StandardDeviation - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Student[Statistics]

  

StandardDeviation

  

compute the standard deviation

 

Calling Sequence

Parameters

Description

Computation

Examples

References

Compatibility

Calling Sequence

StandardDeviation(A, numeric_option, output_option)

StandardDeviation(M, numeric_option, output_option)

StandardDeviation(X, numeric_option, inert_option, output_option)

Parameters

A

-

data sample

M

-

Matrix data sample

X

-

algebraic; random variable

numeric_option

-

(optional) equation of the form numeric=value where value is true or false

output_option

-

(optional) equation of the form output=x where x is value, plot, or both

inert_option

-

(optional) equation of the form inert=value where value is true or false

Description

• 

The StandardDeviation function computes the standard deviation of the specified data sample or random variable.  In the data sample case the unbiased estimate for the variance is used (see Student[Statistics][Variance] for more details).

• 

The first parameter can be a data sample (e.g., a Vector), a Matrix data sample, a random variable, or an algebraic expression involving random variables (see Student[Statistics][RandomVariable]).

• 

If the option output is not included or is specified to be output=value, then the function will return the value of the standard deviation. If output=plot is specified, then the function will return a plot of the input data set and its standard deviation. If output=both is specified, then both the value and the plot of the standard deviation will be returned.

• 

If the option inert is not included or is specified to be inert=false, then the function will return the actual value of the result. If inert or inert=true is specified, then the function will return the formula of evaluating the actual value.

Computation

• 

By default, all computations involving random variables are performed symbolically (see option numeric below).

• 

If there are floating point values or the option numeric is included, then the computation is done in floating point. Otherwise the computation is exact.

• 

By default, the standard deviation is computed according to the rules mentioned above. To always compute the standard deviation numerically, specify the numeric or numeric = true option.

Examples

withStudentStatistics:

Compute the standard deviation of the beta random variable with parameters p and q.

StandardDeviationBetaRandomVariablep,q

pqp+q+1p+q

(1)

Use the numeric or the output=plot option

StandardDeviationBetaRandomVariable3,5,numeric

0.1613743061

(2)

StandardDeviationBetaRandomVariable3,5,output=plot

Create a beta-distributed random variable Y and compute the standard deviation of 1Y+2.

YBetaRandomVariable5,2:

StandardDeviation1Y+2

1356439+16588800ln3ln28294400ln226708480ln28294400ln32+6708480ln32

(3)

StandardDeviation1Y+2,numeric

0.02274855629

(4)

Compute the standard deviation of a data set, which contains an undefined value

StandardDeviation1,2,4,0,undefined

undefined

(5)

Consider the following Matrix data sample.

MMatrix4,π,114694,4.2,15,127368,3.0,7,88464

M

(6)

Compute the standard deviation of each of the columns.

StandardDeviationM

(7)

If the output=both option is included, then both the value and the plot of the standard deviation will be returned.

sd1,graph1StandardDeviationM,output=both:

sd1

(8)

graph1

Use both the output=both option and the inert option.

KBinomialRandomVariable5,13:

sd2,graph2StandardDeviationK,output=both,inert:

StandardDeviationK,numeric

1.054092553

(9)

sd2

_t0=05_t0_t=05_t5_t13_t235_t25_t013_t0235_t0

(10)

evalfsd2

1.054092553

(11)

graph2

References

  

Stuart, Alan, and Ord, Keith. Kendall's Advanced Theory of Statistics. 6th ed. London: Edward Arnold, 1998. Vol. 1: Distribution Theory.

Compatibility

• 

The Student[Statistics][StandardDeviation] command was introduced in Maple 18.

• 

For more information on Maple 18 changes, see Updates in Maple 18.

See Also

Statistics[StandardDeviation]

Student

Student[Statistics]

Student[Statistics][RandomVariable]