Iterated Double Integral in Polar Coordinates
Description
Compute the iterated double integral in polar coordinates.
Integrand:
θ1+r2
Region: r1θ≤r≤r2θ,a≤θ≤b
r1θ
0
r2θ
θ
θ
a
b
π3
13⁢π
Inert Integral: dr dθ
(Note automatic insertion of Jacobian.)
StudentMultivariateCalculusMultiInt,r=..,θ=..,coordinates=polarr,θ,output=integral
∫013⁢π∫0θθ⁢r1+r2ⅆrⅆθ
Value:
StudentMultivariateCalculusMultiInt,r=..,θ=..,coordinates=polarr,θ
−12⁢ln⁡3+14⁢ln⁡9+π2−118⁢π2⁢ln⁡3+136⁢π2⁢ln⁡9+π2−136⁢π2
Stepwise Evaluation:
StudentMultivariateCalculusMultiInt,r=..,θ=..,coordinates=polarr,θ,output=steps
∫0π3∫0θθ⁢r1+r2ⅆrⅆθ=∫0π3θ⁢ln⁡1+r22r=0..θ|θ⁢ln⁡1+r22r=0..θⅆθ=∫0π3ln⁡1+θ2⁢θ2ⅆθ=1+θ2⁢ln⁡1+θ24−14−θ24θ=0..π3|1+θ2⁢ln⁡1+θ24−14−θ24θ=0..π3
Commands Used
Student[MultivariateCalculus][MultiInt]
See Also
Student[MultivariateCalculus], Student[VectorCalculus][int]
Download Help Document
What kind of issue would you like to report? (Optional)