Weierstrass - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

VariationalCalculus

 Weierstrass
 compute the Weierstrass excess function

 Calling Sequence Weierstrass(f, t, x(t), p)

Parameters

 f - expression in t, x(t), and x'(t) t - independent variable x(t) - unknown function (or list of functions) p - name to use for the vector p[1..n]

Description

 • The Weierstrass(f, t, x, x(t), p) command computes the Weierstrass excess function

$E\left(t,x,x\text{'},p\right)=L\left(t,x,x\text{'}\right)-L\left(t,x,p\right)-\left(x\text{'}-p\right){L}_{p}\left(t,x,p\right)$

 • The output is unsimplified. There are many techniques that can be used to simplify the output: factor, collect, combine, or complete the square.
 • If $E\left(t,x,x',p\right)$ is positive when $x$ is the extremal, except when $x'=p$, the extremal provides a strong local minimum.
 The Cauchy-Schwarz inequality can be used to determine the sign of the expression.

Examples

 > $\mathrm{with}\left(\mathrm{VariationalCalculus}\right)$
 $\left[{\mathrm{ConjugateEquation}}{,}{\mathrm{Convex}}{,}{\mathrm{EulerLagrange}}{,}{\mathrm{Jacobi}}{,}{\mathrm{Weierstrass}}\right]$ (1)

A Lagrange Multiplier Problem (Queen Dido's problem): Find the maximum area enclosed by a curve of length $\mathrm{\lambda }$.

 > $f≔y+\mathrm{λ}{\left(1+{\left(\frac{ⅆ}{ⅆt}y\left(t\right)\right)}^{2}\right)}^{\frac{1}{2}}$
 ${f}{≔}{y}{+}{\mathrm{\lambda }}{}\sqrt{{1}{+}{\left(\frac{{ⅆ}}{{ⅆ}{t}}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}{y}{}\left({t}\right)\right)}^{{2}}}$ (2)
 > $\mathrm{Weierstrass}\left(f,t,y\left(t\right),p\right)$
 ${\mathrm{\lambda }}{}\sqrt{{1}{+}{\left(\frac{{ⅆ}}{{ⅆ}{t}}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}{y}{}\left({t}\right)\right)}^{{2}}}{-}{\mathrm{\lambda }}{}\sqrt{{{p}}_{{1}}^{{2}}{+}{1}}{-}\frac{\left(\frac{{ⅆ}}{{ⅆ}{t}}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}{y}{}\left({t}\right){-}{{p}}_{{1}}\right){}{\mathrm{\lambda }}{}{{p}}_{{1}}}{\sqrt{{{p}}_{{1}}^{{2}}{+}{1}}}$ (3)