 LinearAlgebra - Maple Programming Help

Home : Support : Online Help : Mathematics : Linear Algebra : LinearAlgebra Package : Eigenvalues : LinearAlgebra/CharacteristicMatrix

LinearAlgebra

 CharacteristicMatrix
 construct the characteristic Matrix

 Calling Sequence CharacteristicMatrix(A, lambda, options)

Parameters

 A - square Matrix lambda - name; used as a variable options - (optional); constructor options for the result object

Description

 • The CharacteristicMatrix(A, lambda) function constructs the characteristic Matrix $M=I\mathrm{\lambda }-A$, where I is the appropriately sized identity Matrix. The determinant of M, found by using Determinant(M), is the characteristic polynomial of A.
 • The constructor options provide additional information (readonly, shape, storage, order, datatype, and attributes) to the Matrix constructor that builds the result. These options may also be provided in the form outputoptions=[...], where [...] represents a Maple list.  If a constructor option is provided in both the calling sequence directly and in an outputoptions option, the latter takes precedence (regardless of the order).
 • This function is part of the LinearAlgebra package, and so it can be used in the form CharacteristicMatrix(..) only after executing the command with(LinearAlgebra). However, it can always be accessed through the long form of the command by using LinearAlgebra[CharacteristicMatrix](..).

Examples

 > $\mathrm{with}\left(\mathrm{LinearAlgebra}\right):$
 > $A≔⟨⟨1,2,3⟩|⟨1,2,3⟩|⟨1,5,6⟩⟩$
 ${A}{≔}\left[\begin{array}{ccc}{1}& {1}& {1}\\ {2}& {2}& {5}\\ {3}& {3}& {6}\end{array}\right]$ (1)
 > $\mathrm{CharacteristicMatrix}\left(A,\mathrm{\lambda }\right)$
 $\left[\begin{array}{ccc}{\mathrm{\lambda }}{-}{1}& {-1}& {-1}\\ {-2}& {\mathrm{\lambda }}{-}{2}& {-5}\\ {-3}& {-3}& {\mathrm{\lambda }}{-}{6}\end{array}\right]$ (2)