Student[Calculus1] - Maple Programming Help

# Online Help

###### All Products    Maple    MapleSim

Home : Support : Online Help : Education : Student Package : Calculus 1 : Single Stepping : Student/Calculus1/ShowIncomplete

Student[Calculus1]

 ShowIncomplete
 show the incomplete subproblems of a problem or problems

 Calling Sequence ShowIncomplete(expr, fullopt, dataopt)

Parameters

 expr - (optional) algebraic or algebraic equation; select the problem(s) to show fullopt - (optional) $\mathrm{BooleanOpt}\left(\mathrm{full}\right)$; select whether to show all incomplete subproblems or only subproblems that have not been started dataopt - (optional) $\mathrm{BooleanOpt}\left(\mathrm{data}\right)$; select whether to display results using printed output or to return the results as data

Description

 • The ShowIncomplete command displays the incomplete subproblems of a single problem or of all problems from the current Maple session.
 • If the dataopt parameter is not given, or is given as data = false, the display is accomplished using calls to print; the value returned by ShowIncomplete is NULL.  Thus, the history variables, %, %%, and %%%, are not modified by this command.  This is the default.
 If the datatopt parameter is given as either data or data=true, this routine returns an expression sequence of lists, giving the problem data for each relevant subproblem.
 • Each subproblem of a problem, which has been entered into the Calculus1 system using a call to Rule or Hint, is assigned a subproblem label.  These labels are of the form "%" + operation name + integer, where operation name is one of Diff, Int, or Limit, corresponding to the calculus operation type of the problem, for example, %Diff2.
 As you solve a problem by applying rules using the Rule command, subproblems may be created.  For example, the application of the sum rule for differentiation to an expression of the form $\frac{{ⅆ}}{{ⅆ}x}\left(f\left(x\right)+g\left(x\right)\right)$ creates two new subproblems, $\frac{{ⅆ}}{{ⅆ}x}f\left(x\right)$ and $\frac{{ⅆ}}{{ⅆ}x}g\left(x\right)$.
 Once a subproblem has been completed, its value is substituted into the internal representation of the problem and the corresponding subproblem label is cleared.
 • You can use the fullopt option to determine whether all subproblems are displayed (full = true or full) or only those subproblems that do not have subproblems are displayed (full = false).  The default is full = false.
 • If the parameter expr is omitted, the incomplete subproblems of the current problem are displayed.  To designate a problem the current problem, create a new problem (see Rule or Hint) or use the GetProblem command.
 • If expr is a positive integer, the incomplete subproblems of the corresponding problem are displayed.
 • If expr is a subproblem label, the incomplete subproblems of the subproblem with the label expr are displayed. The subproblem referenced by expr need not be a subproblem of the current problem.
 • If expr is the keyword all, the incomplete subproblems of all problems from the current session are displayed.  Note: Problems that have been cleared by a call to Clear are not displayed.
 • If expr is the output from a previous call to Rule or GetProblem (with the internal option), or the left-hand side of such output, the current state of that problem is displayed.
 • Maple returns an error if you attempt to display a problem that has been cleared by a call to the package routine Clear.
 • Note: Treat subproblem labels as temporary objects because the application of a rule to a problem can change the underlying problem representation, and hence the subproblem labels.  It is recommended that you call ShowIncomplete to verify the value of a label before passing it to a command.
 • This command does not change which problem is designated the current problem.

Examples

 > $\mathrm{with}\left(\mathrm{Student}[\mathrm{Calculus1}]\right):$
 > ${\mathrm{infolevel}}_{\mathrm{Student}[\mathrm{Calculus1}]}≔1:$
 > $\mathrm{Understand}\left(\mathrm{Diff},\mathrm{chain}\right)$
 ${\mathrm{Diff}}{=}\left[{\mathrm{chain}}\right]$ (1)
 > $\mathrm{Rule}[\mathrm{*}]\left(\frac{{ⅆ}}{{ⅆ}x}\left({x}^{2}\mathrm{sin}\left({x}^{2}+{ⅇ}^{x}\right)\right)\right)$
 Creating problem #1
 $\frac{{ⅆ}}{{ⅆ}{x}}{}\left({{x}}^{{2}}{}{\mathrm{sin}}{}\left({{x}}^{{2}}{+}{{ⅇ}}^{{x}}\right)\right){=}\left(\frac{{ⅆ}}{{ⅆ}{x}}{}\left({{x}}^{{2}}\right)\right){}{\mathrm{sin}}{}\left({{x}}^{{2}}{+}{{ⅇ}}^{{x}}\right){+}{{x}}^{{2}}{}\left(\genfrac{}{}{0}{}{\frac{{ⅆ}}{{ⅆ}{\mathrm{_X}}}{}{\mathrm{sin}}{}\left({\mathrm{_X}}\right)}{\phantom{{\mathrm{_X}}{=}{{x}}^{{2}}{+}{{ⅇ}}^{{x}}}}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{|}\phantom{\rule[-0.0ex]{0.1em}{0.0ex}}\genfrac{}{}{0}{}{\phantom{\frac{{ⅆ}}{{ⅆ}{\mathrm{_X}}}{}{\mathrm{sin}}{}\left({\mathrm{_X}}\right)}}{{\mathrm{_X}}{=}{{x}}^{{2}}{+}{{ⅇ}}^{{x}}}\right){}\left(\frac{{ⅆ}}{{ⅆ}{x}}{}\left({{x}}^{{2}}{+}{{ⅇ}}^{{x}}\right)\right)$ (2)
 > $\mathrm{Rule}[\mathrm{sin}]\left(\right)$
 $\frac{{ⅆ}}{{ⅆ}{x}}{}\left({{x}}^{{2}}{}{\mathrm{sin}}{}\left({{x}}^{{2}}{+}{{ⅇ}}^{{x}}\right)\right){=}\left(\frac{{ⅆ}}{{ⅆ}{x}}{}\left({{x}}^{{2}}\right)\right){}{\mathrm{sin}}{}\left({{x}}^{{2}}{+}{{ⅇ}}^{{x}}\right){+}{{x}}^{{2}}{}{\mathrm{cos}}{}\left({{x}}^{{2}}{+}{{ⅇ}}^{{x}}\right){}\left(\frac{{ⅆ}}{{ⅆ}{x}}{}\left({{x}}^{{2}}{+}{{ⅇ}}^{{x}}\right)\right)$ (3)
 > $\mathrm{Rule}[\mathrm{+}]\left(\right)$
 $\frac{{ⅆ}}{{ⅆ}{x}}{}\left({{x}}^{{2}}{}{\mathrm{sin}}{}\left({{x}}^{{2}}{+}{{ⅇ}}^{{x}}\right)\right){=}\left(\frac{{ⅆ}}{{ⅆ}{x}}{}\left({{x}}^{{2}}\right)\right){}{\mathrm{sin}}{}\left({{x}}^{{2}}{+}{{ⅇ}}^{{x}}\right){+}{{x}}^{{2}}{}{\mathrm{cos}}{}\left({{x}}^{{2}}{+}{{ⅇ}}^{{x}}\right){}\left(\frac{{ⅆ}}{{ⅆ}{x}}{}\left({{x}}^{{2}}\right){+}\frac{{ⅆ}}{{ⅆ}{x}}{}{{ⅇ}}^{{x}}\right)$ (4)
 > $\mathrm{Rule}[\mathrm{+}]\left({∫}\left({x}^{3}+{ⅇ}^{x}\right)\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{ⅆ}x\right)$
 Creating problem #2
 ${∫}\left({{x}}^{{3}}{+}{{ⅇ}}^{{x}}\right)\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{ⅆ}{x}{=}{∫}{{x}}^{{3}}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{ⅆ}{x}{+}{∫}{{ⅇ}}^{{x}}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{ⅆ}{x}$ (5)
 > $\mathrm{ShowIncomplete}\left(\mathrm{data}\right)$
 $\left[{\mathrm{%Int2}}{,}{∫}{{x}}^{{3}}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{ⅆ}{x}\right]{,}\left[{\mathrm{%Int3}}{,}{∫}{{ⅇ}}^{{x}}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{ⅆ}{x}\right]$ (6)
 > $\mathrm{ShowIncomplete}\left(1,\mathrm{full}\right)$
 ${\mathrm{%Diff1}}{=}\left(\frac{{ⅆ}}{{ⅆ}{x}}{}\left({{x}}^{{2}}{}{\mathrm{sin}}{}\left({{x}}^{{2}}{+}{{ⅇ}}^{{x}}\right)\right){=}{\mathrm{%Diff2}}{}{\mathrm{sin}}{}\left({{x}}^{{2}}{+}{{ⅇ}}^{{x}}\right){+}{{x}}^{{2}}{}{\mathrm{%Diff3}}\right)$
 ${\mathrm{%Diff2}}{=}\frac{{ⅆ}}{{ⅆ}{x}}{}\left({{x}}^{{2}}\right)$
 ${\mathrm{%Diff3}}{=}\left(\frac{{ⅆ}}{{ⅆ}{x}}{}{\mathrm{sin}}{}\left({{x}}^{{2}}{+}{{ⅇ}}^{{x}}\right){=}{\mathrm{cos}}{}\left({{x}}^{{2}}{+}{{ⅇ}}^{{x}}\right){}{\mathrm{%Diff5}}\right)$
 ${\mathrm{%Diff5}}{=}\left(\frac{{ⅆ}}{{ⅆ}{x}}{}\left({{x}}^{{2}}{+}{{ⅇ}}^{{x}}\right){=}{\mathrm{%Diff6}}{+}{\mathrm{%Diff7}}\right)$
 ${\mathrm{%Diff6}}{=}\frac{{ⅆ}}{{ⅆ}{x}}{}\left({{x}}^{{2}}\right)$
 ${\mathrm{%Diff7}}{=}\frac{{ⅆ}}{{ⅆ}{x}}{}{{ⅇ}}^{{x}}$ (7)
 > $\mathrm{Rule}[\mathrm{^}]\left(\mathrm{GetProblem}\left(\mathrm{internal}\right)\right)$
 ${∫}\left({{x}}^{{3}}{+}{{ⅇ}}^{{x}}\right)\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{ⅆ}{x}{=}\frac{{1}}{{4}}{}{{x}}^{{4}}{+}{∫}{{ⅇ}}^{{x}}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{ⅆ}{x}$ (8)
 > $\mathrm{ShowIncomplete}\left(\right)$
 ${\mathrm{%Int3}}{=}{∫}{{ⅇ}}^{{x}}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{ⅆ}{x}$ (9)

 See Also