coords - Maple Programming Help

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Graphics : coords

This page is an exact match for your search term. Click here to search for all help pages containing the term, "coords"

coords

coordinate systems supported in Maple

 

Description

References

Description

• 

At present, Maple supports the following coordinate systems:

  

In three dimensions - bipolarcylindrical, bispherical, cardioidal, cardioidcylindrical, casscylindrical, confocalellip, confocalparab, conical, cylindrical, ellcylindrical, ellipsoidal, hypercylindrical, invcasscylindrical, invellcylindrical, invoblspheroidal, invprospheroidal, logcoshcylindrical, logcylindrical, maxwellcylindrical, oblatespheroidal, paraboloidal, paraboloidal2, paracylindrical, prolatespheroidal, rectangular, rosecylindrical, sixsphere, spherical, tangentcylindrical, tangentsphere, and toroidal.

  

In two dimensions - bipolar, cardioid, cassinian, cartesian, elliptic, hyperbolic, invcassinian, invelliptic, logarithmic, logcosh, maxwell, parabolic, polar, rose, and tangent.

• 

NOTE that only the positive roots have been used for the following transformations: (in three dimensions) casscylindrical, confocalellip, confocalparab, conical, ellipsoidal, hypercylindrical, invcasscylindrical, paraboloidal2, rosecylindrical; (in two dimensions) cassinian, hyperbolic, invcassinian, and rose.

• 

The conversions from the various coordinate systems to cartesian coordinates in 3-space

u,v,wx,y,z

  

are given as follows (note that the author is indicated where necessary):

  

bipolarcylindrical:  (Spiegel)

  

x=asinhvcoshvcosu

  

y=asinucoshvcosu

  

z=w

  

bispherical:

  

x=sinucoswd

  

y=sinusinwd

  

z=sinhvd  where d=coshvcosu

  

cardioidal:

  

x=uvcoswu2+v22

  

y=uvsinwu2+v22

  

z=u2v22u2+v22

  

cardioidcylindrical:

  

x=u2v22u2+v22

  

y=uvu2+v22

  

z=w

  

casscylindrical:  (Cassinian-oval cylinder)

  

x=a2ⅇ2u+2ⅇucosv+1+ⅇucosv+12

  

y=a2ⅇ2u+2ⅇucosv+1ⅇucosv12

  

z=w

  

confocalellip:  (confocal elliptic)

  

x=a2ua2va2wa2b2a2c2

  

y=b2ub2vb2wa2+b2b2c2

  

z=c2uc2vc2wa2+c2b2+c2

  

confocalparab:  (confocal parabolic)

  

x=a2ua2va2wa2+b2

  

y=b2ub2vb2wa2+b2

  

z=a22+b22u2v2w2

  

conical:

  

x=uvwab

  

y=ub2+v2b2w2a2b2b

  

z=ua2v2a2w2a2b2a

  

cylindrical:

  

x=ucosv

  

y=usinv

  

z=w

  

ellcylindrical:  (elliptic cylindrical)

  

x=acoshucosv

  

y=asinhusinv

  

z = w

  

ellipsoidal:

  

x=uvwab

  

y=b2+u2b2+v2b2w2a2b2b

  

z=a2+u2a2v2a2w2a2b2a

  

hypercylindrical:  (hyperbolic cylinder)

  

x=u2+v2+u

  

y=u2+v2u

  

z=w

  

invcasscylindrical:  (inverse Cassinian-oval cylinder)

  

x=a2ⅇ2u+2ⅇucosv+1+ⅇucosv+12ⅇ2u+2ⅇucosv+1

  

y=a2ⅇ2u+2ⅇucosv+1ⅇucosv12ⅇ2u+2ⅇucosv+1

  

z=w

  

invellcylindrical:  (inverse elliptic cylinder)

  

x=acoshucosvcoshu2sinv2

  

y=asinhusinvcoshu2sinv2

  

z=w

  

invoblspheroidal:  (inverse oblate spheroidal)

  

x=acoshusinvcoswcoshu2cosv2

  

y=acoshusinvsinwcoshu2cosv2

  

z=asinhucosvcoshu2cosv2

  

invprospheroidal:  (inverse prolate spheroidal)

  

x=asinhusinvcoswcoshu2sinv2

  

y=asinhusinvsinwcoshu2sinv2

  

z=acoshucosvcoshu2sinv2

  

logcylindrical:  (logarithmic cylinder)

  

x=alnu2+v2π

  

y=2aarctanvuπ

  

z=w

  

logcoshcylindrical:  (ln cosh cylinder)

  

x=alncoshu2sinv2π

  

y=2aarctantanhutanvπ

  

z=w

  

maxwellcylindrical:

  

x=au+1+ⅇucosvπ

  

y=av+ⅇusinvπ

  

z=w

  

oblatespheroidal:

  

x=acoshusinvcosw

  

y=acoshusinvsinw

  

z=asinhucosv

  

paraboloidal:  (Spiegel)

  

x=uvcosw

  

y=uvsinw

  

z=u22v22

  

paraboloidal2:  (Moon)

  

x=2uaavawab

  

y=2ubbvbwab

  

z=u+v+wab

  

paracylindrical:

  

x=u22v22

  

y=uv

  

z=w

  

prolatespheroidal:

  

x=asinhusinvcosw

  

y=asinhusinvsinw

  

z=acoshucosv

  

rectangular:

  

x=u

  

y=v

  

z=w

  

rosecylindrical:

  

x=u2+v2+uu2+v2

  

y=u2+v2uu2+v2

  

z=w

  

sixsphere:  (6-sphere)

  

x=uu2+v2+w2

  

y=vu2+v2+w2

  

z=wu2+v2+w2

  

spherical:

  

x=ucosvsinw

  

y=usinvsinw

  

z=ucosw

  

tangentcylindrical:

  

x=uu2+v2

  

y=vu2+v2

  

z=w

  

tangentsphere:

  

x=ucoswu2+v2

  

y=usinwu2+v2

  

z=vu2+v2

  

toroidal:

  

x=asinhvcoswd

  

y=asinhvsinwd

  

z=asinud  where d=coshvcosu

• 

The conversions from the various coordinate systems to cartesian (rectangular) coordinates in 2-space

u,vx,y

  

are given by:

  

bipolar:  (Spiegel)

  

x=sinhvcoshvcosu

  

y=sinucoshvcosu

  

cardioid:

  

x=u2v22u2+v22

  

y=uvu2+v22

  

cartesian:

  

x=u

  

y=v

  

cassinian:  (Cassinian-oval)

  

x=a2ⅇ2u+2ⅇucosv+1+ⅇucosv+12

  

y=a2ⅇ2u+2ⅇucosv+1ⅇucosv12

  

elliptic:

  

x=coshucosv

  

y=sinhusinv

  

hyperbolic:

  

x=u2+v2+u

  

y=u2+v2u

  

invcassinian:  (inverse Cassinian-oval)

  

x=a2ⅇ2u+2ⅇucosv+1+ⅇucosv+12ⅇ2u+2ⅇucosv+1

  

y=a2ⅇ2u+2ⅇucosv+1ⅇucosv12ⅇ2u+2ⅇucosv+1

  

invelliptic:  (inverse elliptic)

  

x=acoshucosvcoshu2sinv2

  

y=asinhusinvcoshu2sinv2

  

logarithmic:

  

x=alnu2+v2π

  

y=2aarctanvuπ

  

logcosh:  (ln cosh)

  

x=alncoshu2sinv2π

  

y=2aarctantanhutanvπ

  

maxwell:

  

x=au+1+ⅇucosvπ

  

y=av+ⅇusinvπ

  

parabolic:

  

x=u22v22

  

y=uv

  

polar:

  

x=ucosv

  

y=usinv

  

rose:

  

x=u2+v2+uu2+v2

  

y=u2+v2uu2+v2

  

tangent:

  

x=uu2+v2

  

y=vu2+v2

• 

The a, b, and c values in the above coordinate transformations can be given using the coordinate specification as a function, e.g., conical(a,b) or ellcylindrical(2). The values a, b, and c if necessary, should be specified.  If not specified, the default values used are a = 1, b = 1/2, and c = 1/3.

References

  

Moon, P., and Spencer, D. E. Field Theory Handbook 2d ed. Berlin: Springer-Verlag, 1971.

  

Spiegel, Murray R. Mathematical Handbook Of Formulas And Tables. New York: McGraw-Hill, 1968.

See Also

addcoords

plot3d[coords]

plot[coords]

plots[changecoords]

plots[coordplot3d]

plots[coordplot]