SummationSteps - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Student[Basics]

  

SummationSteps

  

generate steps for evaluating summations

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

SummationSteps( expr )

SummationSteps( expr, implicitmultiply = true )

Parameters

expr

-

string or expression

implicitmultiply

-

(optional) truefalse

output = ...

-

(optional) option to control the return value

displaystyle = ...

-

(optional) option to control the layout of the steps

Description

• 

The SummationSteps command accepts an expression that is expected to contain summations and displays the steps required to evaluate each summation given.

• 

If expr is a string, then it is parsed into an expression using InertForm:-Parse so that no automatic simplifications are applied, and thus no steps are missed.  

• 

The implicitmultiply option is only relevant when expr is a string.  This option is passed directly on to the InertForm:-Parse command and will cause things like 2x to be interpreted as 2*x, but also, xyz to be interpreted as x*y*z.

• 

The output and displaystyle options are described in Student:-Basics:-OutputStepsRecord. The return value is controlled by the output option.  

• 

This function is part of the Student:-Basics package.

Examples

withStudent:-Basics:

SummationStepsSumi,i=1..n

i=1niEvaluate sumi=1nin+122n212Simplify12n2+12n

(1)

SummationSteps1+2x+3Sum2i,i=1..n

1+2x+3i=1n2iExamine Sumi=1n2iBring2outside of the sum2i=1niEvaluate sumi=1ni2n+122n212Multiplyn+12n1Simplifyn2+nThis gives:1+2x+3n2+nSimplify3n2+3n+2x+1

(2)

SummationStepsSumi,i=1..n+Sumj+2,j=4..18+Sum4k+1,k=10..n

i=1ni+j=418j+2+k=10n4k+4Examine Sumi=1niEvaluate sumi=1nin+122n212Simplify12n2+12nThis gives:12n2+12n+j=418j+2+k=10n4k+4Examine Sumj=418j+2Reindex the summation so it starts at 1j=115j+3+2Simplify and expand expressionj=115j+5Apply the sum rule:k=mna__k+b__k=k=mna__k+k=mnb__kj=115j+j=1155Evaluate the1stsumj=115j120Evaluate the2ndsumj=115575Substitute evaluated sums into the expression120+75Simplify195This gives:12n2+12n+195+k=10n4k+4Examine Sumk=10n4k+4Reindex the summation so it starts at 1k=1n94k+9+4Simplify and expand expressionk=1n94k+40Apply the sum rule:k=mna__k+b__k=k=mna__k+k=mnb__kk=1n94k+k=1n940Bring4outside of the1stsum4k=1n9kEvaluate the1stsumk=1n9k48+n22+4n2Multiply28+n2+162nEvaluate the2ndsumk=1n94040n360Substitute evaluated sums into the expression28+n2+162n+40n360Simplify2n2+6n216This gives:12n2+12n+195+2n2+6n216Simplify52n2+132n21

(3)

SummationStepsSum1n!,n=1..

n=11n!Apply the ratio test, which determines if the series diverges usinglimnan+1an=LIf 0 ≤ L < 1 then n=0an converges absolutely If L > 1 then n=0an diverges If L = 1 then no conclusion is possible So we getlimn1n+1!1n!Simplify inside expressionlimn1n+1Take the limit0Since the0LandL<1the infinte sum converges absolutelyn=11n! converges

(4)

Compatibility

• 

The Student:-Basics:-SummationSteps command was introduced in Maple 2024.

• 

For more information on Maple 2024 changes, see Updates in Maple 2024.

See Also

Student:-Basics

Student:-Basics:-ExpandSteps

Student:-Basics:-SimplifySteps