Cauchy-Euler Equations - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


ODE Steps for Cauchy-Euler Equations

 

Overview

Examples

Overview

• 

This help page gives a few examples of using the command ODESteps to solve Cauchy-Euler equations.

• 

See Student[ODEs][ODESteps] for a general description of the command ODESteps and its calling sequence.

Examples

withStudent:-ODEs:

ode1x2diffyx,x,x4xdiffyx,x+2yx=0

ode1x2ⅆ2ⅆx2yx4xⅆⅆxyx+2yx=0

(1)

ODEStepsode1

Let's solvex2ⅆ2ⅆx2yx4xⅆⅆxyx+2yx=0Highest derivative means the order of the ODE is2ⅆ2ⅆx2yxIsolate 2nd derivativeⅆ2ⅆx2yx=2yxx2+4ⅆⅆxyxxGroup terms withyxon the lhs of the ODE and the rest on the rhs of the ODE; ODE is linearⅆ2ⅆx2yx4ⅆⅆxyxx+2yxx2=0Multiply by denominators of the ODEx2ⅆ2ⅆx2yx4xⅆⅆxyx+2yx=0Make a change of variablest=lnxSubstitute the change of variables back into the ODECalculate the1stderivative ofywith respect tox, using the chain ruleⅆⅆxyx=ⅆⅆtytⅆⅆxtxCompute derivativeⅆⅆxyx=ⅆⅆtytxCalculate the2ndderivative ofywith respect tox, using the chain ruleⅆ2ⅆx2yx=ⅆ2ⅆt2ytⅆⅆxtx2+ⅆ2ⅆx2txⅆⅆtytCompute derivativeⅆ2ⅆx2yx=ⅆ2ⅆt2ytx2ⅆⅆtytx2Substitute the change of variables back into the ODEx2ⅆ2ⅆt2ytx2ⅆⅆtytx24ⅆⅆtyt+2yt=0Simplifyⅆ2ⅆt2yt5ⅆⅆtyt+2yt=0Characteristic polynomial of ODEr25r+2=0Use quadratic formula to solve forrr=5±172Roots of the characteristic polynomialr=52172,52+1721st solution of the ODEy1t=ⅇ52172t2nd solution of the ODEy2t=ⅇ52+172tGeneral solution of the ODEyt=c__1y1t+c__2y2tSubstitute in solutionsyt=c__1ⅇ52172t+c__2ⅇ52+172tChange variables back usingt=lnxyx=c__1ⅇ52172lnx+c__2ⅇ52+172lnxSimplifyyx=x52172x17c__2+c__1

(2)

ode2x3diffyx,x,x,x+3x2diffyx,x,x6xdiffyx,x6yx=0

ode2x3ⅆ3ⅆx3yx+3x2ⅆ2ⅆx2yx6xⅆⅆxyx6yx=0

(3)

ODEStepsode2

Let's solvex3ⅆ3ⅆx3yx+3x2ⅆ2ⅆx2yx6xⅆⅆxyx6yx=0Highest derivative means the order of the ODE is3ⅆ3ⅆx3yxIsolate 3rd derivativeⅆ3ⅆx3yx=6yxx33ⅆ2ⅆx2yxx2ⅆⅆxyxx2Group terms withyxon the lhs of the ODE and the rest on the rhs of the ODE; ODE is linearⅆ3ⅆx3yx+3ⅆ2ⅆx2yxx6ⅆⅆxyxx26yxx3=0Multiply by denominators of the ODEx3ⅆ3ⅆx3yx+3x2ⅆ2ⅆx2yx6xⅆⅆxyx6yx=0Make a change of variablest=lnxSubstitute the change of variables back into the ODECalculate the1stderivative ofywith respect tox, using the chain ruleⅆⅆxyx=ⅆⅆtytⅆⅆxtxCompute derivativeⅆⅆxyx=ⅆⅆtytxCalculate the2ndderivative ofywith respect tox, using the chain ruleⅆ2ⅆx2yx=ⅆ2ⅆt2ytⅆⅆxtx2+ⅆ2ⅆx2txⅆⅆtytCompute derivativeⅆ2ⅆx2yx=ⅆ2ⅆt2ytx2ⅆⅆtytx2Calculate the3rdderivative ofywith respect tox, using the chain ruleⅆ3ⅆx3yx=ⅆ3ⅆt3ytⅆⅆxtx3+3ⅆⅆxtxⅆ2ⅆx2txⅆ2ⅆt2yt+ⅆ3ⅆx3txⅆⅆtytCompute derivativeⅆ3ⅆx3yx=ⅆ3ⅆt3ytx33ⅆ2ⅆt2ytx3+2ⅆⅆtytx3Substitute the change of variables back into the ODEx3ⅆ3ⅆt3ytx33ⅆ2ⅆt2ytx3+2ⅆⅆtytx3+3x2ⅆ2ⅆt2ytx2ⅆⅆtytx26ⅆⅆtyt6yt=0Simplifyⅆ3ⅆt3yt7ⅆⅆtyt6yt=0Characteristic polynomial of ODEr37r6=0Roots of the characteristic polynomialr=3,−2,−1Solution fromr=3y1t=ⅇ3tSolution fromr=−2y2t=ⅇ2tSolution fromr=−1y3t=ⅇtGeneral solution of the ODEyt=c__1y1t+c__2y2t+c__3y3tSubstitute in solutions and simplifyyt=c__1ⅇ5t+c__3ⅇt+c__2ⅇ2tChange variables back usingt=lnxyx=c__1x5+c__3x+c__2x2

(4)

See Also

diff

Int

Student

Student[ODEs]

Student[ODEs][ODESteps]