Formal Power Series - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : System : Information : Updates : Maple 2022 : Formal Power Series

Formal Power Series

The convert/FormalPowerSeries functionality was completely rewritten for Maple 2022. It offers a number of advantages over previous versions:

 

• 

Closed-form solutions can be found in a number of cases where previous versions failed.

• 

Solutions in terms of m-fold hypergeometric sequences for arbitrary positive integers m are now supported in more cases than before.

• 

Notwithstanding the name, formal Laurent and Puiseux series (i.e., with negative or fractional exponents) can be computed as well, now in more cases than before.

• 

convert/FormalPowerSeries will automatically attempt to return the series coefficients in purely real form, making the previous option makereal obsolete.

• 

In a number of cases, the new code returns more compact answers than previous versions.

• 

If a closed form expression for the power series coefficients cannot be found, and a recurrence relation of degree 1 or 2 exists, it will be returned instead. Previously, only linear recurrences could be computed, and would only be returned if option recurrence was specified.

• 

When a recurrence relation is returned, now the initial conditions are given as well.

• 

Additional options give more control over the underlying algorithm(s) used and the form of the output.

 

Maple 2021

Maple 2022

More closed-form solutions, notably, for sums of several terms and Puiseux solutions.

convertz2 + z36arctanz,FormalPowerSeries

12z+16z3arctanz

(1)

mapconvert,expandz2 + z36arctanz,FormalPowerSeries 

k=0−1kz2k+24k+2+k=0−1kz2k+412k+6

(2)

convertz2 + z36arctanz,FormalPowerSeries

z26+59+n=04n5−1nz2n32n12n3

(3)

convertarctanz+arcsinz,FormalPowerSeries

arctanz+arcsinz

(4)

mapconvert,arctanz+arcsinz,FormalPowerSeries

k=0−1kz2k+12k+1+k=02k!4kz2k+1k!22k+1

(5)

convertarctanz+arcsinz,FormalPowerSeries

n=0−1nn!2+2n!4nz2n+12n+1n!2

(6)

convertarctanz+arcsinz,FormalPowerSeries,output=expanded

n=0−1nz2n+12n+1+n=02n!4nz2n+12n+1n!2

(7)

convert114 z2z24 14 z, FormalPowerSeries

114z2z2414z

(8)

convert114 z2z24 14 z, FormalPowerSeries

n=02n+2!n+2n+1zn+4n+2!2

(9)

convert8 z3+11,FormalPowerSeries

8z3+11

(10)

convert8 z3+11,FormalPowerSeries

n=0−1n2n+12n+14n!z3n+322n+1!2

(11)

Solutions in purely real form by default.

convertsinz+z cosz,FormalPowerSeries

k=0IIkk+12k!+I−Ikk+12k!zk

(12)

convertsinz+z cosz,FormalPowerSeries,makereal

k=0sinkπ2k+1zkk!

(13)

convertsinz+z cosz,FormalPowerSeries

n=02−1nn+1z2n+12n+1!

(14)

convertln1+z+z2+z3,FormalPowerSeries

k=0−1k+1k+1Ik+1k+1−Ik+1k+1zk+1

(15)

convertln1+z+z2+z3,FormalPowerSeries,makereal

k=0−1k+2sinkπ2zk+1k+1

(16)

convertln1+z+z2+z3,FormalPowerSeries

n=0−1nzn+1n+1+n=0−1nz2n+2n+1

(17)

convertz6+3 z23 z4+1,FormalPowerSeries 

z23+k=023I3334k3343kI3334kI3334k3343k3343k+I3334kI3334k3343k3343kI3334k3343kzk9I3334k3343kI3334k3343k

(18)

convertz6+3 z23 z4+1,FormalPowerSeries,makereal

z23+k=02zk3k4+122coskπ2−1k19

(19)

convertz6+3 z23 z4+1,FormalPowerSeries

z23+n=083n1z4n+2

(20)

More compact answers.

convert1q__1z2q__2z3,FormalPowerSeries,z 

k=02−123q__213kq__1kq__1kq__213k−123q__13+2−113q__213kq__1kq__1kq__213kq__243−123q__1−123q__213k−113q__213kq__1kq__213k−123q__132q__2+−123q__213k−113q__213kq__1kq__213k−123q__132q__2+2−123q__213kq__1kq__1kq__213k−113q__13+−123q__213k−113q__213kq__1kq__213k−113q__132q__2−123q__213k−113q__213kq__1kq__213k−113q__132q__22−113q__213kq__1kq__1kq__213kq__223q__12+2−123q__213k−113q__213kq__1kq__1kq__243q__12−123q__213kq__1kq__1kq__213kq__243q__12−123q__213k−113q__213kq__1kq__213kq__222−123q__213k−113q__213kq__1kq__213kq__222−123q__213kq__1kq__1kq__213kq__243−123q__1+4−123q__213kq__1kq__1kq__213kq__223−123q__12+2−123q__213k−113q__213kq__1kq__1kq__223−113q__122−123q__213kq__1kq__1kq__213kq__223−113q__12+2−123q__213kq__1kq__1kq__213kq__223q__122−123q__213k−113q__213kq__1kq__1kq__223−123q__122−113q__213kq__1kq__1kq__213kq__223−123q__12+−123q__213k−113q__213kq__1kq__213kq__22−123+−123q__213k−113q__213kq__1kq__213kq__22−123−123q__213k−113q__213kq__1kq__213kq__22−113−123q__213k−113q__213kq__1kq__213kq__22−113+2−123q__213k−113q__213kq__1kq__213kq__132q__22−123q__213k−113q__213kq__1kq__213kq__132q__2+2−123q__213k−113q__213kq__1kq__1kq__13+2−113q__213kq__1kq__1kq__213kq__13zk2q__213kq__1kq__1+q__213q__1kq__1q__1+q__213−113q__213kq__1+−113q__213q__1+−113q__213−123q__213k−123q__213+q__1−123q__213q__1−113+12−1131q__2

(21)

convert1q__1z2q__2z3,FormalPowerSeries,z

n=0q__12n2+−1nq__12n2+2q__213n3q__1522q__1n2+12q__2−1nq__11n2q__22+2q__223n3q__1q__11n2q__22zn2q__13q__22q__132+q__2+n=0q__1q__2n1z3nq__243+q__223q__1+q__12+n=0q__2n23z3n+1q__243+q__223q__1+q__12

(22)

Recurrence relations returned automatically if no closed form can be found, with initial conditions.
Non-linear (degree 2) recurrences can be computed.

convertarcsinz3,FormalPowerSeries 

arcsinz3

(23)

convertarcsinz3,FormalPowerSeries,recurrence  

k4ak2k+1k+2k2+2k+2ak+2+k+1k+2k+3k+4ak+4=0

(24)

convertarcsinz3,FormalPowerSeries

n=0Anzn+1,RESoln4+4n3+6n2+4n+1An+2n418n362n298n60An+2+n4+14n3+71n2+154n+120An+4=0,An,A0=0,A1=0,A2=1,A3=0,INFO

(25)

convertzⅇz1,FormalPowerSeries 

zⅇz1

(26)

convertzⅇz1,FormalPowerSeries,recurrence 

zⅇz1

(27)

 

convertzⅇz1,FormalPowerSeries

n=0Anzn,RESolAn+3+An+2+_k=1n+2A_kAn+3_kn+4,An,A0=1,A1=12,A2=112,INFO

(28)

convertLambertWz,FormalPowerSeries

LambertWz

(29)

convertLambertWz,FormalPowerSeries,recurrence

LambertWz

(30)

convertLambertWz,FormalPowerSeries

n=0Anzn,RESolAn+4+An+3+_k=1n+2_k+1A_k+1An+3_kn+3,An,A0=0,A1=1,A2=−1,A3=32,INFO

(31)

 

New method option (by default, all three methods are tried in sequence).

 

convertarcsinz2,FormalPowerSeries

n=02n!24nz2n+22n+2!

(32)

convertarcsinz2,FormalPowerSeries,method=hypergeometric

n=02n!24nz2n+22n+2!

(33)

convertarcsinz2,FormalPowerSeries,method=holonomic

n=0Anzn+1,RESoln22n1An+n2+5n+6An+2=0,An,A0=0,A1=1,INFO

(34)

convertarcsinz2,FormalPowerSeries,method=quadratic

n=0Anzn,RESolAn+44n+2An+2+_k=2n_k+1A_k+1n+3_kAn+3_k+_k=2n+2_k+1A_k+1n+5_kAn+5_k4n+3,An,A0=0,A1=0,A2=1,A3=0,INFO

(35)

 

converttanz,FormalPowerSeries

n=0Anzn,RESolAn+3+2An+1+_k=1n2_k+1A_k+1An+1_kn+2n+3,An,A0=0,A1=1,A2=0,INFO

(36)

converttanz,FormalPowerSeries,method=hypergeometric

tanz

(37)

converttanz,FormalPowerSeries,method=holonomic

tanz

(38)

converttanz,FormalPowerSeries,method=quadratic

n=0Anzn,RESolAn+3+2An+1+_k=1n2_k+1A_k+1An+1_kn+2n+3,An,A0=0,A1=1,A2=0,INFO

(39)

New output option (default: combined).

 

convertsinz+cosz3,FormalPowerSeries

n=0−1n9n3z2n22n!+n=03−1n9n+1z2n+122n+1!

(40)

convertsinz+cosz3,FormalPowerSeries,output=combined

n=0−1n9n3z2n22n!+n=03−1n9n+1z2n+122n+1!

(41)

convertsinz+cosz3,FormalPowerSeries,output=expanded

n=0−1n9nz2n22n!+n=03−1nz2n22n!+n=03−1n9nz2n+122n+1!+n=03−1nz2n+122n+1!

(42)