DirectionalDiff - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


VectorCalculus

  

DirectionalDiff

  

computes the directional derivative of a scalar field in the direction given by a vector

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

DirectionalDiff(F,v,c)

DirectionalDiff(F,p,dir,c)

Parameters

F

-

the scalar or vector field to differentiate

v

-

Vector(algebraic); the direction Vector or vector field

p

-

point=list(algebraic) or point=Vector(algebraic); point where the derivative will be evaluated

dir

-

list(algebraic) or Vector(algebraic); components specifying the direction of the directional derivative in a specified coordinate system

c

-

(optional) list(name) or symbol[name, name, ...]; list of names or name of the coordinate system indexed by the coordinate names

Description

• 

The DirectionalDiff(F,v,c) command, where F is a scalar function, computes the directional derivative of F at the location and direction specified by v.  The expression F is interpreted in the coordinate system specified by c, if provided, and otherwise in the current coordinate system.

• 

The DirectionalDiff(F,v,c) command, where F is a VectorField, computes the VectorField of directional derivatives of each component of F with respect to v.

• 

The argument v can be a free Vector in Cartesian coordinates, a position Vector, a vector field or a rooted Vector.  If v is one of the first three, the result will be a scalar field of all directional derivatives in Rn in the directions specified by v; this scalar field will be given in the same coordinate system as is used to interpret expression F.  If v is a rooted Vector, the result is the value of the directional derivative of F in the direction of v taken at the root point of v.

• 

If F is a scalar function, the Vector v is normalized. If F is a VectorField, the Vector v is not normalized.

• 

The DirectionalDiff(F,p,dir,c) command computes the directional derivative of F at the point p in the direction dir, where F is interpreted in the coordinate system specified by c, if provided, and otherwise in the current coordinate system.  The point p can be a list, a free Vector in Cartesian coordinates or a position Vector. The direction dir can be a free Vector in Cartesian coordinates, a position Vector or a vector field.  The result is the value of DirectionalDiff(F,dir,c) evaluated at the point p.

– 

If c is a list of names, the directional derivative of F is taken with respect to these names in the current coordinate system.

– 

If c is an indexed coordinate system, F is interpreted in the combination of that coordinate system and coordinate names.

– 

If c is not specified, F is interpreted in the current coordinate system, whose coordinate name indices define the function's variables.

Note that c has no influence on the interpretation of the direction vector v.

• 

An operator implementing the directional derivative with respect to a VectorField can be obtained using the dot operator with Del, as in V·Del.

Examples

withVectorCalculus:

Introductory examples where a coordinate system is specified

SetCoordinatescartesianx,y

cartesianx,y

(1)

v11,2:

DirectionalDiffr2,v1,polarr,t

2rcost55+4rsint55

(2)

WVectorFieldu+v,v,cartesianu,v

DirectionalDiffr2,point=1,π,W,polarr,t

2

(3)

ddDirectionalDiffr2,W,polarr,t:

simplifyevaldd,r=1,t=π

2

(4)

ddDirectionalDiffVectorFieldxy,xy,W

Examples where a list of variable names is provided

DirectionalDiffpq,1,2,p,q

q55+2p55

(5)

v21,0:

SetCoordinatespolar

polar

(6)

ddDirectionalDiffrcosθ,v2,r,θ:

simplifydd

1

(7)

Examples where the information is given in the form of a Rooted Vector

SetCoordinatespolarr,t

polarr,t

(8)

vsVectorSpace1,π2,polarr,t:

v3vs:-Vector1,1

v311

(9)

v4vs:-Vector0,1

v401

(10)

DirectionalDiffr2,v3

2

(11)

DirectionalDiffr2,v4

0

(12)

SetCoordinatescartesianx,y

cartesianx,y

(13)

DirectionalDiffy2x2,point=1,2,0,1,cartesianx,y

4

(14)

DirectionalDiffy2x2,RootedVectorroot=1,2,0,1,cartesianx,y

4

(15)

DirectionalDiffy2x2,RootedVectorroot=1,π2,1,1,polarr,t,cartesianx,y

0

(16)

Examples using the dot operator to construct a directional derivative operator

SetCoordinatescartesianx,y,z

cartesianx,y,z

(17)

VVectorFieldyz,xz,xy

normalV·Delxyz

y2x2+x2z2+y2z2

(18)

V·DelVectorField1x,1y,1z

See Also

Physics[Vectors][DirectionalDiff]

Student[MultivariateCalculus][DirectionalDerivative]

tensor[directional_diff]

VectorCalculus

VectorCalculus[diff]

VectorCalculus[DotProduct]

VectorCalculus[Gradient]

VectorCalculus[SetCoordinates]