>

$\mathrm{with}\left(\mathrm{GlobalOptimization}\right)\:$

Solve a minimization problem specified using algebraic form. The objective function and the constraints are expressions in $x$ and $y$.
>

$\mathrm{GlobalSolve}\left({x}^{2}y\+3\,\left\{{y}^{2}xy\le 6\right\}\,x\=0..4\,y\=0..4\right)$

$\left[{0.484651860901459841}{\,}\left[{x}{=}{0.263423376188894}{\,}{y}{=}{2.58474001422130}\right]\right]$
 (1) 
Solve a minimization problem specified using operator form. The objective function and the constraints are procedures taking two scalar input parameters.
>

GlobalSolve(proc(x,y) 5*y^2x*y+3 end, {proc(x,y) xy8 end}, 10..0, 10..0);

$\left[{0.333333333333338366}{\,}\left[\begin{array}{c}{\mathrm{7.33333336274947}}\\ {\mathrm{0.666666637250528}}\end{array}\right]\right]$
 (2) 
Solve a minimization problem specified using Matrix form. The objective function is a procedure taking a twodimensional Vector as an input parameter.
>

p:=proc(V) V[1]^2V[2]^2 end proc:

>

nlc := proc(V,W) W[1] := V[2]^2V[1]5 end proc:

>

$\mathrm{bl}\u2254\mathrm{Vector}\left(\left[15\,15\right]\,\mathrm{datatype}\=\mathrm{float}\right)\:$

>

$\mathrm{bu}\u2254\mathrm{Vector}\left(\left[15\,15\right]\,\mathrm{datatype}\=\mathrm{float}\right)\:$

>

$\mathrm{bd}\u2254\left[\mathrm{bl}\,\mathrm{bu}\right]\:$

>

$\mathrm{GlobalSolve}\left(2\,p\,\left[1\,0\right]\,\mathrm{nlc}\,\mathrm{bd}\right)$

$\left[{\mathrm{5.24999997400607388}}{\,}\left[\begin{array}{c}{0.499896469271814}\\ {2.34518580372569}\end{array}\right]\right]$
 (3) 