}}{{m}^{3}}$ Density rho ${p}_{\mathrm{abs}}$ $\mathrm{Pa}$ Absolute pressure, used for all property calls p_abs ${p}_{\mathrm{sat}}$ [1] $\mathrm{Pa}$ Gas saturation pressure p_sat

[1] $\mathrm{oil.gasSaturationPressure}\left(T=T,{v}_{\mathrm{gas}}={\mathrm{oil.v}}_{\mathrm{gas}}\right)$

Connections

 Name Description Modelica ID $\mathrm{portA}$ portA $\mathrm{portB}$ portB $\mathrm{oil}$ Fluid property model oil

Parameters

 Name Default Units Description Modelica ID ${n}_{\mathrm{ports}}$ $0$ Number of element ports n_ports ${V}_{0}$ $0$ ${m}^{3}$ Volume V0 ${\mathrm{ΔT}}_{\mathrm{system}}$ $0$ $K$ Temperature offset from system temperature dT_system