First Order ODEs - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


ODE Steps for First Order ODEs

 

Overview

Examples

Overview

• 

This help page gives a few examples of using the command ODESteps to solve first order ordinary differential equations.

• 

See Student[ODEs][ODESteps] for a general description of the command ODESteps and its calling sequence.

Examples

withStudent:-ODEs:

ode1t2zt+1+zt2t1diffzt,t=0

ode1t2zt+1+zt2t1ⅆⅆtzt=0

(1)

ODEStepsode1

Let's solvet2zt+1+zt2t1ⅆⅆtzt=0Highest derivative means the order of the ODE is1ⅆⅆtztSolve for the highest derivativeⅆⅆtzt=t2zt+1zt2t1Separate variablesⅆⅆtztzt2zt+1=t2t1Integrate both sides with respect totⅆⅆtztzt2zt+1ⅆt=t2t1ⅆt+c__1Evaluate integralzt22zt+lnzt+1=t22tlnt1+c__1

(2)

ode2diffyx,xfx+yx+gx=0

ode2ⅆⅆxyxfx+yx+gx=0

(3)

ODEStepsode2

Let's solveⅆⅆxyxfx+yx+gx=0Highest derivative means the order of the ODE is1ⅆⅆxyxSolve for the highest derivativeⅆⅆxyx=yx+gxfxCollect w.r.t.yxand simplifyⅆⅆxyx=fxyxfxgxGroup terms withyxon the lhs of the ODE and the rest on the rhs of the ODEⅆⅆxyx+fxyx=fxgxThe ODE is linear; multiply by an integrating factorμxμxⅆⅆxyx+fxyx=μxfxgxAssume the lhs of the ODE is the total derivativeⅆⅆxyxμxμxⅆⅆxyx+fxyx=ⅆⅆxyxμx+yxⅆⅆxμxIsolateⅆⅆxμxⅆⅆxμx=μxfxSolve to find the integrating factorμx=ⅇfxⅆxIntegrate both sides with respect toxⅆⅆxyxμxⅆx=μxfxgxⅆx+c__1Evaluate the integral on the lhsyxμx=μxfxgxⅆx+c__1Solve foryxyx=μxfxgxⅆx+c__1μxSubstituteμx=ⅇfxⅆxyx=ⅇfxⅆxfxgxⅆx+c__1ⅇfxⅆxSimplifyyx=ⅇfxⅆxⅇfxⅆxfxgxⅆx+c__1

(4)

ode3diffyx,xyx+1+gxyx=0

ode3ⅆⅆxyxyx+1+gxyx=0

(5)

ODEStepsode3

Let's solveⅆⅆxyxyx+1+gxyx=0Highest derivative means the order of the ODE is1ⅆⅆxyxSolve for the highest derivativeⅆⅆxyx=1gxyxyxCollect w.r.t.yxand simplifyⅆⅆxyx=yxgxGroup terms withyxon the lhs of the ODE and the rest on the rhs of the ODEⅆⅆxyx+yx=gxThe ODE is linear; multiply by an integrating factorμxμxⅆⅆxyx+yx=μxgxAssume the lhs of the ODE is the total derivativeⅆⅆxyxμxμxⅆⅆxyx+yx=ⅆⅆxyxμx+yxⅆⅆxμxIsolateⅆⅆxμxⅆⅆxμx=μxSolve to find the integrating factorμx=ⅇxIntegrate both sides with respect toxⅆⅆxyxμxⅆx=μxgxⅆx+c__1Evaluate the integral on the lhsyxμx=μxgxⅆx+c__1Solve foryxyx=μxgxⅆx+c__1μxSubstituteμx=ⅇxyx=ⅇxgxⅆx+c__1ⅇxSimplifyyx=ⅇxⅇxgxⅆx+c__1

(6)

ode42xyx9x2+2yx+x2+1diffyx,x=0

ode42xyx9x2+2yx+x2+1ⅆⅆxyx=0

(7)

ODEStepsode4

Let's solve2xyx9x2+2yx+x2+1ⅆⅆxyx=0Highest derivative means the order of the ODE is1ⅆⅆxyxCheck if ODE is exactODE is exact if the lhs is the total derivative of aC2functionⅆⅆxGx,yx=0Compute derivative of lhsxGx,y+yGx,yⅆⅆxyx=0Evaluate derivatives2x=2xCondition met, ODE is exactExact ODE implies solution will be of this formGx,y=c__1,Mx,y=xGx,y,Nx,y=yGx,ySolve forGx,yby integratingMx,ywith respect toxGx,y=9x2+2xyⅆx+_F1yEvaluate integralGx,y=3x3+x2y+_F1yTake derivative ofGx,ywith respect toyNx,y=yGx,yCompute derivativex2+2y+1=x2+ⅆⅆy_F1yIsolate forⅆⅆy_F1yⅆⅆy_F1y=2y+1Solve for_F1y_F1y=y2+ySubstitute_F1yinto equation forGx,yGx,y=3x3+x2y+y2+ySubstituteGx,yinto the solution of the ODE3x3+x2y+y2+y=c__1Solve foryxyx=x2212x4+12x3+2x2+4c__1+12,yx=x2212+x4+12x3+2x2+4c__1+12

(8)

ode5diffyx,xyxxexpx=0

ode5ⅆⅆxyxyxxⅇx=0

(9)

ODEStepsode5

Let's solveⅆⅆxyxyxxⅇx=0Highest derivative means the order of the ODE is1ⅆⅆxyxSolve for the highest derivativeⅆⅆxyx=yx+xⅇxGroup terms withyxon the lhs of the ODE and the rest on the rhs of the ODEⅆⅆxyxyx=xⅇxThe ODE is linear; multiply by an integrating factorμxμxⅆⅆxyxyx=μxxⅇxAssume the lhs of the ODE is the total derivativeⅆⅆxyxμxμxⅆⅆxyxyx=ⅆⅆxyxμx+yxⅆⅆxμxIsolateⅆⅆxμxⅆⅆxμx=μxSolve to find the integrating factorμx=ⅇxIntegrate both sides with respect toxⅆⅆxyxμxⅆx=μxxⅇxⅆx+c__1Evaluate the integral on the lhsyxμx=μxxⅇxⅆx+c__1Solve foryxyx=μxxⅇxⅆx+c__1μxSubstituteμx=ⅇxyx=ⅇxxⅇxⅆx+c__1ⅇxEvaluate the integrals on the rhsyx=x22+c__1ⅇxSimplifyyx=ⅇxx22+c__1

(10)

See Also

diff

Int

Student

Student[ODEs]

Student[ODEs][ODESteps]