EvaluateAtRoot - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


RootFinding

  

EvaluateAtRoot

  

evaluate polynomials or relations on polynomials at a real root

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

EvaluateAtRoot( polys, box, sys, vars, threshold = t, digits = d, output = o, strategy = s, accuracy = a )

EvaluateAtRoot( polys, vbox, sys, threshold = t, digits = d, output = o, strategy = s, accuracy = a )

EvaluateAtRoot( lcons, box, sys, vars, threshold = t, digits = d, output = u, earlyterminate = e )

EvaluateAtRoot( lcons, vbox, sys, threshold = t, digits = d, output = u, earlyterminate = e )

EvaluateAtRoot( scons, box, sys, vars, threshold = t, digits = d, output = u )

EvaluateAtRoot( scons, vbox, sys, threshold = t, digits = d, output = u )

Parameters

polys

-

list( polynom ); list of polynomials to evaluate the signs of at a real root

box

-

non-empty list of intervals; isolating box for a real root of sys

sys

-

nonemptylist( polynom ); system of polynomials

vars

-

nonemptylist( name ); variables for the system sys, with ordering corresponding to the intervals of box

vbox

-

non-empty list containing elements with type name = interval; simultaneously describes the isolating box for a real root of the system sys and the accompanying variables, where the name preceding each interval describes the associated variable for the interval of the isolating box

lcons

-

list( relation( polynom ) ); list of relations to evaluate the truth of

scons

-

set( relation( polynom ) ); set of relations to evaluate the truth of

t

-

(optional) posint; threshold working precision that should not be exceeded (default infinity)

d

-

(optional) posint; starting working precision to use (default maximum precision of any interval in box or vbox)

o

-

(optional) nonemptylist( symbol ); non-empty list of symbols from among signs, refinement, and intervals defining the outputs returned and their sequential ordering (default [signs])

u

-

(optional) nonemptylist( symbol ); non-empty list of symbols from among truth and refinement defining the outputs returned and their sequential ordering (default [truth])

s

-

(optional) The symbol oracle or geometric; defines strategy to increase precision when there is scope for increased working precision to use in evaluation. (default oracle)

a

-

(optional) posint; defines a request for accuracy to achieve (default )

e

-

(optional) truefalse; controls early termination behavior of the procedure when a meaningful truth value is achieved amongst the list of constraints. (default true)

Description

• 

EvaluateAtRoot is a multipurpose procedure to evaluate collections of polynomials or relations on polynomials at a real root.

• 

Throughout, any interval can be represented by either a list or range of two rational numbers, i.e. [ rational, rational ] or rational .. rational. In other words, EvaluateAtRoot accepts and returns intervals under both such representations. A list or range of rationals represents an open real interval with rational endpoints with respect to one variable in this way.

• 

Given a collection of polynomial relations, by default EvaluateAtRoot terminates upon evaluating any relation in the collection as false. When a list of relations lcons is passed, this early termination criteria can be turned off by using the option earlyterminate = false, which forces evaluation of the full list of polynomials.

• 

When the parameter lcons is passed and the output truth is requested, any polynomials such that a sign cannot or is not reliably deduced will yield a truth value of FAIL. One scenario for this is where polynomials are skipped due to early termination.

• 

Because truth values can only be mapped to an original relation for a collection with a fixed ordering, early termination isn't available with usage of the parameter scons.

• 

If a truth value cannot be reliably determined given the parameters, then the return value will be FAIL.

Examples

lconsx23<0&comma;0<x22&comma;0<x&plus;4

lconsx2<3&comma;0<x22&comma;0<x+4

(1)

polysmapr&rarr;lhsrrhsr&comma;lcons

polysx23&comma;x2+2&comma;4x

(2)

sysx22&semi;varsx&semi;box1..2

sysx22

varsx

box1..2

(3)

s&comma;boxRootFinding:-EvaluateAtRootpolys&comma;box&comma;sys&comma;vars&comma;&apos;output&equals;signs&comma;refinement&apos;&comma;&apos;accuracy&equals;20&apos;

s,box−1&comma;0&comma;−1,213709911250252303767135151115727451828646838272..66784347265703844927234722366482869645213696

(4)

t&comma;boxRootFinding:-EvaluateAtRootlcons&comma;box&comma;sys&comma;vars&comma;&apos;output&equals;truth&comma;refinement&apos;&comma;&apos;digits&equals;30&apos;

t,boxtrue&comma;false&comma;FAIL,1136276788042180458070828951474823657989790988021617205464301803469022129495137770981046170581301261101496891396417650688..90902143043374436645666316117985892639183279041729376437144096427752177035961102167848369364650410088811975131171341205504

(5)

t&comma;boxRootFinding:-EvaluateAtRootlcons&comma;box&comma;sys&comma;vars&comma;&apos;output&equals;truth&comma;refinement&apos;&comma;&apos;digits&equals;30&apos;&comma;&apos;earlyterminate&equals;false&apos;

t,boxtrue&comma;false&comma;true,1460741119610710954571473490162359884261672472836437833193991718879756708123654433272144476462063870354965569624347616758910328999512347634358623676688012047497318823171316894051322637426162590488067364778518581413120551325743612687890989973504..73037055980535547728573674508117994213083623641821891659699585943987835406182721663607223823103193517748278481217380837955164499756173817179311838344006023748659411585658447025661318713081295244033682389259290706560275662871806343945494986752

(6)

sysx2&plus;y&plus;z1&comma;y2&plus;x&plus;z1&comma;z2&plus;x&plus;y1

sysx2+y+z1&comma;y2+x+z1&comma;z2+x+y1

(7)

varsx&comma;y&comma;z

varsx&comma;y&comma;z

(8)

lcons017x4y75x3yz&plus;80x2z244y3z&plus;71yz382y3&comma;62x2z3&plus;97xy3z73yz456xyz2&plus;87xy<0&comma;23xy3z&plus;87xz4&plus;72x2z2&plus;37xyz2&plus;74xy2&plus;6y20

lcons017x4y75x3yz+80x2z244y3z+71yz382y3&comma;62x2z3+97xy3z73yz456xyz2+87xy<0&comma;23xy3z+87xz4+72x2z2+37xyz2+74xy2+6y20

(9)

d50

d50

(10)

isoRootFinding:-Isolatesys&comma;vars&comma;&apos;output&equals;interval&apos;&comma;&apos;digits&apos;&equals;d

isox=924942879758680150910286902258589248300024263817316831383123885216472214589586756787577295904684780545900544&comma;36997715190347206036411476090343569932000970552692673091532495540865888858358347027150309183618739122183602176&comma;y=1849885759517360301820573804517178496600048527634633661766247770432944429179173513575154591809369561091801088&comma;1849885759517360301820573804517178496600048527634633657766247770432944429179173513575154591809369561091801088&comma;z=462471439879340075455143451129294624150012131908658415191561942608236107294793378393788647952342390272950272&comma;36997715190347206036411476090343569932000970552692673151532495540865888858358347027150309183618739122183602176&comma;x=1&comma;1&comma;y=0&comma;0&comma;z=0&comma;0&comma;x=0&comma;0&comma;y=1&comma;1&comma;z=0&comma;0&comma;x=158695109325735721731113388683434656490654702725515741383123885216472214589586756787577295904684780545900544&comma;25391217492117715476978142189349545038504752436082518656129982163463555433433388108601236734474956488734408704&comma;y=507824349842354309539562843786990900770095048721650371312259964326927110866866776217202473468949912977468817408&comma;507824349842354309539562843786990900770095048721650372712259964326927110866866776217202473468949912977468817408&comma;z=507824349842354309539562843786990900770095048721650371512259964326927110866866776217202473468949912977468817408&comma;507824349842354309539562843786990900770095048721650372112259964326927110866866776217202473468949912977468817408&comma;x=0&comma;0&comma;y=0&comma;0&comma;z=1&comma;1

(11)

vboxiso1

vboxx=924942879758680150910286902258589248300024263817316831383123885216472214589586756787577295904684780545900544&comma;36997715190347206036411476090343569932000970552692673091532495540865888858358347027150309183618739122183602176&comma;y=1849885759517360301820573804517178496600048527634633661766247770432944429179173513575154591809369561091801088&comma;1849885759517360301820573804517178496600048527634633657766247770432944429179173513575154591809369561091801088&comma;z=462471439879340075455143451129294624150012131908658415191561942608236107294793378393788647952342390272950272&comma;36997715190347206036411476090343569932000970552692673151532495540865888858358347027150309183618739122183602176

(12)

RootFinding:-EvaluateAtRootlcons&comma;vbox&comma;sys&comma;&apos;digits&apos;&equals;d

true&comma;false&comma;FAIL

(13)

RootFinding:-EvaluateAtRootlcons&comma;vbox&comma;sys&comma;&apos;earlyterminate&equals;false&apos;

true&comma;false&comma;true

(14)

polysmapr&rarr;lhsrrhsr&comma;lcons

polys17x4y+75x3yz80x2z2+44y3z71yz3+82y3&comma;62x2z3+97xy3z73yz456xyz2+87xy&comma;23xy3z+87xz4+72x2z2+37xyz2+74xy2+6y2

(15)

RootFinding:-EvaluateAtRootpolys&comma;vbox&comma;sys&comma;&apos;digits&apos;&equals;d

−1&comma;1&comma;−1

(16)

constraintsconvertlcons&comma;&apos;set&apos;

constraints23xy3z+87xz4+72x2z2+37xyz2+74xy2+6y20&comma;017x4y75x3yz+80x2z244y3z+71yz382y3&comma;62x2z3+97xy3z73yz456xyz2+87xy<0

(17)

RootFinding:-EvaluateAtRootconstraints&comma;vbox&comma;sys&comma;&apos;digits&apos;&equals;d

false

(18)

boxmap2op&comma;2&comma;vbox

box924942879758680150910286902258589248300024263817316831383123885216472214589586756787577295904684780545900544&comma;36997715190347206036411476090343569932000970552692673091532495540865888858358347027150309183618739122183602176&comma;1849885759517360301820573804517178496600048527634633661766247770432944429179173513575154591809369561091801088&comma;1849885759517360301820573804517178496600048527634633657766247770432944429179173513575154591809369561091801088&comma;462471439879340075455143451129294624150012131908658415191561942608236107294793378393788647952342390272950272&comma;36997715190347206036411476090343569932000970552692673151532495540865888858358347027150309183618739122183602176

(19)

r&comma;s&comma;boxRootFinding:-EvaluateAtRootpolys&comma;box&comma;sys&comma;vars&comma;&apos;digits&apos;&equals;2d&comma;&apos;output&equals;refinement&comma;signs&comma;intervals&apos;

r,s,box1351805533204871503598658581291245321878330881470025723977137404661742974069835107134037625276089582993559936185544451052639360570142111069530411374308662383724997275240947967795040236345219373317901778944&comma;1351805533204871503598658581291245321878330881470025723977137404661742974069835107134037625276089582991559936185544451052639360570142111069530411374308662383724997275240947967795040236345219373317901778944&comma;108144442656389720287892686503299625750266470517602057918170992372939437925586808570723010022087166639374479489484355608421114884561136888556243290994469299069799978201927583742360321890761754986543214231552&comma;54072221328194860143946343251649812875133235258801028959085496186469718962793404285361505011043583319672239744742177804210557442280568444278121645497234649534899989100963791871180160945380877493271607115776&comma;108144442656389720287892686503299625750266470517602057918170992372939437925586808570723010022087166639374479489484355608421114884561136888556243290994469299069799978201927583742360321890761754986543214231552&comma;54072221328194860143946343251649812875133235258801028959085496186469718962793404285361505011043583319672239744742177804210557442280568444278121645497234649534899989100963791871180160945380877493271607115776,−1&comma;1&comma;−1,3372139003113425169241267499784491383006157721118540276291232151559546893958534318090382154075429525623273406340597876490546562778389702670669146178861651554553221325801244124899921990402939147127881728&comma;3372139003113425169241267499784491383006157721118540276291232151559546893958534318090382154075429525595273406340597876490546562778389702670669146178861651554553221325801244124899921990402939147127881728&comma;18823315602615879199565265879829831751972852418966284066442681168048087341177265368510769938464185077191093625362391505962186251113558810682676584715446606218212885303204976499599687961611756588511526912&comma;18823315602615879199565265879829831751972852418966284066442681168048087341177265368510769938464185078611093625362391505962186251113558810682676584715446606218212885303204976499599687961611756588511526912&comma;697808848050458113512573868531122461914242153434816931632280514690666573609599752602267167852134429457273406340597876490546562778389702670669146178861651554553221325801244124899921990402939147127881728&comma;1395617696100916227025147737062244923828484306869633863264561029381333147219199505204534335704268858869546812681195752981093125556779405341338292357723303109106442651602488249799843980805878294255763456

(20)

Compatibility

• 

The RootFinding[EvaluateAtRoot] command was introduced in Maple 2022.

• 

For more information on Maple 2022 changes, see Updates in Maple 2022.

See Also

Isolate

RefineRoot

RootFinding