OrthogonalSeries - Maple Programming Help

Home : Support : Online Help : Mathematics : Power Series : OrthogonalSeries Package : OrthogonalSeries/Multiply

OrthogonalSeries

 Multiply
 multiply two series

 Calling Sequence Multiply(S1, S2)

Parameters

 S1 - finite orthogonal series S2 - orthogonal series

Description

 • The Multiply(S1, S2) function multiplies the series S2 by the finite series S1. The routine uses an adaptation of the Horner scheme.
 • The result is expanded in terms of the polynomials of S2.
 • This command is part of the OrthogonalSeries package, so it can be used in the form Multiply(..) only after executing the command with(OrthogonalSeries). However, it can always be accessed through the long form of the command by using OrthogonalSeries[Multiply](..).

Examples

 > $\mathrm{with}\left(\mathrm{OrthogonalSeries}\right):$
 > $\mathrm{S1}≔\mathrm{ChangeBasis}\left(1+{x}^{2},\mathrm{LaguerreL}\left(n,\frac{1}{3},x\right)\right)$
 ${\mathrm{S1}}{≔}\frac{{37}}{{9}}{}{\mathrm{LaguerreL}}{}\left({0}{,}\frac{{1}}{{3}}{,}{x}\right){-}\frac{{14}}{{3}}{}{\mathrm{LaguerreL}}{}\left({1}{,}\frac{{1}}{{3}}{,}{x}\right){+}{2}{}{\mathrm{LaguerreL}}{}\left({2}{,}\frac{{1}}{{3}}{,}{x}\right)$ (1)
 > $\mathrm{S2}≔\mathrm{Create}\left(u\left(m\right),\mathrm{Charlier}\left(m,\frac{1}{7},x\right)\right)$
 ${\mathrm{S2}}{≔}{\sum }_{{m}{=}{0}}^{{\mathrm{∞}}}\phantom{\rule[-0.0ex]{5.0px}{0.0ex}}{u}{}\left({m}\right){}{\mathrm{Charlier}}{}\left({m}{,}\frac{{1}}{{7}}{,}{x}\right)$ (2)
 > $\mathrm{Multiply}\left(\mathrm{S1},\mathrm{S1}\right)$
 $\frac{{4225}}{{81}}{}{\mathrm{LaguerreL}}{}\left({0}{,}\frac{{1}}{{3}}{,}{x}\right){-}\frac{{3892}}{{27}}{}{\mathrm{LaguerreL}}{}\left({1}{,}\frac{{1}}{{3}}{,}{x}\right){+}\frac{{532}}{{3}}{}{\mathrm{LaguerreL}}{}\left({2}{,}\frac{{1}}{{3}}{,}{x}\right){-}{104}{}{\mathrm{LaguerreL}}{}\left({3}{,}\frac{{1}}{{3}}{,}{x}\right){+}{24}{}{\mathrm{LaguerreL}}{}\left({4}{,}\frac{{1}}{{3}}{,}{x}\right)$ (3)
 > $\mathrm{SimplifyCoefficients}\left(\mathrm{Multiply}\left(\mathrm{S1},\mathrm{S2}\right),\mathrm{collect},u\right)$
 $\left(\frac{{57}}{{49}}{}{u}{}\left({0}\right){-}\frac{{9}}{{7}}{}{u}{}\left({1}\right){+}{2}{}{u}{}\left({2}\right)\right){}{\mathrm{Charlier}}{}\left({0}{,}\frac{{1}}{{7}}{,}{x}\right){+}\left(\frac{{134}}{{49}}{}{u}{}\left({1}\right){-}\frac{{9}}{{49}}{}{u}{}\left({0}\right){-}\frac{{46}}{{7}}{}{u}{}\left({2}\right){+}{6}{}{u}{}\left({3}\right)\right){}{\mathrm{Charlier}}{}\left({1}{,}\frac{{1}}{{7}}{,}{x}\right){+}{\sum }_{{m}{=}{2}}^{{\mathrm{∞}}}\phantom{\rule[-0.0ex]{5.0px}{0.0ex}}\left(\left(\frac{{57}}{{49}}{+}\frac{{4}}{{7}}{}{m}{+}{{m}}^{{2}}\right){}{u}{}\left({m}\right){+}\left({{m}}^{{2}}{+}{3}{}{m}{+}{2}\right){}{u}{}\left({2}{+}{m}\right){+}\frac{{1}}{{49}}{}{u}{}\left({m}{-}{2}\right){+}\left(\frac{{5}}{{49}}{-}\frac{{2}}{{7}}{}{m}\right){}{u}{}\left({m}{-}{1}\right){+}\left({-}\frac{{23}}{{7}}{}{m}{-}\frac{{9}}{{7}}{-}{2}{}{{m}}^{{2}}\right){}{u}{}\left({m}{+}{1}\right)\right){}{\mathrm{Charlier}}{}\left({m}{,}\frac{{1}}{{7}}{,}{x}\right)$ (4)
 > $\mathrm{Multiply}\left(\mathrm{S2},\mathrm{S2}\right)$