student(deprecated)/equate - Help

student

 equate
 create a set of equations from lists, arrays and tables

 Calling Sequence equate(A, B)

Parameters

 A - expression or a list, vector or matrix of expressions or equations B - (optional) expression or a list, vector or matrix of expressions or equations to be compared with A

Description

 • Important: The student package has been deprecated. Use the superseding command Equate instead.
 • This procedure is used to construct a set of equations by comparing the components of compound objects such as a lists, vectors or matrices of expressions.
 • If A and B are both lists with the same number of elements then the resulting equations are ${A}_{1}={B}_{1},{\mathrm{tripledotplaceholderA}}_{n}={B}_{n}$
 • Vectors and matrices are converted to lists prior to constructing the set of equations.
 • If the second argument B consists of a single algebraic expression or a list with a single element then the corresponding list is extended by repetition to the length required for a proper comparison with A.
 • If there is no second argument B it defaults to the value 0.
 • If the first argument A includes equations, the second argument is used only to convert the non-equation components of A into equations.   In this case B must be a list of length 1.
 • The command with(student,equate) allows the use of the abbreviated form of this command.

Examples

Important: The student package has been deprecated. Use the superceding command Equate instead.

 > $\mathrm{with}\left(\mathrm{student}\right):$
 > $\mathrm{equate}\left(x,y\right)$
 $\left\{{x}{=}{y}\right\}$ (1)
 > $\mathrm{equate}\left(\left[\begin{array}{ccc}x& y& z\end{array}\right],3\right)$
 $\left\{{x}{=}{3}{,}{y}{=}{3}{,}{z}{=}{3}\right\}$ (2)
 > $\mathrm{equate}\left(\left[\begin{array}{cc}x& y\end{array}\right],\left[\begin{array}{cc}a& b\end{array}\right]\right)$
 $\left\{{x}{=}{a}{,}{y}{=}{b}\right\}$ (3)
 > ${T}_{\mathrm{first}}≔x+y$
 ${{T}}_{{\mathrm{first}}}{≔}{x}{+}{y}$ (4)
 > ${T}_{\mathrm{second}}≔x-y$
 ${{T}}_{{\mathrm{second}}}{≔}{x}{-}{y}$ (5)
 > $\mathrm{equate}\left(T,2\right)$
 $\left\{{x}{-}{y}{=}{2}{,}{x}{+}{y}{=}{2}\right\}$ (6)