Convex - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


VariationalCalculus

  

Convex

  

determine whether an integrand is convex

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

Convex(f, t, x(t))

Parameters

f

-

expression in t, x(t), and x'(t)

t

-

independent variable

x(t)

-

unknown function (or list of functions)

Description

• 

The Convex(f, t, x(t)) command determines if the integrand is convex.

• 

If the integrand is convex, the functional J=abft,x,x,'ⅆt is globally minimized by extremals (solutions of the Euler-Lagrange equations).

• 

For a convex integrand, the output is an expression sequence containing two items:

– 

Hessian matrix 2xx'f 

– 

Logical expression that is true iff the Hessian is positive semidefinite, which proves that J is a minimum

• 

If the integrand is not convex, Maple returns false.

• 

If LinearAlgebra[IsDefinite] cannot determine the convexity, the output is an expression sequence containing two items:

– 

Hessian matrix 2xx'f 

– 

unevaluated call to IsDefinite

• 

If an error occurs in the execution of LinearAlgebra[IsDefinite], only the Hessian matrix is returned.

• 

The arithmetic negation makes the Hessian negative semidefinite.

Examples

withVariationalCalculus

ConjugateEquation,Convex,EulerLagrange,Jacobi,Weierstrass

(1)

fⅆⅆtxt2+ⅆⅆtyt212

fⅆⅆtxt2+ⅆⅆtyt2

(2)

Convexf,t,xt,yt

0000000000ⅆⅆtxt2ⅆⅆtxt2+ⅆⅆtyt232+1ⅆⅆtxt2+ⅆⅆtyt2ⅆⅆtxtⅆⅆtytⅆⅆtxt2+ⅆⅆtyt23200ⅆⅆtxtⅆⅆtytⅆⅆtxt2+ⅆⅆtyt232ⅆⅆtyt2ⅆⅆtxt2+ⅆⅆtyt232+1ⅆⅆtxt2+ⅆⅆtyt2,01ⅆⅆtxt2+ⅆⅆtyt2

(3)

See Also

LinearAlgebra[IsDefinite]

VariationalCalculus

VariationalCalculus[EulerLagrange]