DynamicSystems - Maple Programming Help

Home : Support : Online Help : Science and Engineering : Dynamic Systems : System Object : DynamicSystems/IsSystem

DynamicSystems

 IsSystem
 verify the content of a system object

 Calling Sequence IsSystem(sys)

Parameters

 sys - System; system object to verify

Description

 • The IsSystem command checks the validity of the system object.
 • If sys is a valid system object, return true. If sys contains errors, return false.
 • To determine the problem with a system that fails, use DynamicSystems[Verify].

Examples

 > with( DynamicSystems ):
 > sys1 := NewSystem():
 > PrintSystem(sys1);
 $\left[\begin{array}{l}{\mathbf{Algebraic Equation}}\\ {\mathrm{continuous}}\\ {\mathrm{1 output\left(s\right); 1 input\left(s\right)}}\\ {\mathrm{inputvariable}}{=}\left[{u}{}\left({t}\right)\right]\\ {\mathrm{outputvariable}}{=}\left[{y}{}\left({t}\right)\right]\\ {\mathrm{ae}}{=}\left[{y}{}\left({t}\right){=}{u}{}\left({t}\right)\right]\end{array}\right$ (1)
 > IsSystem(sys1);
 ${\mathrm{true}}$ (2)
 > sys2 := NewSystem(s/(s^3+5*s^2+7*s+6)):

Modify the tf member of sys2 to make it nonrational polynomial (in s).

 > sys2:-tf := <>:
 > PrintSystem(sys2);
 $\left[\begin{array}{l}{\mathbf{Transfer Function}}\\ {\mathrm{continuous}}\\ {\mathrm{1 output\left(s\right); 1 input\left(s\right)}}\\ {\mathrm{inputvariable}}{=}\left[{\mathrm{u1}}{}\left({s}\right)\right]\\ {\mathrm{outputvariable}}{=}\left[{\mathrm{y1}}{}\left({s}\right)\right]\\ {{\mathrm{tf}}}_{{1}{,}{1}}{=}\frac{{{ⅇ}}^{{s}}}{{{s}}^{{3}}{+}{5}{}{{s}}^{{2}}{+}{7}{}{s}{+}{6}}\end{array}\right$ (3)
 > IsSystem(sys2);
 ${\mathrm{true}}$ (4)
 > tf_mimo_z := Matrix([[1/z^2, z^2/(z^3+5*z^2+7*z+6)], [1/z , c/(z^2+a*z+b)]]):
 > sys3 := NewSystem(tf_mimo_z, discrete, sampletime=0.001, systemname="Sample discrete MIMO system"):
 > PrintSystem(sys3);
 $\left[\begin{array}{l}{\mathbf{Transfer Function}}\\ {\mathrm{discrete; sampletime = .1e-2}}\\ {\mathrm{systemname}}{=}{\mathrm{Sample discrete MIMO system}}\\ {\mathrm{2 output\left(s\right); 2 input\left(s\right)}}\\ {\mathrm{inputvariable}}{=}\left[{\mathrm{u1}}{}\left({z}\right){,}{\mathrm{u2}}{}\left({z}\right)\right]\\ {\mathrm{outputvariable}}{=}\left[{\mathrm{y1}}{}\left({z}\right){,}{\mathrm{y2}}{}\left({z}\right)\right]\\ {{\mathrm{tf}}}_{{1}{,}{1}}{=}\frac{{1}}{{{z}}^{{2}}}\\ {{\mathrm{tf}}}_{{2}{,}{1}}{=}\frac{{1}}{{z}}\\ {{\mathrm{tf}}}_{{1}{,}{2}}{=}\frac{{{z}}^{{2}}}{{{z}}^{{3}}{+}{5}{}{{z}}^{{2}}{+}{7}{}{z}{+}{6}}\\ {{\mathrm{tf}}}_{{2}{,}{2}}{=}\frac{{c}}{{{z}}^{{2}}{+}{a}{}{z}{+}{b}}\end{array}\right$ (5)
 > IsSystem(sys3);
 ${\mathrm{true}}$ (6)