PolyhedralSets - Maple Programming Help

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : Geometry : Polyhedral Sets : Properties of a Set : PolyhedralSets/IsInInterior

PolyhedralSets

  

IsInInterior

  

test if a polyhedral set is contained in the interior of another

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

IsInInterior(ps1, ps2)

Parameters

ps1, ps2

-

polyhedral sets

Description

• 

Returns true if the polyhedral set ps1 is contained in the interior of the highest dimensional face of ps2, that is if ps1 is a subset of ps2 and the intersections between the facets of ps1 and the facets of ps2 are empty.

Examples

withPolyhedralSets:

A small cube resides in the interior of a larger cube.

c_bigExampleSets:-Cube1..1,1..1,1..1

c_big{Coordinates:x1,x2,x3Relations:x31,x31,x21,x21,x11,x11

(1)

c_smallExampleSets:-Cube110..110,110..110,110..110

c_small{Coordinates:x1,x2,x3Relations:x3110,x3110,x2110,x2110,x1110,x1110

(2)

IsInInteriorc_small,c_big

true

(3)

Plotc_big,c_small,faceoptions=transparency=0.5,0.0

The empty set is not in the interior of any other set.

IsInInteriorExampleSets:-EmptySet3,ExampleSets:-Cube

false

(4)

Compatibility

• 

The PolyhedralSets[IsInInterior] command was introduced in Maple 2015.

• 

For more information on Maple 2015 changes, see Updates in Maple 2015.

See Also

PolyhedralSets[`in`]

PolyhedralSets[`subset`]

PolyhedralSets[LocatePoint]

PolyhedralSets[IsEmpty]

PolyhedralSets[InteriorPoint]

PolyhedralSets[PolyhedralSet]

PolyhedralSets