DifferentialAlgebra[Tools] - Maple Programming Help

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : Differential Equations : Differential Algebra : Tools : DifferentialAlgebra/Tools/FactorDerivative

DifferentialAlgebra[Tools]

  

FactorDerivative

  

extracts the derivation operator of a derivative

 

Calling Sequence

Parameters

Options

Description

Examples

Calling Sequence

FactorDerivative(v, R, opts)

Parameters

v

-

a derivative

R

-

a differential polynomial ring or ideal

opts (optional)

-

a sequence of options

Options

• 

The opts arguments may contain one or more of the options below.

• 

notation = jet, tjet, diff or Diff. Specifies the notation used for the result of the function call. If not specified, the notation of v is used.

• 

memout = nonnegative. Specifies a memory limit, in MB, for the computation. Default is zero (no memory out).

Description

• 

The function call FactorDerivative(v,R) returns a sequence θ, u such that θ is the derivation operator, and, u is the dependent variable, associated to u (see DifferentialAlgebra). The argument v must be a derivative of R, or of its embedding ring if R is an ideal.

• 

This command is part of the DifferentialAlgebra:-Tools package. It can be called using the form FactorDerivative(...) after executing the command with(DifferentialAlgebra:-Tools). It can also be directly called using the form DifferentialAlgebra[Tools][FactorDerivative](...).

Examples

with(DifferentialAlgebra): with(Tools):

R := DifferentialRing(derivations=[x,y], blocks=[[v,u],p], parameters=[p]);

Rdifferential_ring

(1)

theta, indep := FactorDerivative(u[x,y], R);

θ,indepxy,u

(2)

Differentiate(indep, theta, R);

ux,y

(3)

FactorDerivative(u, R);

1,u

(4)

FactorDerivative(diff(u(x,y),x), R, notation=diff);

x,ux,y

(5)

See Also

DifferentialAlgebra

Differentiate