 stats(deprecated)/statevalf - Maple Help

Overview of the stats[statevalf] Subpackage Calling Sequence stats[statevalf][command][distribution](arguments) command[distribution](arguments) Description

 • Important: The stats package has been deprecated. Use the superseding package Statistics instead.
 • The stats[statevalf] subpackage provides numerical evaluations of statistical functions.
 • Each command in the stats[statevalf] subpackage can be accessed by using either the long form or the short form of the command name in the command calling sequence. List of stats[statevalf] Subpackage Commands

 • The following is a list of available commands for continuous distributions.

 cdf cumulative density function icdf inverse cumulative density function pdf probability density function

 • The following is a list of available commands for discrete distributions.

 dcdf discrete cumulative probability function idcdf inverse discrete cumulative probability function pf probability function

 • The various distributions take their parameters as indices to the distributions. Refer to stats[distributions] for information on each available distribution.
 • If a particular call cannot be evaluated, for example trying to find the numerical value of a probability density function at a symbolic value, the call is returned unevaluated. Information is provided in the variable stats/lasterror as to the reason why a call was not evaluated. Also, this information is automatically given if infolevel[stats] has a value greater than or equal to one, prior to the unsuccessful call.
 • To display the help page for a particular stats[statevalf] command, see Getting Help with a Command in a Package. Examples

Important: The stats package has been deprecated. Use the superseding package Statistics instead.

 > $\mathrm{with}\left(\mathrm{stats}\right):$

standard normal distribution

 > $\mathrm{statevalf}\left[\mathrm{pdf},\mathrm{normald}\right]\left(4.0\right)$
 ${0.0001338302258}$ (1)

90% of normal distribution with mean = 1 and standard deviation=2

 > $\mathrm{statevalf}\left[\mathrm{icdf},\mathrm{normald}\left[1,2\right]\right]\left(0.9\right)$
 ${3.563103131}$ (2)

cumulative density for a standard normal distribution

 > $\mathrm{statevalf}\left[\mathrm{cdf},\mathrm{normald}\right]\left(1.0\right)$
 ${0.8413447461}$ (3)

plots of pdf, cdf and icdf of normald

 > $\mathrm{plots}\left[\mathrm{display}\right]\left(\left\{\mathrm{plot}\left(\mathrm{statevalf}\left[\mathrm{cdf},\mathrm{normald}\left[1,2\right]\right],-3..3,\mathrm{colour}=\mathrm{yellow}\right),\mathrm{plot}\left(\mathrm{statevalf}\left[\mathrm{icdf},\mathrm{normald}\left[1,2\right]\right],0.1..0.9,\mathrm{colour}=\mathrm{red}\right),\mathrm{plot}\left(\mathrm{statevalf}\left[\mathrm{pdf},\mathrm{normald}\left[1,2\right]\right],-3..3,\mathrm{colour}=\mathrm{green}\right)\right\}\right)$