Maple User Manual

Copyright

Maplesoft, Maple, MapleSim, Maplet, Maple T.A., MapleNet, Clickable Math, Drag-to-Solve, and MapleCloud are all trademarks of Waterloo Maple Inc.

© Maplesoft, a division of Waterloo Maple Inc. 1996-2020. All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transcribed, in any form or by any means — electronic, mechanical, photocopying, recording, or otherwise. Information in this document is subject to change without notice and does not represent a commitment on the part of the vendor. The software described in this document is furnished under a license agreement and may be used or copied only in accordance with the agreement. It is against the law to copy the software on any medium except as specifically allowed in the agreement.

Adobe and Acrobat are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States and/or other countries.

Java and all Java based marks are trademarks or registered trademarks of Oracle and/or its affiliates.

MATLAB is a registered trademark of The MathWorks, Inc.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

NAG is a registered trademark of The Numerical Algorithms Group Ltd.

All other trademarks are the property of their respective owners.

This document was produced using Maple and DocBook.
Contents

Preface ... xiii

1 Getting Started ... 1
 1.1 In This Chapter .. 1
 1.2 Introduction to Maple ... 1
 - Working in Maple ... 1
 - Starting the Standard Document Interface ... 2
 - Entering 2-D Math .. 4
 - Toolbar Options .. 7
 - The Context Panel and Copy & Drag ... 10
 - Saving a Maple Document .. 13
 - Saving a Maple Document as a Workbook ... 13
 1.3 Entering Expressions ... 13
 - Execution Groups ... 13
 - Math Mode vs. Text Mode ... 14
 - Palettes ... 15
 - Symbol Names .. 21
 - Toolbar Icons .. 22
 1.4 Point-and-Click Interaction ... 24
 - Assistants ... 24
 - Tutors .. 25
 - Math Apps .. 26
 - The Context Panel ... 27
 - Task Templates ... 27
 - Exploration Assistant ... 29
 1.5 Commands .. 31
 - The Maple Library .. 31
 - Entering Commands ... 32
 - Document Blocks .. 35
 1.6 The Maple Help System ... 36
 - Accessing the Help System .. 36
 - Using the Help Navigator .. 38
 - Viewing Help Pages as Documents ... 38
 - Viewing Examples in 2-D Math ... 38
 - Copying Examples ... 39
 1.7 Available Resources ... 39
 - Resources Available through the Maple Help System .. 39
 - Quick Reference Card ... 40
 - Web Site Resources .. 40

2 Document Mode .. 43
 2.1 In This Chapter ... 43
 2.2 Introduction .. 43
 2.3 Entering Expressions .. 44
 - Example 1 - Enter a Partial Derivative .. 45
 - Example 2 - Define a Mathematical Function ... 45
 2.4 Evaluating Expressions .. 46
 2.5 Editing Expressions and Updating Output .. 47
 2.6 Performing Computations ... 47
 - Computing with Palettes .. 47
 - Computing with the Context Panel .. 48
 - Assistants and Tutors .. 52

3 Worksheet Mode .. 55
3.1 In This Chapter ... 55
3.2 Input Prompt .. 56
 Suppressing Output .. 56
 1-D Math Input ... 56
 Input Separators ... 57
3.3 Commands .. 57
 The Maple Library .. 58
 Top-Level Commands ... 58
 Package Commands ... 59
3.4 Palettes ... 61
3.5 The Context Panel ... 63
 Example - Using the Context Panel 63
3.6 Assistants and Tutors .. 64
 Launching an Assistant or Tutor 64
3.7 Task Templates ... 64
3.8 Text Regions ... 65
3.9 Names ... 66
 Assigning to Names .. 66
 Unassigning Names .. 67
 Valid Names .. 68
3.10 Equation Labels .. 68
 Displaying Equation Labels ... 69
 Referring to a Previous Result 69
 Execution Groups with Multiple Outputs 70
 Label Numbering Schemes .. 70
 Features of Equation Labels .. 71
4 Basic Computations ... 73
4.1 In This Chapter .. 73
4.2 Symbolic and Numeric Computation 74
 Exact Computations .. 74
 Floating-Point Computations 75
 Converting Exact Quantities to Floating-Point Values 75
 Sources of Error .. 76
4.3 Integer Operations .. 77
 Non-Base 10 Numbers and Other Number Systems 78
4.4 Solving Equations ... 80
 Solving Equations and Inequalities 80
 Other Specialized Solvers .. 87
4.5 Units, Scientific Constants, and Uncertainty 93
 Units .. 93
 Scientific Constants and Element Properties 97
 Uncertainty Propagation .. 101
4.6 Restricting the Domain ... 103
 Real Number Domain .. 103
 Assumptions on Variables ... 104
5 Mathematical Problem Solving ... 109
5.1 In This Chapter ... 109
5.2 Algebra .. 109
 Polynomial Algebra .. 110
5.3 Linear Algebra ... 116
 Creating Matrices and Vectors 116
 Accessing Entries in Matrices and Vectors 121
 Linear Algebra Computations 123
 Student LinearAlgebra Package 128
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4</td>
<td>Calculus</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>Limits</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>Differentiation</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>Series</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>Integration</td>
<td>134</td>
</tr>
<tr>
<td></td>
<td>Differential Equations</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td>Calculus Packages</td>
<td>136</td>
</tr>
<tr>
<td>5.5</td>
<td>Optimization</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>Point-and-Click Interface</td>
<td>138</td>
</tr>
<tr>
<td></td>
<td>Large Optimization Problems</td>
<td>139</td>
</tr>
<tr>
<td></td>
<td>MPS(X) File Support</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>Optimization Package Commands</td>
<td>140</td>
</tr>
<tr>
<td>5.6</td>
<td>Statistics</td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>Probability Distributions and Random Variables</td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>Statistical Computations</td>
<td>142</td>
</tr>
<tr>
<td></td>
<td>Plotting</td>
<td>143</td>
</tr>
<tr>
<td></td>
<td>Student Statistics Package</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>Additional Information</td>
<td>145</td>
</tr>
<tr>
<td>5.7</td>
<td>Teaching and Learning with Maple</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>Student Packages and Tutors</td>
<td>146</td>
</tr>
<tr>
<td></td>
<td>Calculus Problem Solving Examples</td>
<td>151</td>
</tr>
<tr>
<td>5.8</td>
<td>Clickable MathTM</td>
<td>157</td>
</tr>
<tr>
<td></td>
<td>Smart Popups</td>
<td>157</td>
</tr>
<tr>
<td></td>
<td>Drag-to-Solve</td>
<td>157</td>
</tr>
<tr>
<td></td>
<td>Examples</td>
<td>157</td>
</tr>
<tr>
<td>6</td>
<td>Plots and Animations</td>
<td>185</td>
</tr>
<tr>
<td>6.1</td>
<td>In This Chapter</td>
<td>185</td>
</tr>
<tr>
<td>6.2</td>
<td>Creating Plots</td>
<td>185</td>
</tr>
<tr>
<td></td>
<td>Interactive Plot Builder</td>
<td>186</td>
</tr>
<tr>
<td></td>
<td>Context Panel</td>
<td>193</td>
</tr>
<tr>
<td></td>
<td>The plot and plot3d Commands</td>
<td>193</td>
</tr>
<tr>
<td></td>
<td>The plots Package</td>
<td>199</td>
</tr>
<tr>
<td></td>
<td>Multiple Plots in the Same Plot Region</td>
<td>202</td>
</tr>
<tr>
<td>6.3</td>
<td>Customizing Plots</td>
<td>204</td>
</tr>
<tr>
<td></td>
<td>Interactive Plot Builder Options</td>
<td>204</td>
</tr>
<tr>
<td></td>
<td>Context Panel Options</td>
<td>205</td>
</tr>
<tr>
<td></td>
<td>The plot and plot3d Options</td>
<td>208</td>
</tr>
<tr>
<td>6.4</td>
<td>Analyzing Plots</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td>Point Probe, Rotate, Pan, and Zoom Tools</td>
<td>210</td>
</tr>
<tr>
<td>6.5</td>
<td>Representing Data</td>
<td>211</td>
</tr>
<tr>
<td>6.6</td>
<td>Creating Animations</td>
<td>211</td>
</tr>
<tr>
<td></td>
<td>Interactive Plot Builder</td>
<td>211</td>
</tr>
<tr>
<td></td>
<td>The plots{animate} Command</td>
<td>212</td>
</tr>
<tr>
<td></td>
<td>The plot3d(\ldots,viewpoint) Option</td>
<td>213</td>
</tr>
<tr>
<td>6.7</td>
<td>Playing Animations</td>
<td>215</td>
</tr>
<tr>
<td></td>
<td>Animation Context Bar</td>
<td>215</td>
</tr>
<tr>
<td>6.8</td>
<td>Customizing Animations</td>
<td>216</td>
</tr>
<tr>
<td></td>
<td>Interactive Plot Builder Animation Options</td>
<td>216</td>
</tr>
<tr>
<td></td>
<td>Context Panel Options</td>
<td>216</td>
</tr>
<tr>
<td></td>
<td>The animate Command Options</td>
<td>216</td>
</tr>
<tr>
<td>6.9</td>
<td>Exporting</td>
<td>217</td>
</tr>
<tr>
<td>6.10</td>
<td>Code for Color Plates</td>
<td>218</td>
</tr>
<tr>
<td>7</td>
<td>Creating Mathematical Documents</td>
<td>219</td>
</tr>
<tr>
<td>7.1</td>
<td>In This Chapter</td>
<td>219</td>
</tr>
</tbody>
</table>
8 Maple Expressions

8.1 In This Chapter

8.2 Creating and Using Data Structures

Expression Sequences

Sets

Lists

Arrays

Tables

Matrices and Vectors

Functional Operators

Strings

8.3 Working with Maple Expressions

Low-Level Operations
List of Figures

Figure 1.1: The Maple Environment ... 2
Figure 1.2: Text and Math Buttons on the Toolbar ... 14
Figure 1.3: Accessing the Assistants from the Tools Menu 24
Figure 1.4: Accessing Tutors from the Tools Menu ... 25
Figure 1.5: Calculus - Single Variable → Differentiation Methods Tutor 26
Figure 1.6: Click the expression to see applicable operations in the context panel ... 27
Figure 1.7: Click the plot to see plot options in the context panel 27
Figure 1.8: Browse Tasks Dialog .. 28
Figure 1.9: Equation Label .. 34
Figure 1.10: Inserting an Equation Label ... 34
Figure 1.11: Controlling Equation Label Format .. 35
Figure 1.12: Label Reference .. 35
Figure 1.13: Document Block Markers .. 35
Figure 1.14: Expanded Document Block ... 36
Figure 1.15: Sample Help Page .. 37
Figure 2.1: Context Panel .. 48
Figure 2.2: Approximating the Value of a Fraction ... 50
Figure 2.3: Finding the Approximate Solution to an Equation 51
Figure 2.4: Units Palette .. 51
Figure 3.1: Calculus Palette .. 62
Figure 3.2: Integer Context Panel ... 63
Figure 3.3: ODE Analyzer Assistant ... 64
Figure 3.4: Task Browser .. 65
Figure 3.5: Insert Label Dialog .. 69
Figure 3.6: Format Labels Dialog: Adding a Prefix ... 70
Figure 3.7: Context Panel for an Integer .. 77
Figure 3.8: Context Panel for an Equation ... 81
Figure 3.9: ODE Analyzer Assistant ... 88
Figure 4.1: ODE Analyzer Assistant: Solve Symbolically Dialog 89
Figure 4.2: ODE Analyzer Assistant: Solve Symbolically Dialog 90
Figure 4.3: ODE Analyzer Assistant: Solve Numerically Dialog 94
Figure 4.4: Units Converter Assistant .. 95
Figure 4.5: Units Converter Assistant ... 95
Figure 4.6: Units Converter Assistant ... 95
Figure 5.1: Calculus - Single Variable → Differentiation Methods Tutor 26
Figure 5.2: Accessing Tutors from the Tools Menu ... 25
Figure 5.3: Calculus - Single Variable → Differentiation Methods Tutor 26
Figure 5.4: Calculus - Single Variable → Differentiation Methods Tutor 26
Figure 5.5: Calculus - Single Variable → Differentiation Methods Tutor 26
Figure 5.6: Calculus - Single Variable → Differentiation Methods Tutor 26
Figure 5.7: Calculus - Single Variable → Differentiation Methods Tutor 26
Figure 5.8: Calculus - Single Variable → Differentiation Methods Tutor 26
Figure 5.9: Calculus - Single Variable → Differentiation Methods Tutor 26
Figure 5.10: Calculus - Single Variable → Differentiation Methods Tutor 26
Figure 5.11: Calculus - Single Variable → Differentiation Methods Tutor 26
Figure 5.12: Calculus - Single Variable → Differentiation Methods Tutor 26
Figure 5.13: Calculus - Single Variable → Differentiation Methods Tutor 26
Figure 5.14: Calculus - Single Variable → Differentiation Methods Tutor 26
Figure 5.15: Calculus - Single Variable → Differentiation Methods Tutor 26
Figure 5.16: Calculus - Single Variable → Differentiation Methods Tutor 26
Figure 5.17: Calculus - Single Variable → Differentiation Methods Tutor 26
Figure 6.1: Interactive Parameter Window ... 192
Figure 6.2: Plot an Expression Using the Context Panel 193
Figure 7.1: Select Color Dialog ... 221
Figure 7.2: Character Style Dialog .. 222
Figure 7.3: Paragraph Style Dialog ... 223
Figure 7.4: Style Management Dialog ... 224
Figure 7.5: Defining a Character Style ... 226
Figure 7.6: Defining a Paragraph Style .. 229
Figure 7.7: Style Set Management Dialog .. 229
Figure 7.8: Header and Footer Dialog - Custom Header 231
Figure 7.9: Show Contents Dialog .. 232
Figure 7.10: Working with Document Blocks .. 233
Figure 7.11: Delete Table Contents Verification Dialog 239
Figure 7.12: Table Paste Mode Selection Dialog 240
Figure 7.13: Two Cells .. 240
Figure 7.14: Merged Cells ... 240
Figure 7.15: Drawing Tools and Canvas .. 247
Figure 7.16: Drawing Outline Color Icon .. 248
Figure 7.17: Drawing Properties Canvas Icon - Change the Gridline Color .. 249
Figure 7.18: Hyperlink Properties Dialog .. 250
Figure 7.19: Bookmark Indicator ... 253
Figure 7.20: Create Bookmark Dialog ... 254
Figure 7.21: Components Palette ... 256
Figure 7.22: Interactive Application Task Template 257
Figure 7.23: Spellcheck Dialog ... 258
Figure 8.1: Function Definition Palette Items ... 266
Figure 8.2: Evaluate at a Point ... 277
Figure 9.1: Code Edit Region ... 299
Figure 9.2: Collapsed Code Edit Region .. 299
Figure 9.3: Startup Code Editor ... 300
Figure 10.1: Components Palette ... 305
Figure 10.2: Label Properties Dialog ... 306
Figure 10.3: Slider Properties Dialog ... 306
Figure 10.4: The Inserted Components ... 308
Figure 10.5: DialComponent Action Code Editor 309
Figure 10.6: A Simple Maplet ... 311
Figure 10.7: Maplet Builder Interface ... 312
Figure 10.8: Image of the Maplet ... 313
Figure 10.9: Body Elements Used to Define This Maplet 313
Figure 11.1: Import Data Assistant ... 319
List of Tables

Table 1.1: Common Keystrokes for Entering Symbols and Formats ... 5
Table 1.2: Maple Toolbar Options .. 7
Table 1.3: Context Bar Tools ... 9
Table 1.4: Context Selector Options ... 9
Table 1.5: Text Mode vs. Math Mode ... 14
Table 1.6: Palette Categories ... 16
Table 1.7: Managing Palettes ... 18
Table 1.8: Complex Numbers using i ... 22
Table 1.9: Complex Numbers using I ... 22
Table 1.10: Help Page Icons ... 38
Table 3.1: Top Commands .. 59
Table 3.2: Top Packages .. 60
Table 4.1: Select Integer Commands ... 77
Table 4.2: Modular Arithmetic Operators ... 79
Table 4.3: Overview of Solution Methods for Important Equation Types ... 80
Table 4.4: Sample Dimensions .. 93
Table 4.5: Scientific Constants ... 98
Table 4.6: Restricting to Real Numbers .. 104
Table 5.1: Polynomial Arithmetic Operators ... 110
Table 5.2: Polynomial Coefficient and Degree Commands .. 114
Table 5.3: Select Other Polynomial Commands .. 115
Table 5.4: Additional Polynomial Help .. 115
Table 5.5: Matrix and Vector Arithmetic Operators ... 123
Table 5.6: Select Matrix and Vector Operators ... 124
Table 5.7: Select LinearAlgebra Package Commands .. 127
Table 5.8: Limits ... 129
Table 5.9: Optimization Package Commands ... 140
Table 5.10: Student and Instructor Resources .. 145
Table 6.1: The plot and plot3d Commands .. 194
Table 6.2: Common Plot Options .. 208
Table 6.3: Plot Context Bar Analysis Options ... 210
Table 6.4: The animate Command .. 212
Table 6.5: Animation Options .. 215
Table 9.1: Default Clause Values ... 288
Table 9.2: Iterative Commands .. 293
Table 9.3: The seq Command ... 293
Table 9.4: The add and mul Commands ... 294
Table 9.5: The select, remove, and selectremove Commands ... 294
Table 9.6: The map Command ... 295
Table 9.7: The zip Command ... 295
Table 9.8: Embedded Component Descriptions ... 301
Table 11.1: Summary of Content Translation When Exporting to Different Formats 322
Preface

Maple Software

MapleTM software is a powerful system that you can use to solve mathematical problems from simple to complex. You can also create professional quality documents, presentations, and custom interactive computational tools in the Maple environment.

You can access the power of the Maple computational engine through a variety of interfaces.

<table>
<thead>
<tr>
<th>Interface</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard (default)</td>
<td>A full-featured graphical user interface that helps you create electronic documents to show all your calculations, assumptions, and any margin of error in your results. You can also hide the computations to allow your reader to focus on the problem setup and final results. The advanced formatting features let you create the customized document you need. Because the documents are live, you can edit the parameters and, with the click of a button, compute the new results. The Standard interface has two modes: Document mode and Worksheet mode.</td>
</tr>
<tr>
<td>Classic</td>
<td>A basic worksheet environment for older computers with limited memory. The Classic interface does not offer all of the graphical user interface features that are available in the Standard interface. The Classic interface has only one mode, Worksheet mode.</td>
</tr>
<tr>
<td>Command-line version</td>
<td>A command-line interface for solving very large complex problems or batch processing with scripts. No graphical user interface features are available.</td>
</tr>
<tr>
<td>MapletTM Applications</td>
<td>Graphical user interfaces containing windows, textbox regions, and other visual interfaces, which gives you point-and-click access to the power of Maple. You can perform calculations and plot functions without using the worksheet.</td>
</tr>
</tbody>
</table>

This manual describes how to use the Standard interface. As mentioned, the Standard interface offers two modes: Document mode and Worksheet mode. Using either mode, you can create high quality interactive mathematical documents. Each mode offers the same features and functionality, the only difference is the default input region of each mode.

Shortcut Keys by Platform

This manual will frequently refer to shortcut keys and command completion when entering expressions. The keyboard keys used to invoke these features differ based on your operating system.

The keystrokes given in this document are for Windows. There will be differences for other platforms. If you are using a different platform, see Shortcut Keys.

Command Completion

- \textbf{Esc}, Macintosh, Windows, and Linux
- \textbf{Ctrl + Space}, Windows
- \textbf{Ctrl + Shift + Space}, Linux

Begin entering a command in a Maple document. Press the \textbf{Esc} key. Alternatively, use the platform-specific keys. For Windows, press and hold the \textbf{Ctrl} key and then press the \textbf{Space} bar.

For more information on Command Completion, see Command Completion (page 33).

In This Manual

This manual provides an introduction to the following Maple features:

- Ease-of-use when entering and solving problems
• Point-and-click interaction with various interfaces to help you solve problems quickly
• Maple commands and standard math notation
• Clickable Math™
• The help system
• Online resources
• Performing computations
• Creating plots and animations
• The Maple programming language
• Using and creating custom Maplet applications
• File input and output, and using Maple with third party products
• Data structures

For a complete list of manuals, study guides, toolboxes, and other resources, visit the Maplesoft web site at http://www.maplesoft.com

Audience

The information in this manual is intended for first-time Maple users and users looking for a little more information.

Conventions

This manual uses the following typographical conventions.
• bold font - Maple command, package name, option name, dialog, menu, or text field
• italics - new or important concept
• Note - additional information relevant to the section
• Important - information that must be read and followed

Customer Feedback

Maplesoft welcomes your feedback. For suggestions and comments related to this and other manuals, contact doc@maplesoft.com.
1 Getting Started

Don't worry about your difficulties in Mathematics. I can assure you mine are still greater.

~Albert Einstein

Mathematics touches us every day—from the simple chore of calculating the total cost of our purchases to the complex calculations used to construct the bridges we travel.

To harness the power of mathematics, Maplesoft provides a tool in an accessible and complete form. That tool is Maple.

1.1 In This Chapter

<table>
<thead>
<tr>
<th>Section</th>
<th>Topics</th>
</tr>
</thead>
</table>
| Introduction to Maple (page 1) - The main features of Maple's Standard Interface | • Starting the Standard Document Interface
• Entering commands and mathematical expressions
• Toolbars
• Context Panel
• Copy and drag keys
• Saving Maple documents |
| Entering Expressions (page 13) - Methods of entering expressions in 1-D and 2-D Math | • Execution groups
• Math Mode and Text Mode
• Palettes
• Symbol names
• Toolbar icons |
| Point-and-Click Interaction (page 24) - An introduction to the point-and-click features in Maple | • Assistants
• Tutors
• Context Panel
• Task Templates
• Exploration Assistant |
| Commands (page 31) - An introduction to the commands of the Maple language | • Using commands from the Maple library
• Entering commands
• Document blocks |
| The Maple Help System (page 36) - Accessing help on commands, packages, point-and-click features, and more | • How to access help for Maple features
• Interacting with help pages
• Viewing and interacting with examples |
| Available Resources (page 39) - Both online and from within Maple | • New user resources, including tutorials and the Maple Portal
• Examples
• Maple web site resources |

1.2 Introduction to Maple

Working in Maple

With Maple, you can create powerful interactive documents. The Maple environment lets you start solving problems right away by entering expressions in 2-D Math and solving these expressions using point-and-click interfaces. You can combine text and math in the same line, add tables to organize the content of your work, or insert images and sketch
regions. You can visualize and animate problems in two and three dimensions, format text for academic papers or books, and insert hyperlinks to other Maple files, web sites, or email addresses. You can embed and program graphical user interface components, as well as devise custom solutions using the Maple programming language.

Starting the Standard Document Interface

To start Maple on:

<table>
<thead>
<tr>
<th>Windows</th>
<th>From the Start menu, select All Programs → Maple 2020 → Maple 2020.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternatively:</td>
<td>Double-click the Maple 2020 desktop icon.</td>
</tr>
</tbody>
</table>

Figure 1.1: The Maple Environment
1. From the Finder, select **Applications** and **Maple 2020**.
2. Double-click **Maple 2020**.

Linux

Enter the full path, for example, `/usr/local/maple/bin/xmaple`

Alternatively:
1. Add the Maple directory (for example, `/usr/local/maple/bin`) to your command search path.
2. Enter `xmaple`.

When the first Maple session opens, a **Start Page** displays shortcuts to useful tasks and topics.

To start a Maple session:

- In the **Start Page**, select **New Document** or **New Worksheet**. A blank document displays.

or

- From the **File** menu, select **New**, and then either **Document Mode** or **Worksheet Mode**. A blank document displays.

You can opt to start Maple with a blank document instead of the start page. You can also replace the default start page with a custom start page. For instructions, refer to the **startpage** help page.

To invoke the Start Page at any time, click the home button (⌘) on the worksheet toolbar.

Document and Worksheet Modes

Maple offers two modes, **Document Mode** and **Worksheet Mode**. Using either mode, you can create high quality interactive mathematical documents. Each mode offers the same features and functionality; the only difference is the default input region of each mode.

Document Mode

Document mode uses **Document Blocks** as the default input region to hide Maple syntax. A Document Block region is indicated by two triangles located in the vertical Markers column along the left pane of the Maple Document.

If the Markers column is not visible, open the **View** menu and select **Markers**. This allows you to focus on the problem instead of the commands used to solve the problem. For example, when using the context-sensitive operations from the Context Panel on Maple input in Document mode (invoked by moving your mouse cursor over your input expression, then selecting the appropriate operation from the displayed context panel), input and output are connected using an arrow or equal sign with self-documenting text indicating the calculation that had taken place. The command used to solve this expression is hidden.

\[x^2 + 7x + 10 \xrightarrow{\text{solve}} \{x = 2\}, \{x = -5\} \]

To create a new document, select **File → New → Document Mode**.

Worksheet Mode

Worksheet mode uses a Maple prompt as the default input region. The Maple input prompt is a red angle bracket, `>`. When using context-sensitive operations on input in Worksheet mode, all commands are displayed.

\[> \text{solve}(x^2 + 7x + 10 = 0) \]

\[\{-2, -5\} \]
To create a new worksheet, select **File → New → Worksheet Mode.**

Full Flexibility in Either Mode

Regardless of which mode you begin working in, you have the opportunity to use both document blocks and command prompts.

For example, you can hide commands in Worksheet Mode by adding a document block from the **Edit** menu, **Edit → Document Blocks → Create Document Block** (see **Document Blocks (page 35)**), or you can show commands in Document mode by adding a Maple prompt from the **Insert** menu, **Insert → Execution Group → Before / After Cursor** (see **Input Prompt (page 56)**).

This chapter discusses features common to both modes. Specific aspects of Document mode are explained in **Document Mode (page 43)**, and aspects of Worksheet mode are explained in **Worksheet Mode (page 55)**.

The Maple Workbook

The Maple Workbook acts as a container that lets you collect Maple worksheets, library archives and language files, data (such as images or spreadsheets), and other items into a single file, stored in the .maple file format. This lets you better organize your Maple-based projects. For more information, see **WorkbookOverview.**

Navigation of Workbook files is accomplished through the workbook Navigator palette, available in the Workbook tab. For more information, see **TheWorkbookNavigator.**

Entering 2-D Math

In documents, the default format for entering mathematical expressions is 2-D Math. This results in mathematical expressions that are equivalent to the quality of math found in textbooks. Entering 2-D Math in Maple is done using common key strokes or palette items. For more information on palettes, see **Palettes (page 15)**. An example of entering an expression using common key strokes is presented in the following section. An example of entering an expression using palette items is presented in **Example 3 - Enter an Expression Using Palettes (page 20).**

Common Operations

Entering mathematical expressions, such as \(\frac{35}{99} \), \(\frac{1}{9} \), \(x^2 + x \), and \(x \cdot y \) is natural in 2-D Math.

To enter a fraction starting with the numerator:
1. Enter the numerator.
2. Press the forward slash (/) key.
3. Enter the denominator.
4. To leave the denominator, press the right arrow key.

To enter a fraction starting with the denominator:
1. Enter the denominator.
2. Press // (two forward slashes).
3. Enter the numerator.
4. To leave the numerator, press the right arrow key.
To enter a power:
1. Enter the base.
2. Press the caret (^) key.
3. Enter the exponent, which displays in math as a superscript.
4. To leave the exponent, press the right arrow key.

To enter a product:
1. Enter the first factor.
2. Press the asterisk (*) key, which displays in 2-D Math as a dot, ·.
3. Enter the second factor.

Implied Multiplication:
In general, the best practice is to enter a multiplication symbol (*) for multiplication in any calculation. In some cases, you can instead insert a space character between two quantities to multiply them. This is called implicit multiplication.

For example, in the expression \(-b + \sqrt{b^2 - 4ac}\) a space is used for the multiplication 4*a*c and 2*a.

In the case of a number followed by a variable, Maple interprets the expression as meaning multiplication even without the presence of * or a space character.

However, it's easier to identify and correct mistakes in your formulas if you use the multiplication symbol (*) regularly.

Important: Maple interprets a sequence of letters, for example, \(xy\), as a single variable. To specify the product of two variables, you must insert a space character (or multiplication operator), for example, \(x\ y\) or \(x\cdot y\). For more information, refer to the 2DMathDetails help page.

Shortcuts for Entering Mathematical Expressions

Table 1.1: Common Keystrokes for Entering Symbols and Formats

<table>
<thead>
<tr>
<th>Symbol/Formats</th>
<th>Key</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>implicit multiplication</td>
<td>Space key</td>
<td>((x^2 - 7xy + 3y^2)\ xy)</td>
</tr>
<tr>
<td>explicit multiplication</td>
<td>Shift + *</td>
<td>2·3</td>
</tr>
<tr>
<td>fraction</td>
<td>// (forward slash)</td>
<td>(\frac{1}{4})</td>
</tr>
<tr>
<td>exponent (superscript)</td>
<td>Shift + ^</td>
<td>(x^2)</td>
</tr>
<tr>
<td>indexed subscript</td>
<td>Ctrl + Shift + _ (Command + Shift + _ in Mac)</td>
<td>(x_{\alpha})</td>
</tr>
<tr>
<td>literal subscript</td>
<td>___ (two underscores)</td>
<td>(x_{\text{max}})</td>
</tr>
<tr>
<td>navigating expressions</td>
<td>Arrow keys</td>
<td></td>
</tr>
<tr>
<td>Symbol/Formats</td>
<td>Key</td>
<td>Example</td>
</tr>
<tr>
<td>--</td>
<td>-------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>command / symbol completion</td>
<td>• Esc in Mac, Windows, and Linux</td>
<td>(ab)</td>
</tr>
<tr>
<td>• Ctrl + Space in Windows</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Ctrl + Shift + Space in Linux</td>
<td></td>
<td></td>
</tr>
<tr>
<td>square root</td>
<td>sqrt and then command completion</td>
<td>(\sqrt{25})</td>
</tr>
<tr>
<td>exponential function</td>
<td>exp and then command completion</td>
<td>(e^x)</td>
</tr>
<tr>
<td>enter / exit 2-D Math</td>
<td>• F5 key</td>
<td>(\frac{1}{4}) versus (\frac{1}{4})</td>
</tr>
<tr>
<td>• Math and Text icons in the toolbar</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 required for products of numbers

2 use the right arrow key to leave a denominator, numerator, superscript, or subscript region

3 for more information, see Command Completion (page 33).

For a complete list of shortcut keys, refer to the 2-D Math Shortcut Keys and Hints help page. To access this help page in the Maple software, in Math mode enter ?MathShortcuts and then press Enter. For information on the Maple Help System, see The Maple Help System (page 36).

Example 1 - Enter and Evaluate an Expression Using Keystrokes

Review the following example:

\[
\frac{x^2 + y^2}{2}
\]

In this example, you will enter \(\frac{x^2 + y^2}{2} \) and evaluate the expression.

<table>
<thead>
<tr>
<th>Action</th>
<th>Result in Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>To enter the expression:</td>
<td></td>
</tr>
<tr>
<td>1. Enter (x).</td>
<td>(x)</td>
</tr>
<tr>
<td>2. Press Shift + ^ . The cursor moves to the superscript position.</td>
<td>(^1x)</td>
</tr>
<tr>
<td>3. Enter 2.</td>
<td>(x^2)</td>
</tr>
<tr>
<td>4. Press the right arrow key. The cursor moves right and out of the superscript position.</td>
<td>(x^2)</td>
</tr>
<tr>
<td>5. Enter the + symbol.</td>
<td>(x^2 + y^2)</td>
</tr>
<tr>
<td>6. Enter y.</td>
<td>(x^2 + y^2)</td>
</tr>
<tr>
<td>7. Press Shift + ^ to move to the superscript position.</td>
<td>(x^2 + y^2)</td>
</tr>
<tr>
<td>8. Enter 2 and press the right arrow key.</td>
<td>(x^2 + y^2)</td>
</tr>
</tbody>
</table>
9. With the mouse, select the expression that will be the numerator of the fraction.

\[\frac{x^2 + y^2}{2} \]

10. Enter the / symbol. The cursor moves to the denominator, with the entire expression in the numerator.

\[\frac{x^2 + y^2}{2} \]

11. Enter 2.

\[\frac{x^2 + y^2}{2} \]

12. Press the right arrow key to move right and out of the denominator position.

\[\frac{x^2 + y^2}{2} \]

13. Press Ctrl + = (Command + = in Mac).

\[\frac{x^2 + y^2}{2} = \frac{x^2}{2} + \frac{y^2}{2} \]

To execute 2-D Math, you can use any of the following methods.

- Pressing Ctrl + = (Command + = in Mac). That is, press and hold the Ctrl (or Command) key, and then press the equal sign (=) key. This evaluates and displays results inline.
- Pressing the Enter key. This evaluates and displays results on the next line and centered.
- Select the input and from the context panel, select Evaluate and Display Inline. See The Context Panel (page 27) for more details.
- Using the Evaluate menu items Evaluate and Evaluate and Display Inline.

Toolbar Options

The Maple toolbar offers easy access to a number of actions. See Table 1.2.

Table 1.2: Maple Toolbar Options

<table>
<thead>
<tr>
<th>Basic Usage</th>
<th>Icon</th>
<th>Equivalent Menu Option or Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create a new Maple document</td>
<td>![Folder]</td>
<td>From the File menu, select New and then Document Mode</td>
</tr>
<tr>
<td>Open an existing document or worksheet</td>
<td>![Folder]</td>
<td>From the File menu, select Open...</td>
</tr>
<tr>
<td>Save the active document or worksheet</td>
<td>![Folder]</td>
<td>From the File menu, select Save...</td>
</tr>
<tr>
<td>Print the active document or worksheet</td>
<td>![Printer]</td>
<td>From the File menu, select Print...</td>
</tr>
<tr>
<td>Print preview the active document or worksheet</td>
<td>![Printer]</td>
<td>From the File menu, select Print Preview...</td>
</tr>
<tr>
<td>Cut the selection to the clipboard</td>
<td>![Scissors]</td>
<td>From the Edit menu, select Cut</td>
</tr>
<tr>
<td>Copy the selection to the clipboard</td>
<td>![Copy]</td>
<td>From the Edit menu, select Copy</td>
</tr>
<tr>
<td>Paste the clipboard contents into the current document or worksheet</td>
<td>![Paste]</td>
<td>From the Edit menu, select Paste</td>
</tr>
<tr>
<td>Undo the last operation</td>
<td>![Undo]</td>
<td>From the Edit menu, select Undo</td>
</tr>
<tr>
<td>Redo the last operation</td>
<td>![Redo]</td>
<td>From the Edit menu, select Redo</td>
</tr>
<tr>
<td>Basic Usage</td>
<td>Icon</td>
<td>Equivalent Menu Option or Command</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>Insert the Code Edit Region</td>
<td></td>
<td>From the Insert menu, select Code Edit Region</td>
</tr>
<tr>
<td>Inserts plain text after the current execution group.</td>
<td></td>
<td>From the Insert menu, select Text.</td>
</tr>
<tr>
<td>Inserts Maple Input after the current execution group. For details, refer</td>
<td></td>
<td>From the Insert menu, select Text.</td>
</tr>
<tr>
<td>to Execution Groups (page 13).</td>
<td></td>
<td>For details, refer to Execution Group and then After Cursor.</td>
</tr>
<tr>
<td>Encloses the selection in a document block. If nothing is selected, it</td>
<td></td>
<td>From the Edit menu, select Document Blocks and then Create Document Block</td>
</tr>
<tr>
<td>creates a new document block.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Encloses the selection in a subsection. For details, refer to Sections</td>
<td></td>
<td>From the Format menu, select Insert Section</td>
</tr>
<tr>
<td>(page 229).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remove one level of indentation enclosing the selection.</td>
<td></td>
<td>From the Format menu, select Remove Section</td>
</tr>
<tr>
<td>Move backward to previous document in the hyperlink history</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open the start page</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Move forward to next document in the hyperlink history.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Executes all commands in the worksheet or document</td>
<td></td>
<td>From the Execute menu, select Execute Worksheet</td>
</tr>
<tr>
<td>Executes a selected area.</td>
<td></td>
<td>From the Evaluate menu, select Execute Selection</td>
</tr>
<tr>
<td>Interrupt the current operation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Debug the current operation.</td>
<td></td>
<td>Enter restart.</td>
</tr>
<tr>
<td>Clears Maple's internal memory. For details, refer to the restart help</td>
<td></td>
<td>From the Edit menu, select Startup Code.</td>
</tr>
<tr>
<td>page.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Add and edit Maple code that is executed each time the worksheet is</td>
<td></td>
<td>From the View menu, select Zoom Factor and then a zoom size.</td>
</tr>
<tr>
<td>opened. For details, refer to the startupcode help page.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjusts the display size of document content. Note: Plots, images, and</td>
<td></td>
<td>From the View menu, select Zoom Factor → Default.</td>
</tr>
<tr>
<td>sketches remain unchanged.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reset zoom level.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toggle entry of tab characters with Tab key</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opens the Maple help system in a new window. For details, refer to The</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maple Help System (page 36).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Search box provides quick access to the help system.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Access to the MapleCloud on the web.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The Context Bar shows icons that are relevant to the location of the cursor in the document. For example, place the cursor at an input region and the Text and Math tools are accessible. See Table 1.3 for a list of the tools available in each icon.
Table 1.3: Context Bar Tools

<table>
<thead>
<tr>
<th>Context Bar Tools</th>
<th>Text tools</th>
<th>Math tools</th>
<th>Drawing tools</th>
<th>2-D Plot tools</th>
<th>3-D Plot tools</th>
<th>Animation tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text Math</td>
<td>C Text</td>
<td>Times New Roman</td>
<td>12</td>
<td>B I U</td>
<td>I U</td>
<td>B I U</td>
</tr>
<tr>
<td>Drawing</td>
<td>2 2 Math</td>
<td>2 2 Math</td>
<td>Drawing and Plot icons</td>
<td>Plot</td>
<td>Plot</td>
<td>1 1</td>
</tr>
<tr>
<td>Plot</td>
<td>Plot</td>
<td>Plot</td>
<td>Plot</td>
<td>Plot</td>
<td>Plot</td>
<td>Plot</td>
</tr>
</tbody>
</table>

Table 1.4: Context Selector Options

<table>
<thead>
<tr>
<th>Region</th>
<th>Available Tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input region</td>
<td>Text and Math icons</td>
</tr>
<tr>
<td>Plot region</td>
<td>Drawing and Plot icons</td>
</tr>
<tr>
<td>Animation region</td>
<td>Drawing, Plot, and Animation icons</td>
</tr>
<tr>
<td>Drawing Canvas and Image regions</td>
<td>Drawing icon</td>
</tr>
</tbody>
</table>

The **Text** and **Math** icons allow you to enter text and math in the same line by choosing the appropriate input style at each stage when entering the sentence.

\[\sin(x) \text{ is } \cos(x) \]

For an example, see Example 6 - Enter Text and 2-D Math in the Same Line Using Toolbar Icons (page 22).

The meaning of the **Text** and **Math** icons differs while at a Maple input prompt. The Math icon displays input as 2-D Math, whereas the Text icon displays Maple input. For details, refer to Math Mode vs. Text Mode (page 14).

\[> \frac{x^2}{2} \]
\[> x^2/2; \]

To access the tools available in the **Plot** and **Drawing** icons, click a plot region. These tools allow you to manipulate the plot or draw shapes and enter text on the plot region. By clicking an animation region, you have the same features available for a plot region, in addition to tools for playing the animation in the **Animation** icon. For details on plots and animations, refer to Plots and Animations (page 185).

For the description of any icon, hover the mouse over the icon to display at tooltip.
The Context Panel and Copy & Drag

Context Panel

Maple dynamically generates a collection of applicable options when you select or hover your mouse over an object, expression, or region. The options are organized and collectively displayed in the context panel to the right-hand side of the Maple user interface. The options available in the context panel depend on the selected input region. For example, you can manipulate and graph expressions, enhance plots, format text, manage palettes, structure tables, and more. When using menu items from the context panel to perform an action on an expression, the input and output are connected with a self-documenting arrow or equal sign indicating the action that had taken place. For more information, see The Context Panel (page 27).

Copy & Drag

With Maple, you can drag input, output, or curves in a plot region into a new input region. This is done by highlighting the input or selecting the curve and dragging it with your mouse into a new input region. Dragging the highlighted region will cut or delete the original input. To prevent this, use the copy and drag feature.

- Ctrl + drag, Windows and Linux
- Command + drag, Mac

That is, highlight the region you want to copy. Press and hold the Ctrl key while you drag the input to the new region using the mouse. The analogous operation on Mac uses the Command key.

Example 2 - Solve and Plot an Equation Using Context Panel Options and Copy & Drag

Review the following example:

\[5x - 7 = 3x + 2 \]

In this example, you will enter the equation and then solve and plot the equation using the context panel and the copy & drag feature. This example will only refer to the keystrokes needed on a Windows operating system to invoke the context panel and the copy & drag feature. For your operating system, refer to section Shortcut Keys by Platform (page xiii) for the equivalent keystrokes.
To solve the equation:
1. Enter the equation.
2. Click the equation and select **Move to Left**.

Input:

![Image of Maple interface with equation and action prompts]

Result:

\[5x - 7 = 3x + 2 \quad \text{move to left} \quad 2x - 9 = 0 \]

A brief description, "move to left" is displayed above the arrow that connects the input and output.

3. Right-click the output from the previous action, \(2x - 9 = 0 \), and select **Solve → Isolate Expression for → x**.
Now that we have solved the equation, we can plot it. To do this, we will copy the equation $2x - 9 = 0$ to a new document block and use the context panel again.

4. From the **Edit** menu, select **Document Blocks** → **Create Document Block**.

5. To copy the expression $5x - 7 = 3x + 2$, highlight this expression from the previous line. Press and hold the **Ctrl** key and drag the expression to the new document block region.
To plot the expression:

6. From the context panel, select **Plot both sides**.

Input:

![Plot both sides](image)

Result:

\[5x - 7 = 3x + 2 \]

![Plot both sides](image)

Saving a Maple Document

To save these examples you created, from the **File** menu, select **Save**. Maple documents are saved as `.mw` files.

Saving a Maple Document as a Workbook

To save these examples you created as part of a new Maple workbook, from the **Workbook** tab, click **Save As Workbook**. For more information about saving Maple content see worksheet, managing, saving.

1.3 Entering Expressions

Execution Groups

An execution group is a grouping of Maple input with its corresponding Maple output. It is distinguished by a large square bracket, called a **group boundary**, at the left. An execution group may also contain any or all of the following: a plot, text, embedded components, and a drawing canvas.

Execution groups are the fundamental computation and documentation elements in the document. If you place the cursor in an input command and press the **Enter** or **Return** key, Maple executes all of the input commands in the current execution group.
Math Mode vs. Text Mode

The default mode of entry in Document or Worksheet mode is Math Mode, which displays input in 2-D Math. In Worksheet Mode or at a prompt, you can opt to use Maple Input (1-D Math). This is 1-D math input:

\[
> \text{simplify}\left(\cos(\alpha)^2 + \sin(\alpha)^2\right);
\]

\[
1
\]

\[
> a * \int(e^{\sqrt{2}x}, x);
\]

\[
a\frac{\sqrt{2}}{2} e^{\sqrt{2}x}
\]

\[
> \lim_{x \to \infty} f(x);
\]

\[
\lim_{x \to \infty} f(x)
\]

\[
> \sum_{k=0}^{m} a_k x^k = \prod_{j=0}^{n} b_j x^j;
\]

\[
\sum_{k=0}^{m} a_k x^k = \prod_{j=0}^{n} b_j x^j
\]

In Document Mode, to enter input using Maple Input mode, insert a Maple prompt by clicking in the toolbar, and then click the Text button in the context bar. In Worksheet Mode, simply click the Text button. See Figure 1.2.

Figure 1.2: Text and Math Buttons on the Toolbar

Table 1.5: Text Mode vs. Math Mode

<table>
<thead>
<tr>
<th>Math Mode</th>
<th>Text Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maple's default setting: Executable standard math notation. This is also referred to as 2-D Math Input.</td>
<td>Executable Maple notation. This is referred to as 1-D Math Input or Maple Input.</td>
</tr>
<tr>
<td>[\int x^2 + 2x + 1 , dx] & [\int(x^2 + 2x + 1, x)];</td>
<td></td>
</tr>
<tr>
<td>Access from the Insert → 2-D Math menu.</td>
<td>Access from the Insert → Maple Input menu.</td>
</tr>
<tr>
<td>When using 2-D Math, the Math mode icon is highlighted in the toolbar, \text{\textbf{Text Math}}.</td>
<td>When entering Maple Input or text in a text region, the Text mode icon is highlighted in the toolbar, \text{\textbf{Text Math}}.</td>
</tr>
<tr>
<td>In Document Mode (or a document block), input is entered in a document block with a slanted cursor, [].</td>
<td>In Document Mode (or a document block), input is entered with a vertical cursor, as plain text, [\text{\textbf{Enter some text}}].</td>
</tr>
<tr>
<td>In Worksheet Mode, input is made at an input prompt with a slanted cursor, [>].</td>
<td>In Worksheet Mode, input is made at an input prompt with a vertical cursor, [>].</td>
</tr>
<tr>
<td>To convert a 2-D Math expression to 1-D Math, click the expression, then from the context panel select 2-D Math → Convert To → 1-D Math Input.</td>
<td>To convert a 1-D Math expression to 2-D Math, click the expression, then from the context panel select Convert To → 2-D Math Input.</td>
</tr>
</tbody>
</table>
Using palettes while in 1-D Math teaches you the related Maple command syntax. Palettes make entering expressions in familiar notation easier than entering foreign syntax and reduces the possibility of introducing typing errors.

<table>
<thead>
<tr>
<th>Math Mode</th>
<th>Text Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Palettes make entering expressions in familiar notation easier than entering foreign syntax and reduces the possibility of introducing typing errors.</td>
<td>Using palettes while in 1-D Math teaches you the related Maple command syntax.</td>
</tr>
</tbody>
</table>

If you prefer 1-D Math input in Worksheet mode, you can change the default math input notation.

To change math input notation for a session or globally across all documents:

1. From the **Tools** menu, select **Options**. The **Options Dialog** opens.
2. Click the **Display** tab.
3. In the **Input Display** drop-down list, select **Maple Notation**.
4. Click the **Apply to Session** or **Apply Globally** button.

This changes the default input math notation at the prompt (`>`).

Important: The new input display becomes the default setting *after* pressing the **Enter** key.

Palettes

Palettes are collections of related items that you can insert into a document by clicking or drag-and-dropping. The Maple environment provides access to over 30 palettes containing items such as symbols (∞), layouts (A^b), mathematical operations ($\int_a^b f \, dx$), and much more.

By default, palettes are displayed in the left pane of the Maple environment when you launch Maple. If the palettes are not displayed,

1. From the **View** menu, select **Palettes**.
2. Select **Expand Dock**.
3. Right-click (**Control**-click, Mac) the palette dock. From the context menu, select **Show Palette**. Alternatively, from the main menu, select **View → Palettes → Show Palette**.

A list of potential palettes is displayed, with currently displayed palettes dimmed.

4. Select a palette.

Alternatively, select **View → Palettes → Show All Palettes**.

You can create a **Favorites** palette of the expressions and entities you use often by right-clicking (**Control**-click, Mac) the palette template you want to add and selecting **Add To Favorites Palette** from the context menu.
Table 1.6: Palette Categories

<table>
<thead>
<tr>
<th>Palette Category</th>
<th>Palette Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alphabetical Palettes</td>
<td></td>
</tr>
<tr>
<td>📄 Greek 📄</td>
<td>Greek Β, Script Α, Fraktur Ν, Open Face Ό, Cyrillic Κ, Diacritical Marks Ε, Roman Extended Upper Case ΑΕ, Roman Extended Lower Case Ε.</td>
</tr>
<tr>
<td>📄 Common Symbols 📄</td>
<td>Palettes for constructing expressions</td>
</tr>
<tr>
<td>📄 Mathematical Palettes 📄</td>
<td></td>
</tr>
<tr>
<td>📄 Common Symbols 📄</td>
<td>Common Symbols, Relational ≥, Relational Round ≥, Operators ÷, Large Operators ±, Negated ≠, Fenced (), Arrows ↦, Constants and Symbols ∞.</td>
</tr>
<tr>
<td>📄 Mathematical Palettes 📄</td>
<td>Punctuation - insert punctuation symbols, such as inserting the registered trademark and copyright symbols ® into text regions</td>
</tr>
<tr>
<td>📄 Miscellaneous 📄</td>
<td>Miscellaneous - insert miscellaneous math and other symbols outside the above categories ⊗.</td>
</tr>
<tr>
<td>Palette Category</td>
<td>Palette Description</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Expression Palettes</td>
<td></td>
</tr>
<tr>
<td>Matrix</td>
<td>Expression - construct expressions such as logarithms $\log(a)$.</td>
</tr>
<tr>
<td></td>
<td>Matrix - enter the number of rows and columns required, designate type, such as zero-filled, and designate shape, such as diagonal.</td>
</tr>
<tr>
<td></td>
<td>Layout - add math content that has specific layout, such as expressions with one or more superscripts and subscripts A^b.</td>
</tr>
<tr>
<td></td>
<td>Calculus - construct expressions such as integrals $\int_a^b dx$.</td>
</tr>
<tr>
<td></td>
<td>Handwriting - an easy way to find a desired symbol.</td>
</tr>
<tr>
<td></td>
<td>Units - select a unit and insert into document, such as $[\text{ft}]$ or $[\text{kg}]$.</td>
</tr>
<tr>
<td></td>
<td>Accents - insert decorated names, such as an \vec{v} with an arrow over it to denote a vector \vec{a}.</td>
</tr>
<tr>
<td></td>
<td>Trigonometric & Hyperbolic - a palette for constructing expressions containing trigonometric and hyperbolic functions</td>
</tr>
<tr>
<td></td>
<td>Student Random Variables - a palette for constructing random variables based on distributions in the Student Statistics package</td>
</tr>
<tr>
<td></td>
<td>Group Constructors - a palette for constructing groups based on the Group Theory package</td>
</tr>
<tr>
<td>Other Palettes</td>
<td></td>
</tr>
<tr>
<td>Components</td>
<td>Components - embed graphical interface components such as a button into your document or worksheet. Components can be programmed to perform an action when selected such as executing a command when a button is clicked.</td>
</tr>
<tr>
<td></td>
<td>Favorites - add templates that you use most often from other palettes. Variables - manage all of your assigned variables in your current Maple session.</td>
</tr>
</tbody>
</table>
Viewing and Arranging Palettes

By default, palettes display in palette dock in the left pane of the Maple window. To view and manage palettes and palette docks, see Table 1.7.

Table 1.7: Managing Palettes

<table>
<thead>
<tr>
<th>Palette Category</th>
<th>Palette Description</th>
</tr>
</thead>
</table>
| **Task Palettes**| Live Data Plots - templates for visual representation of your data.
| | eBook Metadata - markup tags for use when creating eBooks from Maple worksheets
| | Tasks - a palette where you can store tasks that you have created |

To view the palette dock:

- From the View menu, select *Palettes*, and then *Expand Dock*. The dock is in the left pant of the window.
To add a palette:
1. Right-click the palette dock. Maple displays a context menu near the palette.
2. From the context menu, select Show Palette and then select the palette.

To expand or collapse a palette in the palette dock:
• Click the triangle at the left of the palette title.

To move a palette in the palette dock:
• Move the palette by clicking the title and dragging the palette to the new location.
To expand or collapse the pane containing the palette dock:
• Select the appropriate triangle at the top right side of the palette region.

Example 3 - Enter an Expression Using Palettes

Review the following example:

\[\sum_{i=1}^{10} \left(7i^2 - 5i\right) = 2420 \]

In this example, we will enter \(\sum_{i=0}^{10} \left(7i^2 - 5i\right) \) and evaluate the expression.

<table>
<thead>
<tr>
<th>Action</th>
<th>Result in Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Place the cursor in a new document block. In the Expression palette, click the summation template (\sum_{i=k}^{n}). Maple inserts the summation symbol with the range variable placeholder highlighted.</td>
<td>(\sum_{i=k}^{n})</td>
</tr>
<tr>
<td>2. Enter (1) and then press Tab. The left endpoint placeholder is selected. Notice that the color of the range placeholder has changed to black. Each placeholder must have an assigned value before you execute the expression. The Tab key advances you through the placeholders of an inserted palette item.</td>
<td>(\sum_{i=k}^{n})</td>
</tr>
<tr>
<td>3. Enter (1) and then press Tab. The right endpoint placeholder is selected.</td>
<td>(\sum_{i=1}^{10})</td>
</tr>
<tr>
<td>4. Enter 10 and then press Tab. The expression placeholder is selected.</td>
<td>(\sum_{i=1}^{10})</td>
</tr>
<tr>
<td>5. Enter (\left(7i^2 - 5i\right)). For instructions on entering this type of expression, see Example 1 - Enter and Evaluate an Expression Using Keystrokes (page 6).</td>
<td>(\sum_{i=1}^{10} \left(7i^2 - 5i\right))</td>
</tr>
<tr>
<td>6. Press Ctrl + = (Command + = for Mac) to evaluate the summation.</td>
<td>(\sum_{i=1}^{10} \left(7i^2 - 5i\right) = 2420)</td>
</tr>
</tbody>
</table>

Favorites Palette

You can add to the Favorites palette any expressions that you use most often.
• To add an entry from another palette to the Favorites palette, simply drag the entry to the Favorites palette.
To add a custom expression, select the expression in the worksheet and select Add Selection to Favorites Palette from the Context Panel.

Symbol Names

Each symbol has a name and some have aliases. By entering its name (or an alias) in Math mode, you can insert the symbol in your document. All common mathematical symbols, including all Greek characters, π, and the square root symbol (√), are recognized by Maple.

Note: If you hover the mouse pointer over a palette item, a tooltip displays the symbol's name.

To insert a symbol, enter the first few characters of a symbol name using a keyword that is familiar to you and then press the completion shortcut key, Esc (see Shortcut Keys by Platform (page xiii)). Symbol completion works in the same way as command completion (see Command Completion (page 33)).

• If a unique symbol name matches the characters entered, Maple inserts the corresponding symbol.
• If multiple symbol names match the characters entered, Maple displays the completion list, which lists all matches, including commands. To select an item, click its name or symbol.

Example 4 - Square Root

To find the square root of 603729:

<table>
<thead>
<tr>
<th>Action</th>
<th>Result in Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. In a new document block, enter sqrt.</td>
<td>\sqrt{603729}</td>
</tr>
<tr>
<td>2. Press the symbol completion shortcut key, Esc. Maple displays a popup list of exact matches.</td>
<td>\sqrt{603729}</td>
</tr>
<tr>
<td>3. In the completion list, select \sqrt. Maple inserts the symbol with the placeholder selected.</td>
<td>\sqrt{603729}</td>
</tr>
<tr>
<td>4. Enter 603729 into the placeholder.</td>
<td>\sqrt{603729}</td>
</tr>
<tr>
<td>5. Press Ctrl += (Command + =, Mac).</td>
<td>\sqrt{603729} = 777</td>
</tr>
</tbody>
</table>

Example 5 - Complex Numbers

In Maple, the default display for imaginary i is a capital I. When you simply type the letter i in Math mode, it is in italics. This letter is just a variable, and is not the same as the imaginary unit √−1, denoted by I or i in Maple.

\[\text{sum}(i, i = 1 .. 4) = 10 \]

Multiply two complex numbers, -0.123 + 0.745 i and 4.2 - i:

We will compute the result two ways, using I and then using i. The first way is the quickest to enter.
Table 1.8: Complex Numbers using I

<table>
<thead>
<tr>
<th>Action</th>
<th>Result in Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. In a new document block, enter</td>
<td>((-0.123 + 0.745 i) \cdot (4.2 - I))</td>
</tr>
<tr>
<td>Use * to enter multiplication between the two complex numbers.</td>
<td></td>
</tr>
<tr>
<td>2. Press Ctrl += (Command +=, Mac) to evaluate the product.</td>
<td>((-0.123 + 0.745 i) \cdot (4.2 - I) = 0.2284 + 3.2520i)</td>
</tr>
</tbody>
</table>

The next method, while not as quick to enter, displays the computation using lowercase i.

Table 1.9: Complex Numbers using i

<table>
<thead>
<tr>
<th>Action</th>
<th>Result in Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. In a new document block, enter</td>
<td>((-0.123 + 0.745 i))</td>
</tr>
<tr>
<td>2. Press the symbol completion shortcut key, Esc. Maple displays a popup list of partial and exact matches, including symbols and commands.</td>
<td>((-0.123 + 0.745 i))</td>
</tr>
<tr>
<td>3. Select the imaginary unit, (\text{Imaginary}) (\text{I})</td>
<td>((-0.123 + 0.745 i))</td>
</tr>
<tr>
<td>4. Close the parentheses, enter * (for multiplication), and type the second expression in parentheses, using symbol completion for the second imaginary number.</td>
<td>((-0.123 + 0.745 i) \cdot (4.2 - i))</td>
</tr>
<tr>
<td>5. Press Ctrl += (Command +=, Mac) to evaluate the product.</td>
<td>((-0.123 + 0.745 i) \cdot (4.2 - i) = 0.2284 + 3.2520i)</td>
</tr>
</tbody>
</table>

For more information on entering complex numbers, refer to the HowDoI/EnterAComplexNumber help page.

Toolbar Icons

In the introduction section, you learned about the toolbar icons and context toolbars available in Maple (see Toolbar Options (page 7)). The toolbar can be used to format your document, alter plots and animations, draw in a canvas, write in both Math and Text modes in one line and much more. The last of these is demonstrated in the next example.

Example 6 - Enter Text and 2-D Math in the Same Line Using Toolbar Icons

Enter the following sentence:

Evaluate

\[
\int_{1}^{5} \left(3x^2 + 2\sqrt{x} + 3^{3/2} \sqrt{x} \right) \, dx
\]

and write in simplest terms.
<table>
<thead>
<tr>
<th>Action</th>
<th>Result in Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>To enter this sentence:</td>
<td>Evaluate</td>
</tr>
<tr>
<td>1. Select the Text icon and enter "Evaluate ".</td>
<td>![Image of Text and Math icons]</td>
</tr>
<tr>
<td>2. Select the Math icon.</td>
<td>![Image of definite integration template]</td>
</tr>
<tr>
<td>3. From the Calculus palette, select the definite integration template. The expression is displayed with the first placeholder highlighted.</td>
<td>![Image of definite integration expression]</td>
</tr>
<tr>
<td>4. With the first placeholder highlighted, enter 1, then press Tab.</td>
<td>![Image of definite integration expression with first placeholder highlighted]</td>
</tr>
<tr>
<td>5. Enter 5 and press Tab to highlight the integrand region.</td>
<td>![Image of definite integration expression with integrand region highlighted]</td>
</tr>
<tr>
<td>6. Enter (3x^2 + 2) and press the right arrow to leave the superscript position.</td>
<td>![Image of definite integration expression with superscript and second placeholder highlighted]</td>
</tr>
<tr>
<td>7. Enter + 2.</td>
<td>![Image of definite integration expression with +2 added]</td>
</tr>
<tr>
<td>8. Press the Space bar for implicit multiplication. Enter <code>sqrt</code> and press Esc to show the command completion options. Maple displays a popup list of exact matches. Select the square root symbol, (\sqrt{x}). Maple inserts the symbol with the x placeholder selected. (Alternatively, select the square root symbol from the Expression palette.)</td>
<td>![Image of definite integration expression with square root symbol added]</td>
</tr>
<tr>
<td>9. Enter (x), then press the right arrow to leave the square root region.</td>
<td>![Image of definite integration expression with square root region left]</td>
</tr>
<tr>
<td>10. Enter + 3, and then press the Space bar.</td>
<td>![Image of definite integration expression with +3 entered]</td>
</tr>
<tr>
<td>11. Select the n-th root symbol from the Expression palette, (\sqrt[n]{x}).</td>
<td>![Image of definite integration expression with n-th root symbol added]</td>
</tr>
<tr>
<td>12. Enter 3, then press Tab.</td>
<td>![Image of definite integration expression with root region left]</td>
</tr>
<tr>
<td>13. Enter (x), then press the right arrow to leave the root region.</td>
<td>![Image of definite integration expression with root region left]</td>
</tr>
<tr>
<td>14. Enter ()), then press Tab.</td>
<td>![Image of definite integration expression with root region left]</td>
</tr>
<tr>
<td>15. Enter (x) for the integration variable.</td>
<td>![Image of definite integration expression with root region left]</td>
</tr>
<tr>
<td>16. Put the cursor after the expression and click the Text icon in the toolbar, then enter the rest of the sentence: " and write in simplest terms."</td>
<td>![Image of definite integration expression with root region left]</td>
</tr>
</tbody>
</table>

Note: When an expression is intended for display purposes only, as in this example, it can be displayed in nonexecutable math. This is indicated by the gray background. For more information on executable and nonexecutable math, see 2DMathDetails.
1.4 Point-and-Click Interaction

Maple contains many built-in features that allow you to solve problems quickly without having to know any commands.

Assistants

Maple offers a set of assistants in the form of graphical user interfaces to perform many tasks without the need to use any syntax.

Using the Tools → Assistants menu, you can access tools to help you accomplish various tasks. See Figure 1.3. In some cases, you can launch an assistant by entering an expression and selecting the assistant from the options in the Context Panel.

![Figure 1.3: Accessing the Assistants from the Tools Menu](image)

Descriptions of Assistants

The available assistants are described below. Some of the assistants are interfaces to package commands. For more information on package commands, see Package Commands (page 32).

- **CAD Link** - an interface to explore the properties of models from supported CAD applications (available on Microsoft Windows only).
- **Code Generation** - an interface to automatically transform Maple expressions and programs to other languages.
- **Data Set Search** - an interface for searching built-in and online data sources.
- **eBook Publisher** - an interface to the eBook Publisher tools.
- **Import Data** - an interface to read data from an external file into Maple.
- **Installer Builder** - an interface to the InstallerBuilder package in which you can create installers for your Maple toolboxes.
- **Library Browser** - an interface to manipulate the libraries in a specified directory.
- **Maplet Builder** - an interface to the Maplets package. The Maplets package contains commands for creating and displaying Maplet applications (point-and-click interfaces). Using the Maplet Builder, you can define the layout of a Maplet, drag-and-drop elements (visual and functional components of Maplets), set actions associated with elements, and directly run a Maplet application. The Maplet Builder is available in the Standard interface only.
- **Plot Builder** - an interface for creating two and three-dimensional plots, animations, and interactive plots.
- **Scientific Constants** - an interface to over 20 000 values of physical constants and properties of chemical elements. All of these constants come with the corresponding unit and, if applicable, with the uncertainty or error, that is, how precisely the value of this constant is known.
- **Special Functions** - an interface to the properties of over 200 special functions, including the Hypergeometric, Bessel, Mathieu, Heun and Legendre families of functions.

- **Thermophysical Properties Calculator** - Calculate state-dependent and independent thermophysical properties.

- **Units Converter** - an interface to convert between 500 units of measurement.

- **Worksheet Migration** - an interface to convert worksheets from Classic Maple (.mws files) to Standard Maple (.mw files).

Tutors

Maple provides over 50 interactive tutors and assistants to aid in the learning of

- Basics
- Precalculus
- Calculus
- Multivariate Calculus
- Vector Calculus
- Complex Variables
- Differential Equations
- Linear Algebra
- Numerical Analysis
- Optimization
- Statistics

These tutors are easily accessible in the **Tools** menu by selecting **Tutors**. See **Figure 1.4**.

![Figure 1.4: Accessing Tutors from the Tools Menu](image)
Some of the tutors can also be accessed through the Student package. The Differential Equations tutor, DE Plots, is accessible through the DEtools package. For a definition of the term package, see Package Commands (page 32).

The Student package is a collection of subpackages designed to assist with the teaching and learning of standard undergraduate mathematics. The subpackages contain many commands for displaying functions, computations, and theorems in various ways, and include support for stepping through important computations.

The interactive commands help you explore concepts and solve problems using a point-and-click interface. These commands launch tutors that provide a graphical interface to some of the visualization and computation commands described above. See Figure 1.5 for an example of one of the tutors.

![Figure 1.5: Calculus - Single Variable → Differentiation Methods Tutor](image)

The Practice Sheets Assistant, found under Tools → Tutors → Basics, lets you construct a practice sheet of math problems. It’s easy to interactively construct a randomized set of problems arithmetic, algebra, calculus, factorization and more. Students can then do the problems, check their solutions, and even generate another set of problems.

For more information on the tutors and related resources for mathematics education, see Teaching and Learning with Maple (page 145).

Math Apps

Maple provides Math Apps that offer interactive, entertaining ways to explore mathematical concepts, ranging from Precalculus to Physics to Economics. A guide to these demonstrations is accessible in the Tools menu by selecting Math Apps.
The Context Panel

The context panel is a dynamically generated list of tools and actions that are applicable for the region on which it is invoked. These tools and actions are further organized into menus. Use the context panel to perform calculations and manipulations on expressions without using Maple syntax. To display the context panel, select an object, expression, or region. Context panel options are available for many input regions, including:

- **expressions** to perform calculations, manipulations, or plotting
- **plot regions** to apply plot options and manipulate the plot
- **tables** to modify the table properties
- **text regions** to add annotations and format text

When performing calculations or manipulations on an expression, a self-documenting arrow or equal sign connects the input and output, indicating the action that took place. See Figures 1.8 and 1.9 for two examples of context-sensitive operations.

![Figure 1.6: Click the expression to see applicable operations in the context panel](image)

![Figure 1.7: Click the plot to see plot options in the context panel](image)

Task Templates

Task templates help you perform specific tasks in Maple, such as:

- performing a mathematical computation such as solving an equation symbolically or numerically, or determining the Taylor approximation of a function of one variable
- constructing a Maple object such as a function
- creating a document such as an application

Each task contains a description along with a collection of content that you can insert directly into your document. Content consists of 2-D mathematics, commands, embedded components (for example, buttons), and plots. You specify
the parameters of your problem and then execute the commands in the document. See Figure 1.8 for an example of a Task Template.

![Figure 1.8: Browse Tasks Dialog](image)

Previewing Tasks

To preview Maple tasks,

- From the **Tools** menu, select **Tasks**, and then **Browse**. The **Browse Tasks** dialog opens and displays the list of tasks.

The tasks are sorted by subject to help you quickly find the desired task. In the **Browse Tasks** dialog, you can view tasks without inserting them into your document.

Inserting a Task into the Document

To insert a task into your document,

1. Select the **Insert into New Worksheet** check box to insert the task into a new document.
2. Click one of the insert buttons.
 - Click the **Insert Default Content** button. Maple inserts the default content. The default content level is set using the **Options** dialog. For instructions, see the **usingtasks** help page.
 - Click the **Insert Minimal Content** button. Maple inserts only the commands and embedded components, for example, a button to launch the related assistant or tutor.
• Click the **Copy Task to Clipboard** button. Place the cursor where you want to insert the task, and then paste the task. Maple inserts the default content. Use this method to quickly insert a task multiple times.

Note: You can view the history of previously inserted tasks. From the **Tools** menu, select **Tasks**. Previously selected task names are displayed below the **Browse** menu item.

Before inserting a task, Maple checks whether the task variables have assigned values in your document. If any task variable is assigned, the **Task Variables** dialog opens to allow you to modify the names. Maple uses the edited variable names for all variable instances in the inserted task.

By default, the **Task Variables** dialog is displayed only if there is a naming conflict. You can set it to display every time you insert a task.

To specify that the Task Variables dialog be displayed every time you insert a task:
1. From the **Tools** menu, select **Options**.
2. Click the **Display** tab.
3. In the **Show task variables on insert** drop-down list, select **Always**.
4. Click **Apply to Session** or **Apply Globally**, as necessary.

Updating Parameters and Executing the Commands

In inserted Task Templates, parameters are marked as placeholders (in purple text) or specified using sliders or other embedded components.

1. Specify values for the parameters in placeholders or using graphical interface components. You can move to the next placeholder by pressing **Tab**.
2. Execute all commands in the task by:
 • Placing the cursor in the first task command, and then pressing **Enter** repeatedly to execute each command.
 • Selecting all the template commands, and then clicking the execute toolbar icon ![].
3. If the template contains a button that computes the result, click it.

For more information on task templates, refer to the **tasks** help page.

Exploration Assistant

The Exploration Assistant allows you to interactively make parameter changes to expressions and view the result. The assistant can be used with almost any Maple expression or command that has at least one variable or parameter.

To launch the Exploration Assistant:
1. Enter an expression or command.
2. Click the expression or command. From the context panel, select **Explore**.
3. The **Explore** parameter selection dialog appears, where you can select the parameters to explore and the range for each parameter.

If you enter integer ranges, only integer values are allowed for parameters. To allow floating-point values, enter floating-point ranges.

Select **skip** for any of the parameters to leave that parameter as a variable.

4. Click **Explore** to continue to the **Exploration Assistant**. The assistant creates a table in the document. You can use the slider or sliders to vary the parameters and see your changes as the expression output is updated.
5. Once you are finished interacting with the assistant, you can copy and paste the results into your document, or save the interactive document for later use.
Example 7 - Use the Exploration Assistant to Explore a Plot

In this example, we will explore how the plot of \(\frac{\sin(a \times) - b \cos(x)}{x} \) changes as we vary the parameters \(a \) and \(b \).

<table>
<thead>
<tr>
<th>Action</th>
<th>Result in Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Enter the plot command shown.</td>
<td>(\text{plot}\left(\frac{\sin(a \times) - b \cos(x)}{x}, x = 1..10 \right))</td>
</tr>
<tr>
<td>2. Click the expression and select Explore from the context panel.</td>
<td></td>
</tr>
<tr>
<td>3. In the Explore parameter selection dialog, set the ranges (a = 0..10.0) and (b = -5..5.0).</td>
<td></td>
</tr>
</tbody>
</table>
4. Click Explore. The Exploration Assistant creates a table in the document. Move the sliders to see the plot as the parameters change.

Tip: Since decimal numbers were used for the ranges in step 3, the slider uses decimal numbers. If you use integers for the ranges, the slider uses integer numbers.

1.5 Commands

Even though Maple comes with many features to solve problems and manipulate results without entering any commands, you may find that you prefer greater control and flexibility by using the set of commands and programming language that Maple offers.

The Maple Library

Commands are contained in the Maple library, which is divided into two groups: the *main library* and *packages*.

The main library contains the most frequently used Maple commands.

Packages contain related commands for performing tasks from disciplines such as Student Calculus, Statistics, or Differential Geometry. For example, the **Optimization** package contains commands for numerically solving optimization problems.

For details on top-level and package commands, see *Commands (page 57)*.
Entering Commands

If you want to interact with Maple using commands, simply enter the command using 2-D math. Notice that commands and variable names display in italics. Maple commands are constructed in a format similar to `command(arguments)`, based on the command you are using.

For example, to factor an expression, enter:

\[
\text{factor}(x^2 + 2 \, x + 1) \rightarrow (x + 1)^2
\]

To differentiate an expression, enter:

\[
\text{diff}(\sin(x), x) \rightarrow \cos(x)
\]

To integrate an expression on the interval \([0, 2 \, \pi]\), enter:

\[
\text{int}(2 \, x + \cos(x), x = 0..2 \, \pi) \rightarrow 4 \, \pi^2
\]

To plot an expression, enter:

\[
\text{plot}(\sin(x) \, x^2, x = -10..10)
\]

![Graph of the expression](image)

For a list of the top commands in Maple, see *Top Commands* (page 59).

Package Commands

There are two ways to access commands within a package, using the long form of the package command or the short form.
Long Form of Accessing Package Commands:
The long form specifies both the package and command names using the syntax `package[command](arguments).`

```
LinearAlgebra[RandomMatrix](2)
```

```
\begin{bmatrix}
44 & -31 \\
92 & 67 \\
\end{bmatrix}
```

Short Form of Accessing Package Commands:
The short form makes all of the commands in the package available using the `with` command, `with(package)`. If you are using a number of commands in a package, loading the entire package is recommended. When you execute the `with` command, a list of all commands in the package displays. To suppress the display of all command names, end the `with(package)` command with a colon. Alternatively, you can load packages through the `Tools` menu, by selecting `Load Package`, and then the package name.

```
with(Optimization)
```

```
[ ImportMPS, Interactive, LPSolve, LSSolve, Maximize, Minimize, NLPSolve, QPSolve ]
```

After loading a package, you can use the short-form names, that is, the command names, without the package name.

```
LSSolve([x - 2, x - 6, x - 9])
```

```
[12.333333333333321, [x = 5.6666666666667]]
```

For a list of the top packages in Maple, see Top Packages (page 60).

Command Completion
To help with syntax and reduce the amount of typing when entering Maple commands, you can use command completion. Command completion displays a list of all Maple packages, commands, and functions that match the entered text. If there are multiple ways to call a command, then the command completion list contains each one, with appropriate placeholders.

To use command completion:
1. Begin entering a command or package name.
2. Select `Tools` → `Complete Command` or use the shortcut key `Esc` (see Shortcut Keys by Platform (page xiii)). If there is a unique completion, it is inserted. Otherwise, a list of possible matches is displayed.
3. Select the correct completion from the list.
4. Some inserted commands have placeholders, denoted by purple text. The first placeholder is highlighted after you insert it into the document. Replace it with your parameter, then move to the next placeholder by pressing the Tab key.

Equation Labels

Equation labels help to save time entering expressions by referencing Maple output. See Figure 1.9.

By default, equation labels are displayed. If equation labels are not displayed,

1. From the Tools menu, select Options, and click the Display tab. Ensure that the Show equation labels check box is selected.

2. From the Format menu, select Equation Labels. Ensure that both Execution Group and Worksheet are selected.

Figure 1.9: Equation Label

To apply equation labels:

1. Enter an expression and press Enter. Note that the equation label is displayed to the right of the answer in the document.

2. In a new execution group, enter another expression that will reference the output of the previous execution group.

3. From the Insert menu, select Label. Alternatively, press Ctrl+L (Command+L, for Mac) to open the Insert Label dialog. Enter the label number in the Insert Label dialog and click OK. The item is now a label. See Figure 1.10.

Figure 1.10: Inserting an Equation Label

4. Press Enter to obtain the result.

To change the format of equation labels:

- Select Format → Equation Labels → Label Display. In the Format Labels dialog, select one of the numbering schemes. Numbering can be flat numbers for the entire worksheet, or by section, so that equations in section 1 are labeled (1.1), (1.2), and so on.
- Optionally, enter an appropriate numbering prefix.
The **Label Reference** menu item allows you to switch between the label name and its reference content. Place the cursor on the referenced equation label and select **Format → Equation Labels → Label Reference**.

\[
\int \sin(x) \, dx = -\cos(x) \\
\int -\cos(x) \, dx = -\sin(x)
\]

Figure 1.12: Label Reference

The label is associated with the last output within an execution group.

You cannot apply equation labels to the following:

- Error, warning, and information messages
- Tables, images, plots, or sketches

Document Blocks

In Document mode, content is created as a series of document blocks. Document blocks allow you to hide the syntax used to perform calculations, which in turn lets you focus on the concept presented instead of the command used to manipulate or solve the problem. You can also create document blocks in Worksheet mode to perform the same function. Document blocks are typically collapsed to hide the Maple code, but these regions can also be expanded to reveal this code.

To create a document block:

From the **Edit** menu, select **Document Blocks → Create Document Block**. If text or math in one or more execution groups is selected, then a document block is created that contains those execution groups. If not, a new document block is created after the current execution group. For more information, see the next example.

Document block regions are identified using markers that are located in a vertical bar along the left pane of the document. See **Figure 1.13**. In addition to document block boundaries, these markers (icons) indicate the presence of hidden attributes in the document such as annotations, bookmarks, and numeric formatting.

To activate markers:

From the **View** menu, select **Markers**. See **Figure 1.13**.
To view code in a document block:
1. Place the cursor in a document block to be expanded.
2. From the Edit→Document Blocks menu, select Show Command.

\[
\begin{align*}
 & x^2 + 10x + 21 \\
 \overset{\text{factor}}{\Rightarrow} & (x + 7)(x + 3)
\end{align*}
\]

(1) (2)

Figure 1.14: Expanded Document Block

With the Document Block expanded, you can see the Maple command that was used to perform this calculation. In Figure 1.14, the solve command was used.

Also notice a red prompt (>) before the original expression and the solve command. Entering commands outside of a document block region is done at this input region. To insert an input region, click the button in the toolbar menu.

In Figure 1.14, an equation label was used to refer to the expression. For more information, see Equation Labels (page 34).

To collapse a Document Block:
• With your cursor inside the document block, from the Edit→Document Blocks menu, clear the check box for Show Command.

You can use this process of expanding document blocks to view and edit Maple commands within a document block.

Changing the Display:
You can specify which parts of the input and output are displayed when the document block is collapsed. For each execution group in the block, you can choose to display either the input or the output.
• Place the cursor in the execution group.
• From the Edit→Document Blocks menu, select Toggle Input/Output Display.

Also, you can choose to display output either inline or centered on a new line.
• From the Edit→Document Blocks menu, select Inline Document Output.

1.6 The Maple Help System

The Maple program provides a custom help system consisting of almost 5000 reference pages. The help system is a convenient resource for determining the syntax of Maple commands and for learning about Maple features.

Accessing the Help System
There are several ways to access the Maple help system:
• From the Help menu, select Maple Help.
• Enter a search term in the search box in the worksheet toolbar.
• Click in the toolbar.
To get help on a specific word:

- In a document, place the insertion point in a word for which you want to obtain help. From the Help menu, select Help on ... Alternatively, press F2 (Control + ?), for Mac) to access context-sensitive help.
- In a document, execute the command ?topic, for example, enter ?LinearAlgebra and press Enter.

The Maple help system opens in a separate window with two panes. The left pane contains the Help Navigator where you initiate searches and browse the table of contents, and the right pane displays the final search result, such as a specific help page.

![Maple Help System](image)

Figure 1.15: Sample Help Page

Every help page in Maple lists the command's calling sequence, parameters, and a description, with examples of the command at the end of the page. Some help pages also contain hyperlinks to related help pages and hyperlinks to dictionary entries.
tionary definitions. Hyperlinks to dictionary definitions display in red to distinguish them from hyperlinks to help pages.

Using the Help Navigator

Use the search field in the Help Navigator to find information on Maple commands and features.

- **Search** for a known help topic, a command name, or a keyword or phrase.
- If you have any add-on products, you can restrict the search to Maple, MapleSim, or any combination of those products and their add-ons.
- You can search all of the help system or specific Resources such as Help Pages, Tasks, Math Apps, and Manuals by selecting the **Page Types** drop-down menu.

Search results are displayed as a list in the **Search Results** tab of the left pane. Click the **Table of Contents** tab to view a structured list of all topics in the help system.

Note that some tutorials open in a Maple window instead of in the Help window.

In the left pane, the type of resource is indicated by an icon. **Table 1.10** describes the icons.

Table 1.10: Help Page Icons

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>🗂️</td>
<td>A folder icon in the Table of Contents tab indicates that a topic can be expanded into subtopics.</td>
</tr>
<tr>
<td>??</td>
<td>WS icon indicates an example worksheet or tutorial. These worksheets open in a new tab in the Maple document.</td>
</tr>
<tr>
<td>D</td>
<td>D icon indicates a definition and displays the associated dictionary definition in the right pane when selected.</td>
</tr>
<tr>
<td>T</td>
<td>T icon indicates a Task template and displays the associated Task Template in the right pane when selected.</td>
</tr>
</tbody>
</table>

Viewing Help Pages as Documents

In the help system, examples are not executable.

The Maple help system allows you to open help pages as documents that you can execute.

To open a help page as a worksheet:

- With the help page displayed in the right pane of the help system, from the **View** menu, select **Open Page as Worksheet**. A new worksheet tab opens and displays the help page as an executable document.

Viewing Examples in 2-D Math

You can choose to view the examples in most help pages in either 2-D math or 1-D Math (Maple input) mode. The default is 2-D Math.

To change the math mode:

In the Maple help system:

- From the **View** menu, select or clear the **Display Examples with 2D math** check box.

Note: Some input in help pages displays as 1-D Math, no matter which option you have chosen. This is for Maple procedures and other code that is best input in 1-D Math. For more information, see the **helpnavigator** help page.
Copying Examples

Instead of opening the entire page as a document, you can copy the Examples section only.

To copy examples:
1. With the help page displayed in the right pane of the help system, from the Edit menu, select Copy Examples.
2. Close or minimize the Help Navigator and return to your document.
3. In your document, place the cursor at the location where you want to paste the examples.
4. From the Edit menu, select Paste. The Examples section of the help page is inserted as executable content in your document.

1.7 Available Resources

Your work with Maple is supported by numerous resources.

Resources Available through the Maple Help System

Help Pages
Use the help system to find information about a specific topic, command, package, or feature. For more information, see The Maple Help System (page 36).

Dictionary
More than 5000 mathematical and engineering terms with over 300 figures and plots.
1. From the Help menu, select Maple Help.
2. Enter a search term. Dictionary entries that match your query are displayed in the left pane with a icon.

Tutorials and the Maple Portal
The Maple Portal includes material designed for all Maple users, from new users to users who want more advanced tutorials. The Maple Portal also includes specific sections for students and engineers. The Maple Portal includes:

- How Do I... topics that give quick answers to essential questions.
- Tutorials that provide an overview of topics from getting started to plotting, data manipulation, and interactive application development.
- Navigation to portals with specialized information for students and engineers.

Access the portal in the Table of Contents under Getting Started.

Applications and Example Worksheets

Applications
Sample applications demonstrate how Maple can be used to find and document a solution to a specific problem. Some applications allow for input or contain animations that you can run; however, their primary use is for demonstrations. Topics include Bouncing Ball, Digital Filter Design, Frequency Domain System Identification, Harmonic Oscillator, Image Processing, Radiator Design with CAD Systems, and Sunspot Periodicity.

Examples
Example worksheets are executable documents covering topics that demonstrate syntax or invoke a user interface to make complex problems easy to solve and visualize. You can copy and modify the examples as needed. Topics include Algebra, Calculus, Connectivity, Discrete Mathematics, General Numerics and Symbolics, and Integral Transforms.
• Explore the available topics in the Table of Contents under Applications and Example Worksheets.

Manuals
You can access all of Maple's manuals from within Maple, including the Maple Programming Guide and this manual. You can execute examples, copy content into other documents, and search the contents using the Maple Help System.
• Access the manuals in the Table of Contents under Manuals.

Maple's manuals are also available as PDFs on the Maplesoft web site.

http://www.maplesoft.com/documentation_center

Task Templates
Set of commands with placeholders that you can use to quickly perform a task. For details, see Task Templates (page 27).
• From the Tools menu, select Tasks, and then Browse.

Quick Reference Card
The Quick Reference Card is a table of commands and information for new users that opens in a new window. It contains hyperlinks to help pages for more information.
• From the Help menu, select Quick Reference. Alternatively, press Ctrl + F2 (Command + F2, for Mac).

Web Site Resources

Student Help Center
The Student Help Center offers a Maple student forum, online math Oracles, training videos, and a math homework resource guide.

http://www.maplesoft.com/studentcenter

Teacher Resource Center
The Teacher Resource Center is designed to ensure you get the most out of your Maple teaching experience. It provides sample applications, course material, training videos, white papers, and tips.

http://www.maplesoft.com/TeacherResource

Application Center
Maple web site resource for free applications related to mathematics, education, science, engineering, computer science, statistics and data analysis, finance, communications, and graphics. Many applications are available in translations (French, Spanish, and German).

http://www.maplesoft.com/applications

Training
Maplesoft offers a comprehensive set of complementary training materials. From complete training videos to recorded training seminars to downloadable documentation, you have many options to get familiar with Maplesoft products. In addition, custom training sessions can be created to meet your needs.

http://www.maplesoft.com/support/training
MaplePrimes
A web community dedicated to sharing experiences, techniques, and opinions about Maple and related products, as well as general interest topics in math and computing.

http://www.mapleprimes.com

Online Help
All of Maple's help pages are available online.

http://www.maplesoft.com/support/help

Technical Support
A Maple web site containing FAQs, downloads and service packs, links to discussion groups, and a form for requesting technical support.

http://www.maplesoft.com/support

For a complete list of resources, refer to the MapleResources help page.
2 Document Mode

Using the Maple software, you can create powerful interactive documents. You can visualize and animate problems in two and three dimensions. You can solve complex problems with simple point-and-click interfaces or easy-to-modify interactive documents. You can also devise custom solutions using the Maple programming language. While you work, you can document your process, providing text descriptions.

2.1 In This Chapter

<table>
<thead>
<tr>
<th>Section</th>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction (page 43)</td>
<td>Comparison of Document and Worksheet Modes</td>
</tr>
<tr>
<td>Entering Expressions (page 44) - Overview of tools for creating complex mathematical expressions</td>
<td>Palettes</td>
</tr>
<tr>
<td></td>
<td>Symbol Names</td>
</tr>
<tr>
<td></td>
<td>Mathematical Functions</td>
</tr>
<tr>
<td>Evaluating Expressions (page 46) - How to evaluate expressions</td>
<td>Displaying the Value Inline</td>
</tr>
<tr>
<td></td>
<td>Displaying the Value on the Following Line</td>
</tr>
<tr>
<td>Editing Expressions and Updating Output (page 47) - How to update expressions and regenerate results</td>
<td>Updating a Single Computation</td>
</tr>
<tr>
<td></td>
<td>Updating a Group of Computations</td>
</tr>
<tr>
<td></td>
<td>Updating All Computations in a Document</td>
</tr>
<tr>
<td>Performing Computations (page 47) - Overview of tools for performing computations and solving problems</td>
<td>Computing with Palettes</td>
</tr>
<tr>
<td></td>
<td>Context Panel</td>
</tr>
<tr>
<td></td>
<td>Assistants and Tutors</td>
</tr>
</tbody>
</table>

2.2 Introduction

Maple has two modes: Document mode and Worksheet mode.

Document mode is designed for quickly performing calculations. You can enter a mathematical expression, and then evaluate, manipulate, solve, or plot it with a few keystrokes or mouse clicks. This chapter provides an overview of Document mode.

Document mode sample:

Find the value of the derivative of \(\ln(x^2 + 1) \) at \(x = 4 \).

\[
\ln(x^2 + 1) \xrightarrow{\text{differentiate w.r.t. } x} \frac{2x}{x^2 + 1} \xrightarrow{\text{evaluate at point } 4} \frac{8}{17}
\]

Integrate \(\sin \left(\frac{1}{x} \right) \) over the interval \([0, \pi]\).

\[
\int_{0}^{\pi} \sin \left(\frac{1}{x} \right) \, dx = \sin \left(\frac{1}{\pi} \right) \pi - \text{Ci} \left(\frac{1}{\pi} \right)
\]

Worksheet mode is designed for interactive use through commands and programming using the Maple language. The Worksheet mode supports the features available in Document mode described in this chapter. For information on using Worksheet mode, see Chapter 3, Worksheet Mode (page 55). Note: To enter a Maple input prompt while in Document mode, click \(\equiv \) in the Maple toolbar.
Important: In any Maple document, you can use Document mode and Worksheet mode.

Interactive document features include:
- Embedded graphical interface components, like buttons, sliders, and check boxes
- Automatic execution of marked regions when a file is opened
- Tables
- Character and paragraph formatting styles
- Hyperlinks

These features are described in Chapter 7, Creating Mathematical Documents (page 219).

Note: This chapter and Chapter 1 were created using Document mode. All of the other chapters were created using Worksheet mode.

2.3 Entering Expressions

Chapter 1 provided an introduction to entering simple expressions in 2-D Math (see Entering Expressions (page 13)). It is also easy to enter mathematical expressions, such as:

- Piecewise-continuous functions: \[|x| = \begin{cases} -x & x < 0 \\ 0 & x = 0 \\ x & 0 < x \end{cases} \]

- Limits: \[\delta(x) = \lim_{\epsilon \to 0} \epsilon|x|^\epsilon - 1 \]

- Continued fractions: \[\sqrt{2} = 1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \ldots}}} \]

and more complex expressions.

Mathematical expressions can contain the following objects.

- Numbers: integers, rational numbers, complex numbers, floating-point values, finite field elements, \(i, \infty, \ldots \)

- Operators: \(+, -, !, /, \cdot, \int, \lim_{x \to a}, \frac{\partial}{\partial x}, \ldots\)

- Constants: \(\pi, e, \ldots \)

- Mathematical functions: \(\sin(x), \cos\left(\frac{\pi}{3}\right), \Gamma(2), \ldots \)

- Names (variables): \(x, y, Z, \alpha, \beta, \ldots \)

- Data structures: sets, lists, Arrays, Vectors, Matrices, \ldots

Maple contains over a thousand symbols. For some numbers, operators, and names, you can press the corresponding key, for example, 9, =, >, or x. Most symbols are not available on the keyboard, but you can insert them easily using two methods, palettes and symbol names.
Example 1 - Enter a Partial Derivative

To insert a symbol, you can use palettes or symbol names.

Enter the partial derivative \(\frac{\partial}{\partial t} e^{-t^2} \) using palettes.

<table>
<thead>
<tr>
<th>Action</th>
<th>Result in Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. In the Calculus palette, click the partial differentiation item. Maple inserts the partial derivative. The variable placeholder is selected.</td>
<td>(\frac{\partial}{\partial x} f)</td>
</tr>
<tr>
<td>2. Enter (t), and then press Tab. The expression placeholder is selected.</td>
<td>(\frac{\partial}{\partial t})</td>
</tr>
<tr>
<td>3. Enter (e^{-t^2}). Note: To enter the exponential (e), use the expression palette or command completion.</td>
<td>(\frac{\partial}{\partial t} e^{-t^2})</td>
</tr>
</tbody>
</table>

To evaluate the derivative and display the result inline, press **Ctrl+=** (**Command+=**, for Macintosh) or **Enter**. For more information, see *Computing with Palettes* (page 47).

You can enter any expression using symbol names and the symbol completion list.

<table>
<thead>
<tr>
<th>Action</th>
<th>Result in Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Begin typing the name of the symbol, diff, and press the symbol completion key (see Shortcut Keys by Platform (page xiii)).</td>
<td>![diff symbol]</td>
</tr>
<tr>
<td>2. Select the partial differentiation item, (\frac{\partial}{\partial x}).</td>
<td>(\frac{\partial}{\partial x})</td>
</tr>
<tr>
<td>3. Replace the placeholder with (t). Use the right arrow to move out of the denominator. Enter (e^{-t^2}) as in the previous example.</td>
<td>(\frac{\partial}{\partial t} e^{-t^2})</td>
</tr>
</tbody>
</table>

Example 2 - Define a Mathematical Function

Define the function \(\text{twice} \), which doubles its input.

<table>
<thead>
<tr>
<th>Action</th>
<th>Result in Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. In the Expression palette, click the single variable function definition item, (f : a \rightarrow y).</td>
<td>(f : a \rightarrow y)</td>
</tr>
<tr>
<td>2. Replace the placeholder (f) with the function name, (\text{twice}). Press Tab to move to the next placeholder.</td>
<td>(\text{twice} : a \rightarrow y)</td>
</tr>
</tbody>
</table>
3. Replace the parameter placeholder, a, with the independent variable x. Press Tab.

\[twice := x \rightarrow x \]

4. Replace the output placeholder, y, with the desired output, $2x$.

\[twice := x \rightarrow 2x \]

\[twice(1342) = 2684 \]

\[twice(y - z) = 2y - 2z \]

Note: To insert the right arrow symbol \rightarrow, you can also enter the characters \rightarrow in Math mode. In this case, symbol completion is automatic.

Important: The expression $2x$ is different from the function $x \rightarrow 2x$.

For more information on functions, see *Functional Operators (page 265).*

2.4 Evaluating Expressions

To evaluate a mathematical expression, place the cursor in the expression and press **Ctrl** + = (**Command** + =, for Macintosh). That is, press and hold the **Ctrl** (or **Command**) key, and then press the equal sign (=) key.

To the right of the expression, Maple inserts an equal sign and then the value of the expression.

\[
\frac{2}{9} + \frac{7}{11} = \frac{85}{99}
\]

In mathematical content, pressing **Enter** evaluates the expression and displays it centered on the following line. The cursor moves to a new line below the output.

\[
\frac{2}{9} + \frac{7}{11} = \frac{85}{99}
\]

By default, Maple labels output that is generated by pressing **Enter**. For information on equation labels, see *Equation Labels (page 68).* In this manual, labels are generally not displayed.

In text, pressing **Enter** inserts a line break.

You can use the basic algebraic operators, such as $+$ and $-$, with most expressions, including polynomials—see *Polynomial Algebra (page 110)*—and matrices and vectors—see *Matrix Arithmetic (page 123).*

\[
(2x^2 - x + 1) - (x^2 + 2x + 12) = x^2 - 3x - 11
\]

\[
3 \begin{bmatrix} -4 & 8 & 99 \\ 27 & 69 & 29 \end{bmatrix} = \begin{bmatrix} -12 & 24 & 297 \\ 81 & 207 & 87 \end{bmatrix}
\]
2.5 Editing Expressions and Updating Output

One important feature of Maple is that your documents are live. That is, you can edit expressions and quickly recalculate results.

To update one computation:
1. Edit the expression.
2. Press Ctrl + = (Command + =, for Macintosh) or Enter.

The result is updated.

To update a group of computations:
1. Edit the expressions.
2. Select all edited expressions and the results to recalculate.
3. Click the Execute toolbar icon .

All selected results are updated.

To update all output in a Maple document:

• Click the Execute All toolbar icon .

All results in the document are updated.

Note: Be careful when you revisit a document and make changes, as it's possible to produce a document with worksheet commands out of order (i.e. where a certain command won't work properly without a later one).

2.6 Performing Computations

Using the Document mode, you can access the power of the advanced Maple mathematical engine without learning Maple syntax. In addition to solving problems, you can also easily plot expressions.

The primary tools for syntax-free computation are:
• Palettes
• The Context Panel
• Assistants and tutors

Note: The Document mode is designed for quick calculations, but it also supports Maple commands. For information on commands, see Commands (page 57) in Chapter 3, Worksheet Mode (page 55).

Important: In Document mode, you can execute a statement only if you enter it in Math mode. To use a Maple command, you must enter it in Math mode.

Computing with Palettes

As discussed in Entering Expressions (page 44), some palettes contain mathematical operations.

To perform a computation using a palette mathematical operation:
1. In a palette that contains operators, such as the Expression or Calculus palettes, click an operator item.
2. In the inserted item, specify values in the placeholders.
3. To execute the operation and display the result, press Ctrl+= (Command+=, for Macintosh) or Enter.
For example, to evaluate $\frac{\partial}{\partial t} e^{-t^2}$ inline:

1. Using the **Calculus** palette, enter the partial derivative. See *Example 1 - Enter a Partial Derivative* (page 45).
2. Press **Ctrl+=** (**Command+=**, for Macintosh).

$$\frac{\partial}{\partial t} e^{-t^2} = -2t e^{-t^2}$$

Computing with the Context Panel

The context panel is a collection of tools and operations that are appropriate for a particular expression. The context panel changes according to the expression, table, or region that you click on. See **Figure 2.1**.

![Figure 2.1: Context Panel](image)

To display the context panel:

1. Click the expression.

2. Move your mouse cursor over Pin Open Context Panel (), or click it to fix the context panel in place.

![Figure 2.1: Context Panel](image)

The context panel is displayed.
You can evaluate expressions using context panel options. The Evaluate and Display Inline operation (see Figure 2.1) is equivalent to pressing Ctrl+= (Command+=, for Macintosh). That is, it inserts an equal sign (=) and then the value of the expression.

Alternatively, press Enter to evaluate the expression and display the result centered on the following line.

For more information on evaluation, see Evaluating Expressions (page 46).

From the context panel, you can also select operations different from evaluation. To the right of the expression, Maple inserts a right arrow symbol (→) and then the result.

For example, use the Approximate operation to approximate a fraction: \(\frac{2}{3} \) at 10 digits \(\approx 0.6666666667 \)

You can perform a sequence of operations by repeatedly using context panel options. For example, to compute the derivative of \(\cos(x^2) \), use the Differentiate operation on the expression, and then to evaluate the result at a point, use the Evaluate at a Point operation on the output and enter 10:

\[
\cos(x^2) \overset{\text{differentiate w.r.t. } x}{\rightarrow} -2 \sin(x^2) x \overset{\text{evaluate at point}}{\rightarrow} -20 \sin(100)
\]

Note: For the sequence of operations to make sense when being read from left to right, stale results are deleted before new operations are performed.

For example:

<table>
<thead>
<tr>
<th>Enter the expression (x^2).</th>
<th>(x^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Click on the expression and use the Differentiate option from the context panel to differentiate with respect to (x).</td>
<td>(x^2 \overset{\text{differentiate w.r.t. } x}{\rightarrow} 2x)</td>
</tr>
<tr>
<td>Click on (2x) and use the Integrate option from the context panel to integrate with respect to (x).</td>
<td>(x^2 \overset{\text{differentiate w.r.t. } x}{\rightarrow} 2x \overset{\text{integrate w.r.t. } x}{\rightarrow} x^2)</td>
</tr>
<tr>
<td>Click on (2x) again and use the Differentiate option to differentiate with respect to (x).</td>
<td>(x^2 \overset{\text{differentiate w.r.t. } x}{\rightarrow} 2x \overset{\text{differentiate w.r.t. } x}{\rightarrow} 2)</td>
</tr>
</tbody>
</table>

Notice how the result of integration with respect to \(x \) has been replaced with the result of differentiation with respect to \(x \) so that the sequence of operations makes sense.

The following subsections provide detailed instructions on performing a few of the numerous operations available using context-sensitive operations in the context panel.
Approximating the Value of an Expression

To approximate a fraction numerically:

1. Enter a fraction.
2. Click the fraction to display the context panel. See Figure 2.2.
3. From the context panel, select Approximate, and then the number of significant digits to use: 5, 10, 20, 50, or 100.

![Approximating the Value of a Fraction](image)

Figure 2.2: Approximating the Value of a Fraction

\[\frac{2}{3} \text{ at 10 digits } \approx 0.666666667 \]

You can replace the inserted right arrow with text or mathematical content.

To replace the right arrow (→):

1. Select the arrow and text. Press Delete.
2. Enter the replacement text or mathematical content.

Note: To replace the right arrow with text, you must first press F5 to switch to Text mode.

For example, you can replace the arrow with the text "is approximately equal to" or the symbol \(\approx \).

\[\frac{2}{3} \text{ is approximately equal to } \approx 0.666666667 \]

\[\frac{2}{3} \approx 0.666666667 \]

Solving an Equation

You can find an exact (symbolic) solution or an approximate (numeric) solution of an equation. For more information on symbolic and numeric computations, see *Symbolic and Numeric Computation (page 74).*

To solve an equation:

1. Enter an equation.
2. Display the context panel. See Figure 2.3.
3. From the context panel, select **Solve** or **Numerically Solve** in the **Solve** menu item.

![Image](image.png)

Figure 2.3: Finding the Approximate Solution to an Equation

\[
\frac{7x^2}{3} - \frac{x}{\pi} = 12 \quad \text{solve} \quad \left\{ \begin{array}{l}
\frac{3}{14} + \frac{\sqrt{112\pi^2 + 1}}{\pi} \\
\frac{3}{14} - \frac{\sqrt{112\pi^2 + 1}}{\pi}
\end{array} \right. \qquad \left\{ \begin{array}{l}
-2.200603126, 2.337021648
\end{array} \right.
\]

For more information on solving equations, including solving inequations, differential equations, and other types of equations, see *Solving Equations* (page 80).

Using Units

You can create expressions with units. To specify a unit for an expression, use the **Units** palette. See **Figure 2.4**.

![Image](image.png)

Figure 2.4: Units Palette

To insert an expression with a unit:

1. Enter the expression.
2. In a unit palette, click a unit symbol.

Note: To include a reciprocal unit, divide by the unit.
To evaluate an expression that contains units:

1. Enter the expression using the units palettes to insert units.
2. Click the expression.
3. From the context panel, select the Simplify menu and then Simplify.

For example, compute the electric current passing through a wire that conducts 590 coulombs in 2.9 seconds.

\[
\frac{590 \text{C}}{2.9 \text{s}} \rightarrow 203.4482759 \text{ A}
\]

For more information on using units, see Units (page 93).

Assistants and Tutors

Assistants and tutors provide point-and-click interfaces with buttons, text input regions, and sliders. For details on assistants and tutors, see Point-and-Click Interaction (page 24).

Assistants and tutors can be launched from the Tools menu or the Context Panel for an expression. For example, you can use the Linear System Solving tutor to solve a linear system, specified by a matrix or a set of equations.

Example 3 - Using the Context Panel to Open the Linear System Solving Tutor

Use the Linear System Solving tutor to solve the following system of linear equations, written in matrix form:

<table>
<thead>
<tr>
<th>Action</th>
<th>Result in Document</th>
</tr>
</thead>
</table>
| 1. In a new document block, create the matrix or set of linear equations to be solved. | \[
\begin{bmatrix}
1 & 3 & 0 & -2 & -1 \\
4 & 2 & -1 & 5 & 7 \\
0 & -3 & 5 & 4 & -7 \\
1 & -1 & 3 & 6 & 5
\end{bmatrix}
\] |
| 2. Load the Student[LinearAlgebra] package. From the Tools menu, select Load Package → Student Linear Algebra. This makes the tutors in that package available. For details, see Package Commands (page 32). | Loading Student:-LinearAlgebra |
| 3. Click the matrix and from the context panel select Student Linear Algebra → Tutors → Linear System Solving... The Linear System Solving dialog appears, where you can choose the solving method. Gaussian Elimination reduces the matrix to row-echelon form, then performs back-substitution to solve the system. Gauss Jordan Elimination reduces the matrix to reduced row-echelon form, where the equations are already solved. For this example, choose Gaussian Elimination. | ![Linear Algebra - Linear System Solving](Image) |
4. The Gaussian Elimination dialog opens. You can specify the Gaussian elimination step-by-step, or you can use the Next Step or All Steps buttons to have Maple perform the steps for you.

5. Once the matrix is in row-echelon (upper-triangular) form, click the Solve System button to move to the next step.

6. The Solve the system of equations in Row-Echelon Form dialog appears. Click the buttons on the right to calculate the solution: first find the Equations, then solve for each variable. Click the Solution button to display the solution in the tutor.

7. Click the Close button to return the solution to your document.

1 3 0 -2 1	-4
4 2 -1 5 7	3
0 -3 5 4 -7	-2
1 -1 3 6 5	3

For more information on linear systems and matrices, see Linear Algebra (page 116).
3 Worksheet Mode

The Worksheet mode of the Standard Worksheet interface is designed for:

- Interactive use through Maple commands, which offers advanced functionality and customized control not available using the context panel or other syntax-free methods
- Programming using the powerful Maple language

Using Worksheet mode, you have access to all of the Maple features described in Chapter 1, and most of those described in Chapter 2, including:

- Math and Text modes
- Palettes
- The context panel
- Assistants and tutors

For information on these features, see Chapter 1, Getting Started (page 1) and Chapter 2, Document Mode (page 43).

Note: Using a document block, you can use all Document mode features in Worksheet mode. For information on document blocks, see Document Blocks (page 35).

Note: This chapter and the following chapters except Chapter 7 were created using Worksheet mode.

3.1 In This Chapter

<table>
<thead>
<tr>
<th>Section</th>
<th>Topics</th>
</tr>
</thead>
</table>
| Input Prompt (page 56) - Where you enter input | • The Input Prompt (>)
 • Suppressing Output
 • 2-D and 1-D Math Input
 • Input Separators |
| Commands (page 57) - Thousands of routines for performing computations and other operations | • The Maple Library
 • Top-Level Commands
 • Mathematical Functions
 • Package Commands
 • Lists of Common Commands and Packages |
| Palettes (page 61) - Items that you can insert by clicking or dragging | • Using Palettes |
| The Context Panel (page 63) - Clickable access to common operations | • Using the Context Panel |
| Assistants and Tutors (page 64) - Graphical interfaces with buttons and sliders | • Launching Assistants and Tutors |
| Task Templates (page 64) - Sets of commands with placeholders that you can insert and use to perform a task | • Viewing Task Templates
 • Inserting a Task Template
 • Performing the Task |
| Text Regions (page 65) - Areas in the document in which you can enter text | • Inserting a Text Region
 • Formatting Text |
Section Topics

<table>
<thead>
<tr>
<th>Section</th>
<th>Topics</th>
</tr>
</thead>
</table>
| *Names (page 66)* - References to the expressions you assign to them | • Assigning to Names
• Unassigning Names
• Valid Names |
| *Equation Labels (page 68)* - Automatically generated labels that you can use to refer to expressions | • Displaying Equation Labels
• Referring to a Previous Result
• Execution Groups with Multiple Outputs
• Label Numbering Schemes
• Features of Equation Labels |

3.2 Input Prompt

In Worksheet mode, you enter input at the Maple *input prompt* (>). The default mode for input is Math mode (*2-D Math*).

To evaluate input:
- Press **Enter**.

Maple displays the result (output) below the input.

For example, to find the value of \(\sin\left(\frac{\pi}{3}\right) \), enter the expression, and then press **Enter**.

\[
> \sin\left(\frac{\pi}{3}\right) \\
\frac{3\sqrt{3}}{8}
\]

(3.1)

For example, compute the sum of two fractions.

\[
> \frac{2}{9} + \frac{7}{11} \\
\frac{85}{99}
\]

(3.2)

A set of Maple input and its output are referred to as an *execution group*.

In the worksheet, the semicolon as a statement terminator is optional.

Suppressing Output

To suppress the output, enter a colon (:) at the end of the input.

\[
> a := \frac{2}{9} + \frac{7}{11} :
\]

1-D Math Input

You can also insert input using 1-D Math mode. The input is entered as a one-dimensional sequence of characters. 1-D Math input is red.
To enter input using 1-D Math:

- At the input prompt, press F5 or click the Text button in the toolbar, to switch from 2-D Math to 1-D Math.

\[
> 123^2 - \frac{29857}{120};
\]

\[
\frac{178563}{120}
\]

As with 2-D math, in 1-D math, if you use a colon, Maple suppresses the output.

\[
> 123^2 - \frac{29857}{120} :
\]

To set the default input mode at a prompt to 1-D Math:

1. From the Tools menu, select Options. The Options dialog is displayed.
2. On the Display tab, in the Input display drop-down list, select Maple Notation.
3. Click Apply to Session (to set for only the current session) or Apply Globally (to set for all Maple sessions).

To convert between 2-D Math input and 1-D Math input:

1. Select the 2-D (or 1-D) Math input.
2. From the Format menu, select Convert To, and then 1-D Math Input (or 2-D Math Input).

Input Separators

In 1-D and 2-D Math input, you can use a semicolon or colon to separate multiple inputs in the same input line.

\[
> \sqrt{4.4}; \tan(3.2);
\]

\[
2.097617696
\]

\[
0.05847385446
\]

If you do not specify a semicolon or colon, Maple interprets it as a single input. This can either give unexpected results or an error. Notice that the following example gives an error in 1-D math but in 2-D math this is interpreted as multiplication.

\[
> \sqrt{4.4} \tan(3.2)
\]

Error, missing operator or \\

\[
> \sqrt{4.4} \tan(3.2)
\]

\[
0.1226557919
\]

3.3 Commands

Maple contains a large set of commands and a powerful programming language. Most Maple commands are written using the Maple programming language.

You can enter commands using 1-D or 2-D Math. 1-D Math input is recommended when programming in Maple. Basic Programming (page 285) provides an introduction to Maple programming.

To learn how to use Maple commands, see the appropriate help page, or use task templates. For more information, see The Maple Help System (page 36) and Task Templates (page 64).
The Maple Library

Maple's commands are contained in the Maple library. There are two types of commands: top-level commands and package commands.

- The top-level commands include many of the the most frequently used Maple commands, as well as an extensive list of mathematical functions.
- Packages contain related specialized commands in areas such as calculus, linear algebra, vector calculus, and code generation.

For a complete list of packages and commands, refer to the index/help help pages. For information on the Maple Help System, see The Maple Help System (page 36).

Top-Level Commands

To use a top-level command, enter its name followed by parentheses (()), containing any parameters. This is referred to as a calling sequence for the command.

command(arguments)

Note: In 1-D Math input, include a semicolon or colon at the end of the calling sequence.

For example, to differentiate an expression, use the diff command. The required parameters are the expression to differentiate, which must be specified first, and the independent variable.

> diff(tan(x) sin(x), x)

\[(1 + tan(x)^2) sin(x) + tan(x) cos(x)\]

Mathematical Functions

For a complete list of commands that implement mathematical functions, such as Bessell and AiryAi, available in the library, refer to the initialfunctions help page.

> Bessell(0.1, 1)

AiryAi(2.2)

47.53037086

For detailed information on the properties of a function, use the FunctionAdvisor command.

> FunctionAdvisor('definition', Bessell)

\[I_a(z) = \frac{z^a \, _0F_1 \left(; a + 1, \frac{z^2}{4} \right)}{\Gamma(a + 1) \, 2^a} \text{, with no restrictions on} \ (a, z)\]

This definition is displayed using the typeset form of the Bessel function, the hypergeometric function (hypergeom) and the Gamma function (GAMMA). To see the function names rather than the typeset form, use lprint:

> lprint(%)

[Bessell(a, z) = z^a*hypergeom([], [a+1], (1/4)*z^2)/(GAMMA(a+1)*2^a), 'with no restrictions on (a, z)']

For detailed information on how to use a function in Maple, refer to its help page.
For example:

```markdown
> ?Bessel
```

Another way to access help is to select the word for which you want help and use the shortcut key for context help, F2 (Control + Shift + ?, for Mac).

Top Commands

Here are a few of the most frequently used Maple commands. A complete list of top-level commands is available on the index/function help page.

Table 3.1: Top Commands

<table>
<thead>
<tr>
<th>Command Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>plot</code> and <code>plot3d</code></td>
<td>Create a two-dimensional and three-dimensional plot of functions.</td>
</tr>
<tr>
<td><code>solve</code></td>
<td>Solve one or more equations or inequalities for their unknowns.</td>
</tr>
<tr>
<td><code>fsolve</code></td>
<td>Solve one or more equations using floating-point arithmetic.</td>
</tr>
<tr>
<td><code>eval</code></td>
<td>Evaluate an expression at a given point.</td>
</tr>
<tr>
<td><code>evalf</code></td>
<td>Numerically evaluate expressions.</td>
</tr>
<tr>
<td><code>dsolve</code></td>
<td>Solve ordinary differential equations (ODEs).</td>
</tr>
<tr>
<td><code>int</code></td>
<td>Compute an indefinite or definite integral.</td>
</tr>
<tr>
<td><code>diff</code></td>
<td>Compute an ordinary or partial derivative, as the context dictates.</td>
</tr>
<tr>
<td><code>limit</code></td>
<td>Calculate the limiting value of a function.</td>
</tr>
<tr>
<td><code>sum</code></td>
<td>For symbolic summation. It is used to compute a closed form for an indefinite or definite sum.</td>
</tr>
<tr>
<td><code>assume/is</code></td>
<td>Set variable properties and relationships between variables. Similar functionality is provided by the <code>assuming</code> command.</td>
</tr>
<tr>
<td><code>assuming</code></td>
<td>Compute the value of an expression under assumptions.</td>
</tr>
<tr>
<td><code>simplify</code></td>
<td>Apply simplification rules to an expression.</td>
</tr>
<tr>
<td><code>factor</code></td>
<td>Factor a polynomial.</td>
</tr>
<tr>
<td><code>expand</code></td>
<td>Distribute products over sums.</td>
</tr>
<tr>
<td><code>normal</code></td>
<td>Normalize a rational expression.</td>
</tr>
<tr>
<td><code>convert</code></td>
<td>Convert an expression to a different type or form.</td>
</tr>
<tr>
<td><code>type</code></td>
<td>Type-checking command. In many contexts, it is not necessary to know the exact value of an expression; it suffices to know that an expression belongs to a broad class, or group, of expressions that share some common properties. These classes or groups are known as types.</td>
</tr>
<tr>
<td><code>series</code></td>
<td>Generalized series expansion.</td>
</tr>
<tr>
<td><code>map</code></td>
<td>Apply a procedure to each operand of an expression.</td>
</tr>
</tbody>
</table>

Package Commands

To use a package command, the calling sequence must include the package name, and the command name enclosed in square brackets ([]).

```markdown
package[command](arguments)
```

If you are frequently using the commands in a package, load the package.

To load a package:

- Use the `with` command, specifying the package as an argument.

The `with` command displays a list of the package commands loaded (unless you suppress the output by entering a colon at the end of the calling sequence).
After loading a package, you can use the short form names of its commands. That is, you can enter the commands without specifying the package name.

For example, use the NLPSolve command from the Optimization package to find a local minimum of an expression and the value of the independent variable at which the minimum occurs.

```maple
> Optimization[NLPSolve](\frac{\sin(x)}{x}, x = 1 .. 1.5)

[ -0.0913252028230577, [x = 10.9041216489198]]
```

```maple
> with(Optimization);

[ImportMPS, Interactive, LPsolve, LSSolve, Maximize, Minimize, NLPSolve, QPSolve]
```

```maple
> NLPSolve\left(\frac{\sin(x)}{x}, x = 1 .. 1.5\right)

[ -0.0913252028230576718, [x = 10.9041216700744900]]
```

For more information on optimization, see Optimization (page 137).

To unload a package:

- Use the `unwith` command, specifying the package as an argument.

```maple
> unwith(Optimization)
```

Alternatively, use the `restart` command. The restart command clears Maple's internal memory. The effects include unassigning all names and unloading all packages. For more information, refer to the `restart` help page.

Note: To execute the examples in this manual, you may be required to use the unassign or restart command between examples.

Some packages contain commands that have the same name as a top-level command. For example, the `plots` package contains a `changecoords` command. Maple also contains a top-level `changecoords` command.

```maple
> with(plots):
```

After the plots package is loaded, the name `changecoords` refers to the `plots[changecoords]` command. To use the top-level `changecoords` command, unload the package or use the restart command. (For alternative methods of accessing the top-level command, see the `rebound` help page.)

Top Packages

Here are a few of the most frequently used Maple packages. A complete list of packages is available on the `index/package` help page.

Table 3.2: Top Packages

<table>
<thead>
<tr>
<th>Package Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CodeGeneration</td>
<td>The Code Generation package is a collection of commands and subpackages that enable the translation of Maple code to other programming languages, such as C, C#,, Fortran, MATLAB®, Visual Basic®, Java™, Julia, Perl, and Python.</td>
</tr>
<tr>
<td>LinearAlgebra</td>
<td>The Linear Algebra package contains commands to construct and manipulate Matrices and Vectors, and solve linear algebra problems. LinearAlgebra routines operate on three principal data structures: Matrices, Vectors, and scalars.</td>
</tr>
</tbody>
</table>
The Optimization package is a collection of commands for numerically solving optimization problems, which involve finding the minimum or maximum of an objective function possibly subject to constraints.

The Physics package implements computational representations and related operations for most of the objects used in mathematical physics computations.

The RealDomain package provides an environment in which Maple assumes that the basic underlying number system is the field of real numbers instead of the complex number field.

The ScientificConstants package provides access to the values of various physical constants, for example, the velocity of light and the atomic weight of sodium. This package provides the units for each of the constant values, allowing for greater understanding of an equation. The package also provides units-matching for error checking of the solution.

The ScientificErrorAnalysis package provides representation and construction of numerical quantities that have a central value and an associated uncertainty (or error), which is a measure of the degree of precision to which the quantity’s value is known. Various first-order calculations of error analysis can be performed with these quantities.

The Statistics package is a collection of tools for mathematical statistics and data analysis. The package supports a wide range of common statistical tasks such as quantitative and graphical data analysis, simulation, and curve fitting.

The Student package is a collection of subpackages designed to assist with teaching and learning standard undergraduate mathematics. The many commands display functions, computations, and theorems in various ways, including stepping through important computations.

The Student package contains the following subpackages:

- Basics - fundamental math concepts
- Calculus1 - single-variable calculus
- LinearAlgebra - linear algebra
- MultivariateCalculus - multivariate calculus
- NumericalAnalysis - numerical analysis
- Precalculus - precalculus
- Statistics - statistics
- VectorCalculus - multivariate vector calculus

The Units package contains commands for unit conversion and provides environments for performing calculations with units. It accepts approximately 300 distinct unit names (for example, meters and grams) and over 550 units with various contexts (for example, standard miles and U.S. survey miles). Maple also contains two Units palettes that allow you to enter the unit for an expression quickly.

The VectorCalculus package is a collection of commands that perform multivariate and vector calculus operations. A large set of predefined orthogonal coordinate systems is available. All computations in the package can be performed in any of these coordinate systems. It contains a facility for adding a custom but orthogonal coordinate system and using that new coordinate system for your computations.

3.4 Palettes

Palettes are collections of related items that you can insert by clicking or dragging. For example, see Figure 3.1.
You can use palettes to enter input.

For example, evaluate a definite integral using the definite integration item in the Calculus palette.

In 2-D Math, clicking the definite integration item inserts:

\[
\int_{x_1}^{x_2} f \, dx
\]

1. Enter values in the placeholders. To move to the next placeholder, press Tab.
2. To evaluate the integral, press Enter.

\[
\int_0^1 \tanh(x) \, dx = -\ln(2) + \ln(e^{-1}+e)
\]

In 1-D Math, clicking the definite integration item inserts the corresponding command calling sequence.

\[
\text{int}(f, x=x[1]..x[2]);
\]

Specify the problem values (using the Tab to move to the next placeholder), and then press Enter. Note: If pressing the Tab key inserts a tab, under the Format menu, toggle Tab Navigation. Then the Tab key will move the cursor to the next placeholder.

\[
\text{int}(\tanh(x), x = 0..1);
\]

\[
-\ln(2) + \ln(e^{-1}+e)
\]

Note: Some palette items cannot be inserted into 1-D Math because they are not defined in the Maple language. When the cursor is in 1-D Math input, unavailable palette items are dimmed.

For more information on viewing and using palettes, see Palettes (page 15) in Chapter 1.
3.5 The Context Panel

The context panel is a collection of tools and operations that are appropriate for a particular expression. The context panel changes according to the expression, table, or region that you click on. See Figure 3.2.

You can use the context panel to perform operations on 2-D Math, including output.

To use the context panel:
1. Click the expression.
2. Move your mouse cursor over Pin Open Context Panel (\(\text{\textbullet}\)), or click it to fix the context panel in place.
3. From the context panel, select a tool or operation.

Maple inserts a new execution group containing:
- The calling sequence that performs the operation
- The result of the operation

Example - Using the Context Panel

Determine the rational expression (fraction) that approximates the floating-point number 0.3463678 + 1.7643.

<table>
<thead>
<tr>
<th>Action</th>
<th>Result in Document</th>
</tr>
</thead>
</table>
| 1. Enter and execute the expression. | \(> 0.3463678 + 1.7643 \)
| | \(2.1106678 \) (3.3) |
| 2. Click the output floating-point number. | \(> 0.3463678 + 1.7643 \)
| | \(2.1106678 \) |
| 3. From the context panel, select Conversions \(\rightarrow\) Rational. The inserted calling sequence includes an equation label reference to the number you are converting. | \(> \text{convert}(\text{3.3}, \text{`rational'}) \) |
| | \(32270 \)
| | \(15289 \) |

Notice that an equation label reference has been used. For information on equation labels and equation label references, see Equation Labels (page 68).
For more information on the Context Panel, see *Computing with the Context Panel* (page 48) in Chapter 2.

3.6 Assistants and Tutors

Assistants and tutors provide point-and-click interfaces with buttons, text input regions, and sliders. See Figure 3.3.

![Figure 3.3: ODE Analyzer Assistant](image)

Launching an Assistant or Tutor

To launch an assistant or tutor:

1. Open the **Tools** menu.
2. Select **Assistants** or **Tutors**.
3. Navigate to and select one of the assistants or tutors.

For more information on assistants and tutors, see *Assistants* (page 24) in Chapter 1.

3.7 Task Templates

Maple can solve a diverse set of problems. The task template facility helps you quickly find and use the commands required to perform common tasks.

After inserting a task template, specify the parameters of your problem in the placeholders, and then execute the commands, or click a button.

The **Task Browser** (Figure 3.4) organizes task templates by subject.

To launch the Task Browser:

- From the **Tools** menu, select **Tasks**, and then **Browse**.

You can also browse the task templates in the Table of Contents of the Maple Help System.
For details on inserting and using task templates, see Task Templates (page 27). You can also create your own task templates for performing common tasks. For details, refer to the creatingtasks help page.

3.8 Text Regions

To add descriptive text in Worksheet mode, use a text region.

To insert a text region:

- In the toolbar, click the Text region icon \text{T}.

The default mode in a text region is Text mode.
In a text region, you can:

- Enter text with inline mathematical content by switching between Text and Math modes. To toggle between Text mode and Math mode, press \(\text{F5} \) or click the Math and Text toolbar icons.

Note: The mathematical content in a text region is by default executable. To enter nonexecutable mathematical content, use \(\text{Shift} + \text{F5} \).

- Insert any palette item. Palette items are inserted in Math mode (2-D Math). **Note:** After you insert a palette item, you must press \(\text{F5} \) or click the toolbar icon to return to Text mode.

You can format text in a text region. Features include:

- Character styles
- Paragraph styles
- Sections and subsections
- Tables

For more information on formatting documents, see *Creating Mathematical Documents* (page 219).

3.9 Names

Instead of re-entering an expression every time you need it, you can assign it to a *name* or add an *equation label* to it. Then you can quickly refer to the expression using the name or an equation label reference. For information on labels, see the following section, *Equation Labels* (page 68).

Note: Through the Variable Manager you can manage the top-level assigned variables currently active in your Maple Session. For more information about the Variable Manager, see the Variable Manager help page. For Maple workbooks, you can use the Variable Manager palette to return to the saved state of your variables.

Assigning to Names

You can assign any Maple expression to a name: numeric values, data structures, procedures (a type of Maple program), and other Maple objects.

Initially, the value of a name is itself.

\[
> a
\]

\[
a
\]

The assignment operator (\(:= \)) associates an expression with a name.

\[
> a := \pi
\]

\[
a := \pi
\]

Recall that you can enter \(\pi \) using the following two methods.

- Use the **Common Symbols** palette.
- In 2-D Math enter \(pi \), and then press the symbol completion shortcut key. See *Shortcuts for Entering Mathematical Expressions* (page 5).
When Maple evaluates an expression that contains a name, it replaces the name with its value. For example:

\[\cos(a) \]

\[-1 \]

For information on Maple evaluation rules, see *Evaluating Expressions* (page 277).

Mathematical Functions

To define a function, assign it to a name.

For example, define a function that computes the cube of its argument.

\[x \rightarrow x^3 \]

For information on creating functions, see *Example 2 - Define a Mathematical Function* (page 45).

\[\text{cube}(3); \text{cube}(1.666) \]

\[27 \]

\[4.624076296 \]

Note: To insert the right arrow, enter the characters `->`. In 2-D Math, Maple replaces `->` with the right arrow symbol \(\rightarrow \). In 1-D Math, the characters are not replaced.

For example, define a function that squares its argument.

\[x \rightarrow x^2 \]

\[\text{square}(32); \text{square}(1.666) \]

\[1024 \]

For more information on functions, see *Functional Operators* (page 265).

Protected Names

Protected names are valid names that are predefined or reserved.

If you attempt to assign to a protected name, Maple returns an error.

\[\text{sin} := 2 \]

Error, attempting to assign to `sin` which is protected. Try declaring `local sin`; see ?protect for details.

For more information, refer to the `type/protected` and `protect` help pages.

Unassigning Names

The `unassign` command resets the value of a name to itself. **Note:** You must enclose the name in right single quotes (`'`)..

\[\text{unassign}('a') \]
> a

 a

Right single quotes (unevaluation quotes) prevent Maple from evaluating the name. For more information on unevaluation quotes, see *Delaying Evaluation* (page 282) or refer to the `uneval` help page.

See also *Unassigning a Name Using Unevaluation Quotes* (page 284).

Unassigning all names:

The `restart` command clears Maple's internal memory. The effects include unassigning all names. For more information, refer to the `restart` help page.

Note: To execute the examples in this manual, you may be required to use the `unassign` or `restart` command between examples.

Valid Names

A Maple name must be one of the following.

- A sequence of alphanumeric and underscore (`_`) characters that begins with an alphabetical character.
- A sequence of characters enclosed in left single quotes (`'`).

Important: Do not begin a name with an underscore character. Maple reserves names that begin with an underscore for use by the Maple library.

Examples of valid names:

- a
- a1
- polynomial
- polynomial1_divided_by_polynomial2
- `2a`
- `x y`

3.10 Equation Labels

Maple marks the output of each execution group with a unique equation label.

Note: The equation label is displayed to the right of the output.

\[
> \int \sin(x) \, dx
\]

\[
-\cos(x)
\] \hspace{1cm} (3.4)

Using equation labels, you can refer to the result in other computations.

\[
> \int (3.4) \, dx
\]

\[
-\sin(x)
\] \hspace{1cm} (3.5)
Displaying Equation Labels

Important: By default, equation labels are displayed. If equation label display is turned off, complete both of the following operations.

• From the Format menu, select Equation Labels, and then ensure that Worksheet is selected.
• In the Options dialog (Tools→Options), on the Display tab, ensure that Show equation labels is selected.

Referring to a Previous Result

Instead of re-entering previous results in computations, you can use equation label references. Each time you need to refer to a previous result, insert an equation label reference.

To insert an equation label reference:

1. From the Insert menu, select Label. Alternatively, double-click on the equation label (to the far right side of the output) or press Ctrl+L; Command+L, Macintosh.
2. In the Insert Label dialog (see Figure 3.5), enter the label value, and then click OK.

Maple inserts the reference.

For example:

To integrate the product of (3.4) and (3.5):

<table>
<thead>
<tr>
<th>Action</th>
<th>Result in Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. In the Expression palette, click the indefinite integration item (\int) . The item is inserted and the integrand placeholder is highlighted.</td>
<td>[\int dx]</td>
</tr>
<tr>
<td>2. Press Ctrl+L (Command+L, for Macintosh). 3. In the Insert Label dialog, enter 3.4. Click OK.</td>
<td>[\int dx]</td>
</tr>
<tr>
<td>4. Press *. 5. Press Ctrl+L (Command+L, for Macintosh). 6. In the Insert Label dialog, enter 3.5. Click OK.</td>
<td>[(3.4) (3.5) dx]</td>
</tr>
<tr>
<td>Action</td>
<td>Result in Document</td>
</tr>
<tr>
<td>---</td>
<td>--------------------------</td>
</tr>
<tr>
<td>7. To move to the variable of integration placeholder, press Tab.</td>
<td>$\int (3.4) \cdot (3.5) , dx$</td>
</tr>
<tr>
<td>8. Enter x.</td>
<td>$\frac{\sin(x)^2}{2}$</td>
</tr>
<tr>
<td>9. To evaluate the integral, press Enter.</td>
<td>(3.6)</td>
</tr>
</tbody>
</table>

Execution Groups with Multiple Outputs

An equation label is associated with the last output within an execution group.

> $\left(\frac{2}{3.5} \right)^2 \cos \left(\frac{\pi}{6} \right)$

0.3265306122

$\frac{1}{2} \sqrt{3}$

> $(3.7)^2$

$\frac{3}{4}$

Label Numbering Schemes

You can number equation labels in two ways:

- **Flat** - Each label is a single number, for example, 1, 2, or 3.
- **Sections** - Each label is numbered according to the section in which it occurs. For example, 2.1 is the first equation in the second section, and 1.3.2 is the second equation in the third subsection of the first section.

To change the equation label numbering scheme:

- From the **Format** menu, select **Equation Labels → Label Display**. In the **Format Labels** dialog (Figure 3.6), select one of the formats.
- Optionally, enter a prefix.

![Format Labels Dialog: Adding a Prefix](image)

Figure 3.6: Format Labels Dialog: Adding a Prefix
Features of Equation Labels

Although equation labels are not descriptive names, labels offer other important features.

- Each label is unique, whereas a name may be inadvertently assigned more than once for different purposes.
- Maple labels the output values sequentially. If you remove or insert an output, Maple automatically re-numbers all equation labels and updates the label references.
- If you change the equation label format (see Label Numbering Schemes (page 70)), Maple automatically updates all equation labels and label references.

For information on assigning to, using, and unassigning names, see Names (page 66).

For more information on equation labels, refer to the equationlabels help page.

The following chapters describe how to use Maple to perform tasks such as solving equations, producing plots and animations, and creating mathematical documents. The chapters were created using Worksheet mode. Except where noted, all features are available in both Worksheet mode and Document mode.
4 Basic Computations

This chapter discusses key concepts related to performing basic computations with Maple. It discusses important features that are relevant to all Maple users. After learning about these concepts, you will learn how to use Maple to solve problems in specific mathematical disciplines in the following chapter.

4.1 In This Chapter

<table>
<thead>
<tr>
<th>Section</th>
<th>Topics</th>
</tr>
</thead>
</table>
| Symbolic and Numeric Computation (page 74) - An overview of exact and floating-point computation | • Exact Computations
• Floating-Point Computations
• Converting Exact Quantities to Floating-Point Values
• Sources of Error |
| Integer Operations (page 77) - How to perform integer computations | • Important Integer Commands
• Non-Base 10 Numbers
• Finite Rings and Fields
• Gaussian Integers |
| Solving Equations (page 80) - How to solve standard mathematical equations | • Equations and Inequalities
• Ordinary Differential Equations
• Partial Differential Equations
• Integer Equations
• Integer Equations in a Finite Field
• Linear Systems
• Recurrence Relations |
| Units, Scientific Constants, and Uncertainty (page 93) - How to construct and compute with expressions that have units, scientific constants, or uncertainty | Units
• Conversions
• Applying Units to an Expression
• Performing Computations with Units
• Changing the Current System of Units
• Extensibility
Scientific Constants
• Scientific Constants
• Element and Isotope Properties
• Value, Units, and Uncertainty
• Performing Computations
• Modification and Extensibility
Uncertainty Propagation
• Quantities with Uncertainty
• Performing Computations with Quantities with Uncertainty |
4.2 Symbolic and Numeric Computation

Symbolic computation is the mathematical manipulation of expressions involving symbolic or abstract quantities, such as variables, functions, and operators; and exact numbers, such as integers, rationals, π, and e^2. The goal of such manipulations may be to transform an expression to a simpler form or to relate the expression to other, better understood formulas.

Numeric computation is the manipulation of expressions in the context of finite-precision arithmetic. Expressions involving exact numbers, for example, $\sqrt{2}$, are replaced by close approximations using floating-point numbers, for example 1.41421. These computations generally involve some error. Understanding and controlling this error is often of as much importance as the computed result.

In Maple, numeric computation is normally performed if you use floating-point numbers (numbers containing a decimal point) or the `evalf` command. The `plot` command (see Plots and Animations (page 185)) uses numeric computation, while commands such as `int`, `limit`, and `gcd` (see Integer Operations (page 77) and Mathematical Problem Solving (page 109)) generally use only symbolic computation to achieve their results.

\[
\pi
\]

(4.1)

Exact Computations

In Maple, integers, rational numbers, mathematical constants such as π and ∞, and mathematical structures such as matrices with these as entries are treated as exact quantities. Names, such as x, y, `my_variable`, and mathematical functions, such as $\sin(x)$ and $\text{LambertW}(k, z)$, are symbolic objects. Names can be assigned exact quantities as their values, and functions can be evaluated at symbolic or exact arguments.

\[
> \frac{3}{2} + \frac{1}{3}, 1 + \frac{\pi}{2}
\]

\[
\frac{11}{6}, 1 + \frac{\pi}{2}
\]

Important: Unless requested to do otherwise (see the following section), Maple evaluates expressions containing exact quantities to exact results, as you would do if you were performing the calculation by hand, and not to numeric approximations, as you normally obtain from a standard hand-held calculator.
Floating-Point Computations

In some situations, a numeric approximation of an exact quantity is required. For example, the `plot` command requires the expression it is plotting to evaluate to numeric values that can be rendered on the screen: π cannot be so rendered, but 3.14159 can be. Maple distinguishes `approximate` from `exact` quantities by the presence or absence of a decimal point: 1.9 is approximate, while \(\frac{19}{10} \) is exact.

Note: An alternative representation of floating-point numbers, called `e-notation`, may not include an explicit decimal point: \(1e5 \), \(3e-2 \).

In the presence of a floating-point (approximate) quantity in an expression, Maple generally computes using numeric approximations. Arithmetic involving mixed exact and floating-point quantities results in a floating-point result.

\[
\pi
\]

\[
> \ 1.5 + \frac{2}{3}, \ 1 + 0.5 \cdot \pi
\]

\[
2.166666667, \ 2.570796327
\]

If a mathematical function is passed a floating-point argument, it normally attempts to produce a floating-point approximation of the result.

\[
> \sin(1.5), \int_{0}^{1.0} e^x \, dx
\]

\[
0.9974949866, \ 1.718281828
\]

Converting Exact Quantities to Floating-Point Values

To convert an exact quantity to a numeric approximation of that quantity, use the `evalf` command or the `Approximate` context panel operation (see `Approximating the Value of an Expression (page 50)`).

\[
> \text{evalf}(\pi), \text{evalf}(\sin(3)), \text{evalf}\left(\frac{3}{2} + \frac{1}{3}\right)
\]

\[
3.141592654, 0.1411200081, 1.833333333
\]

By default, Maple computes such approximations using 10 digit arithmetic. You can modify this in one of two ways:

- Locally, you can pass the precision as an index to the `evalf` call.
Globally, you can set the value of the Digits environment variable.

For more information, see the evalf and Digits help pages.

Note: When appropriate, Maple performs floating-point computations directly using your computer's underlying hardware.

Sources of Error

By its nature, floating-point computation normally involves some error. Controlling the effect of this error is the subject of active research in Numerical Analysis. Some sources of error are:

- An exact quantity may not be exactly representable in decimal form: \(\frac{1}{3} \) and \(\pi \) are examples.

- Small errors can accumulate after many arithmetic operations.

- Subtraction of nearly equal quantities can result in essentially no useful information. For example, consider the computation \(x - \sin(x) \) for \(x \approx 0 \).

\[
> (x - \sin(x)) \bigg|_{x = .00001} = 1.6666666665833 \times 10^{-16}
\]

No correct digits remain. If, however, you use Maple to analyze this expression, and replace this form with a representation that is more accurate for small values of \(x \), a fully accurate 10-digit result can be obtained.

\[
> t := \text{taylor}(x - \sin(x), x)
\]

\[
t := \frac{1}{6} x^3 - \frac{1}{120} x^5 + O(x^7)
\]

\[
> t \bigg|_{x = 0.00001} = 1.666666666583333333334 \times 10^{-16}
\]

For information on evaluating an expression at a point, see Substituting a Value for a Subexpression (page 277). For information on creating a series approximation, see Series (page 133). For more information on floating-point numbers, refer to the float and type/float help pages.
4.3 Integer Operations

In addition to the basic arithmetic operators, Maple has many specialized commands for performing more complicated integer computations, such as factoring an integer, testing whether an integer is a prime number, and determining the greatest common divisor (GCD) of a pair of integers.

Note: Many integer operations are available as task templates (Tools→Tasks→Browse, under Integers).

You can quickly perform many integer operations using the context panel. Clicking on an integer displays the context panel with integer commands. For example, the context-sensitive operation **Integer Factors** applies the ifactor command to compute the prime factorization of the given integer. See Figure 4.1.

![Figure 4.1: Context Panel for an Integer](image)

The result of applying **Integer Factors** is shown:

> 9469629

```
9469629
```

> ifactor(4.3)

```
(3)^4 (13) (17) (23)^2
```

Maple inserts the command ifactor, using an equation label reference to the integer 946929. For more information on equation labels, see Equation Labels (page 68).

For more information on using context-sensitive operations in Worksheet mode, see The Context Panel (page 63). For information on using context-sensitive operations in Document mode, see Computing with the Context Panel (page 48).

Maple has many other integer commands, including those listed in Table 4.1.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>abs</td>
<td>absolute value (displays in 2-D math as (</td>
</tr>
<tr>
<td>factorial</td>
<td>factorial (displays in 2-D math as (a!))</td>
</tr>
<tr>
<td>ifactor</td>
<td>prime factorization</td>
</tr>
<tr>
<td>igcd</td>
<td>greatest common divisor</td>
</tr>
<tr>
<td>iquo</td>
<td>quotient of integer division</td>
</tr>
</tbody>
</table>
Command | **Description**
---|---
irem | remainder of integer division
iroot | integer approximation of nth root
isprime | test primality
isqrt | integer approximation of square root
max, min | maximum and minimum of a set
mod | modular arithmetic (See *Finite Rings and Fields* (page 79).)
NumberTheory[Divisors] | set of positive divisors

`iquo(209, 17)`

```
12
```

`irem(209, 17)`

```
5
```

`igcd(2024, 4862)`

```
22
```

`iroot(982523, 4)`

```
31
```

For information on finding integer solutions to equations, see *Integer Equations* (page 91).

Non-Base 10 Numbers and Other Number Systems

Maple supports:

- Non-base 10 numbers
- Finite ring and field arithmetic
- Gaussian integers

Non-Base 10 Numbers

To represent an expression in another base, use the `convert` command.

`convert(6000, 'binary')`

```
1011101110000
```

`convert(34271, 'hex')`

```
85DF
```

For information on enclosing keywords in right single quotes ('), see *Delaying Evaluation* (page 282).

You can also use the `convert/base` command.

`convert(34271, 'base', 16)`

```
[15, 13, 5, 8]
```

Note: The `convert/base` command returns a list of digit values in order of *increasing significance*.
Finite Rings and Fields

Maple supports computations over the integers modulo m.

The \texttt{mod} operator evaluates an expression over the integers modulo m.

\begin{verbatim}
> 27 \texttt{mod} 4

3
\end{verbatim}

By default, the \texttt{mod} operator uses positive representation (\texttt{modp} command). Symmetric representation is available using the \texttt{mods} command.

\begin{verbatim}
> \texttt{modp}(27, 4)

3

> \texttt{mods}(27, 4)

-1
\end{verbatim}

For information on setting symmetric representation as the default, refer to the \texttt{mod} help page.

The modular arithmetic operators are listed in Table 4.2.

\begin{table}[h]
\centering
\begin{tabular}{|l|c|l|}
\hline
\textbf{Operation} & \textbf{Operator} & \textbf{Example} \\
\hline
Addition & + & \texttt{> 7 + 6 mod 5} \\
& & \texttt{3} \\
Subtraction & - & \texttt{> \texttt{mods(3 - 16, 11)}} \\
& & \texttt{2} \\
Multiplication (displays in 2-D Math as \cdot) & \ast & \texttt{> 13 \cdot 5 mod 3} \\
& & \texttt{2} \\
Multiplicative inverse (displays in 2-D Math as a superscript) & \wedge(-1) & \texttt{> 3^{-1} mod 5} \\
& & \texttt{2} \\
Division (displays in 2-D Math as \frac{a}{b}) & \div & \texttt{> 2 \div 3 mod 5} \\
& & \texttt{4} \\
Exponentiation\(^1\) & \&\^ & \texttt{> (100\&^100)mod 7} \\
& & \texttt{2} \\
\hline
\end{tabular}
\end{table}

\(^1\text{To enter a caret (^) in 2-D Math, enter a backslash character followed by a caret, that is, \texttt{\^}.}\)

For information on solving an equation modulo an integer, see \textit{Integer Equations in a Finite Field (page 92)}.

The \texttt{mod} operator also supports polynomial and matrix arithmetic over finite rings and fields. For more information, refer to the \texttt{mod} help page.
Gaussian Integers

Gaussian integers are complex numbers in which the real and imaginary parts are integers.

The GaussInt package contains commands that perform Gaussian integer operations.

The GIfactor command returns the Gaussian integer factorization.

> GaussInt[GIfactor](173 + 16 I)

(1 + 2 I) (41 − 66 I)

In Maple, complex numbers are represented as a+b*I, where the uppercase I represents the imaginary unit $\sqrt{-1}$.

You can also enter the imaginary unit using the following two methods.

- In the Common Symbols palette, click the I, i or j item. See Palettes (page 15).
- Enter i or j, and then press the symbol completion key. See Symbol Names (page 21).

Note that the output will still be displayed with I, no matter what symbol was used for input. You can customize Maple's settings to use a different symbol for $\sqrt{-1}$. For more information on entering complex numbers, including how to customize this setting, refer to the HowDoI/EnterAComplexNumber help page.

The GIsqrt command approximates the square root in the Gaussian integers.

> GaussInt[GIsqrt](9 − 5 j)

3 − I

For more information on Gaussian integers including a list of GaussInt package commands, refer to the GaussInt help page.

4.4 Solving Equations

You can solve a variety of equation types, including those described in Table 4.3.

<table>
<thead>
<tr>
<th>Equation Type</th>
<th>Solution Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equations and inequations</td>
<td>solve and isolve commands</td>
</tr>
<tr>
<td>Ordinary differential equations</td>
<td>ODE Analyzer Assistant (and dsolve command)</td>
</tr>
<tr>
<td>Partial differential equations</td>
<td>pdsolve command</td>
</tr>
<tr>
<td>Integer equations</td>
<td>isolve command</td>
</tr>
<tr>
<td>Integer equations in a finite field</td>
<td>msolve command</td>
</tr>
<tr>
<td>Linear integral equations</td>
<td>intsolve command</td>
</tr>
<tr>
<td>Linear systems</td>
<td>LinearAlgebra[LinearSolve] command</td>
</tr>
<tr>
<td>Recurrence relations</td>
<td>rsolve command</td>
</tr>
</tbody>
</table>

Note: Many solve operations are available in the context panel and as task templates (Tools→Tasks→Browse). Most of this section focuses on other methods.

Solving Equations and Inequations

Using Maple, you can symbolically solve equations and inequations. You can also solve equations numerically.
To solve an equation or set of equations using the context panel:

1. Click the equation.
2. From the context panel, select Solve (or Solve Numerically). See Figure 4.2.

\[> \frac{7}{3}x^2 - x = 12 \]

Figure 4.2: Context Panel for an Equation

In Worksheet mode, Maple inserts a calling sequence that solves the equation followed by the solutions.

If you select Solve, Maple computes exact solutions.

\[> \frac{7}{3}x^2 - x = 12 \]

\[\frac{7}{3}x^2 - x = 12 \] \hspace{1cm} (4.5)

\[> \text{solve(\{(4.5)\})} \]

\[\left\{ x = \frac{3}{14} - \frac{3\sqrt{113}}{14}, \quad x = \frac{3}{14} + \frac{3\sqrt{113}}{14} \right\} \] \hspace{1cm} (4.6)

If you select Solve Numerically, Maple computes floating-point solutions.
Symbolically Solving Equations and Inequations

The \texttt{solve} command is a general solver that determines exact symbolic solutions to equations or inequations. The solutions to a single equation or inequation are returned as an expression sequence. For details, see Creating and Using Data Structures (page 261). If Maple does not find any solutions, the \texttt{solve} command returns the empty expression sequence.

\begin{verbatim}
> solve(x^2 + 3 x + 14 = 0)

In general, \texttt{solve} computes solutions in the field of complex numbers. To restrict the problem to only real solutions, see Restricting the Domain (page 103).

It is recommended that you verify the solutions returned by the \texttt{solve} command. For details, see Working with Solutions (page 85).

To return the solutions as a list, enclose the calling sequence in brackets ([]).

\begin{verbatim}
> [solve(x^2 + x = 256 y, x)]

Expressions: You can specify expressions instead of equations. The \texttt{solve} command automatically equates them to zero.

\begin{verbatim}
> solve(e^x + z)

\end{verbatim}

(In this case, the solution involves the \texttt{LambertW} function.)

\textbf{Multiple Equations:} To solve multiple equations or inequations, specify them as a list or set. For an introduction to both lists and sets, see Creating and Using Data Structures (page 261).
Solving for Specific Unknowns: By default, the `solve` command returns solutions for all unknowns. You can specify the unknowns for which to solve.

\[\text{solve}(xy^2 - y = 5, x > 0) \]
\[\left\{ x = \frac{\sqrt{y+5}}{\sqrt{y}}, -5 < y, y < 0 \right\}, \left\{ x = \frac{\sqrt{y+5}}{\sqrt{y}}, 0 < y \right\} \]

\[\text{solve}(xy^2 - y = 5, x < 0) \]
\[\left\{ x = \frac{\sqrt{y+5}}{\sqrt{y}}, y < -5 \right\} \]

Transcendental Equations: In general, the `solve` command returns one solution to transcendental equations.

\[\text{solve}(q^2 - rs + \frac{q}{r} = 5, q) \]
\[\frac{-1 + \sqrt{4 r^3 s + 20 r^2 + 1}}{2 r}, \frac{1 + \sqrt{4 r^3 s + 20 r^2 + 1}}{2 r} \]

To solve for multiple unknowns, specify them as a list.

\[\text{solve}\left(\left\{ \frac{a}{s} - \frac{r}{s+1} + \frac{a}{r} = 5, r s = 1 \right\}, [q, r] \right) \]
\[\left[\left[q = \frac{5 s^2 + 5 s + 1}{s^3 + s^2 + s + 1}, r = \frac{1}{s} \right] \right] \]

RootOf Structure: The `solve` command may return solutions, for example, to higher order polynomial equations, in an implicit form using `RootOf` structures.
These \texttt{RootOf} structures are placeholders for the roots of the equation $z^4 - z^3 + 2 z^2 + 2 z + 2$. The \texttt{index} parameter numbers and orders the four solutions.

Like any symbolic expression, you can convert \texttt{RootOf} structures to a floating-point value using the \texttt{evalf} command.

> \texttt{evalf'(4.9)}

Some equations are difficult to solve symbolically. For example, polynomial equations of order five and greater do not in general have a solution in terms of radicals. If the \texttt{solve} command does not find any solutions, it is recommended that you use the Maple numerical solver, \texttt{fsolve}. For information, see the following section, \textit{Numerically Solving Equations}.

For more information on the \texttt{solve} command, including how to solve equations defined as procedures and how to find parametric solutions, refer to the \texttt{solve/details} help page.

For information on verifying and using solutions returned by the \texttt{solve} command, see \textit{Working with Solutions} (page 85).

Numerically Solving Equations

The \texttt{fsolve} command solves equations numerically. The behavior of the \texttt{fsolve} command is similar to that of the \texttt{solve} command.

> \texttt{equation2:= z \cos(z) = 2:}

> \texttt{fsolve(equation2)}

\begin{equation}
23.64662473459662857915842
\end{equation}

Note: You can also numerically solve equations using the context panel. See \textit{Solving Equations and Inequalities} (page 80).

It is recommended that you verify the solutions returned by the \texttt{fsolve} command. For details, see \textit{Working with Solutions} (page 85).

Multiple Equations: To solve multiple equations, specify them as a set. For more information, see \textit{Creating and Using Data Structures} (page 261). The \texttt{fsolve} command solves for all unknowns.

> \texttt{fsolve(\{ln(x) = y^2 + 1, x \cdot y = e^y\})}

\{x \approx 3.39661882295834043247827, y = 0.4719962637344134726551666\}

Univariate Polynomial Equations: In general, the \texttt{fsolve} command finds one real solution. However, for a univariate polynomial equation, the \texttt{fsolve} command returns all \textit{real} roots.

> \texttt{equation3:= y^4 - 3 \cdot y^2 - 2 \cdot y + 1:}

> \texttt{fsolve(equation3, y)}

\begin{equation}
0.3365322739267902638565395, 1.940392663660670332844725
\end{equation}

Controlling the Number of Solutions: To limit the number of roots returned, specify the \texttt{maxsols} option.
To find additional solutions to a general equation, use the avoid option to ignore known solutions.

```maple
> fsolve(equation2, z, 'avoid' = \{ z = (4.10) \})

−2.498755762652414667125417
```

Complex Solutions: To search for a complex solution or find all complex and real roots for a univariate polynomial, specify the complex option for the fsolve command.

```maple
> fsolve(equation3, y, 'complex')

−1.138462468793730298350632 − 0.4850624940594346587957853 I,
−1.138462468793730298350632 + 0.4850624940594346587957853 I,
0.3365322739267902638565395, 1.94039266360670332844725
```

If the fsolve command does not find any solutions, it is recommended that you specify a range in which to search for solutions, or specify an initial value.

Range: To search for a solution in a range, specify the range in the calling sequence. The range can be real or complex.

```maple
> fsolve(equation2, z, \{ z = 100..200 \})

199.5011586753119377854826
```

The syntax for specifying a region in the complex plane is `lower-left point..upper-right point`.

```maple
> fsolve(equation3, y, \{ y = -2 − 1.0 \}, 'complex');

−1.138462468793730298350632 − 0.4850624940594346587957853 I
```

Initial Values: You can specify a value for each unknown. The fsolve command uses these as initial values for the unknowns in the numerical method.

```maple
> fsolve(equation2, \{ z = 100 \})

\{ z = 98.98037598878310465489182 \} (4.11)
```

For more information and examples, refer to the fsolve/details help page.

For information on verifying and using solutions returned by the fsolve command, see the following section, *Working with Solutions*.

Working with Solutions

Verifying: It is recommended that you always verify solutions (that the solve and fsolve commands return) using the eval command.

```maple
> equation4 := sin(x) = −cos(x):
```
Assigning the value of a solution to a variable: To assign the value of a solution to the corresponding variable as an expression, use the assign command.

For example, consider the numeric solution in (4.11), found using the starting value \(z = 100 \).

\[> \text{assign}(\text{4.11}) \]

\[> z \]

98.98037598878310465489182

Creating a function from a solution: The assign command assigns a value as an expression to a name. It does not define a function. To convert a solution to a function, use the unapply command.

Consider one of the solutions for \(q \) to the equation \(q^2 - rs + \frac{q}{r} = 5 \).

\[> \text{solutions} := \left[\text{solve}\left(q^2 - rs + \frac{q}{r} = 5, q\right)\right] \]

\[\text{solutions} := \left\{ \frac{-1 + \sqrt{4 r^3 s + 20 r^2 + 1}}{2 r}, \frac{-1 + \sqrt{4 r^3 s + 20 r^2 + 1}}{2 r} \right\} \]

\[> f := \text{unapply}(\text{solutions}[1], r, s) \]

\[f := (r, s) \mapsto \frac{-1 + \sqrt{4 r^3 s + 20 r^2 + 1}}{2 r} \]

Here, solutions[1] selects the first element of the list of solutions. For more information on selecting elements, see Accessing Elements (page 261).
You can evaluate this function at symbolic or numeric values.

\[
> f(x, y)
\]

\[
-1 + \sqrt{4 \, x^{-3} \, y + 20 \, x^{-2} + 1}
\]

\[
> f\left(\frac{1}{\sqrt{2}}, 1\right)
\]

\[
\sqrt{2} \left(-1 + \sqrt{2 + 11} \right)
\]

\[
> f(5.7, 2.1)
\]

4.032680521587978641060188

For more information on defining and using functions, see *Functional Operators* (page 265).

Other Specialized Solvers

In addition to equations and inequations, Maple can solve other equations including:

- Ordinary differential equations (ODEs)
- Partial differential equations (PDEs)
- Integer equations
- Integer equations in a finite field
- Linear systems
- Recurrence relations

Ordinary Differential Equations (ODEs)

Maple can solve ODEs and ODE systems, including initial value and boundary value problems, symbolically and numerically.

ODE Analyzer Assistant The ODE Analyzer Assistant is a point-and-click interface to the Maple ODE solving routines.

To open the ODE Analyzer:

- From the Tools menu, select Tutors, Differential Equations, and then ODE Analyzer.

Maple inserts the `dsolve[interactive]` calling sequence in the document. The ODE Analyzer Assistant (Figure 4.3) is displayed.
In the main **ODE Analyzer Assistant** window, you can define ODEs, initial or boundary value conditions, and parameters. To define derivatives, use the `diff` command. For example, `diff(x(t), t)` corresponds to $\frac{df}{dx}$, and `diff(x(t), t, t)` corresponds to $\frac{d^2f}{dx^2}$. For more information on the `diff` command, see *The diff Command (page 130)*.

After defining an ODE, you can solve it numerically or symbolically.

To solve a system numerically using the ODE Analyzer Assistant:

1. Ensure that the conditions guarantee uniqueness of the solution.
2. Ensure that all parameters have fixed values.
3. Click the **Solve Numerically** button.
4. In the **Solve Numerically** window (*Figure 4.4*), you can specify the numeric method and relevant parameters and error tolerances to use for solving the problem.
5. To compute solution values at a point, click the **Solve** button.
To solve a system symbolically using the ODE Analyzer Assistant:

1. Click the **Solve Symbolically** button.

2. In the **Solve Symbolically** window (Figure 4.5), you can specify the method and relevant method-specific options to use for solving the problem.

3. To compute the solution, click the **Solve** button.
When solving numerically or symbolically, you can view a plot of the solution by clicking the **Plot** button.

- To plot the solution to a symbolic problem, all conditions and parameters must be set.
- To customize the plot, click the **Plot Options** button to open the **Plot Options** window.

To view the corresponding Maple commands as you solve the problem or plot the solution, select the **Show Maple commands** check box.

You can control the return value of the ODE Analyzer using the **On Quit, Return** drop-down list. You can select to return nothing, the displayed plot, the computed numeric procedure (for numeric solutions), the solution (for symbolic solutions), or the Maple commands needed to produce the solution values and the displayed plot.

For more information, refer to the **ODE Analyzer** help page.

The dsolve Command

The ODE Analyzer provides a point-and-click interface to the Maple **dsolve** command.

For ODEs or systems of ODEs, the **dsolve** command can find:

- Closed form solutions
- Numerical solutions
• Series solutions
In addition, the `dsolve` command can find:
• Formal power series solutions to linear ODEs with polynomial coefficients
• Formal solutions to linear ODEs with polynomial coefficients
To access all available functionality, use the `dsolve` command directly. For more information, refer to the `dsolve` help page.

Partial Differential Equations (PDEs)
To solve a PDE or PDE system symbolically or numerically, use the `pdsolve` command. PDE systems can contain ODEs, algebraic equations, and inequations.

For example, solve the following PDE symbolically. For help entering a partial derivative, see *Example 1 - Enter a Partial Derivative (page 45).*

```maple
> unassign('f') :

> x \left( \frac{\partial}{\partial y} f(x, y) \right) - y \left( \frac{\partial}{\partial x} f(x, y) \right) = 0

x \left( \frac{\partial}{\partial y} f(x~, y) \right) - y \left( \frac{\partial}{\partial x~} f(x~, y) \right) = 0 \quad (4.16)

> pdsolve(4.16)

f(x~, y) = _F1(x^2 + y^2)
```

The solution is an arbitrary univariate function applied to $x^2 + y^2$.

Maple generally prints only the return value, errors, and warnings during a computation. To print information about the techniques Maple uses, increase the `infolevel` setting for the command.

To return all information, set `infolevel` to 5.

```maple
> infolevel[pdsolve] := 5 :

> pdsolve(4.16)

Checking arguments ...
First set of solution methods (general or quasi general solution)
  Trying characteristic strip method for first order PDEs
  characteristic strip method for first order PDEs successful
First set of solution methods successful
<- Returning a *general* solution

f(x~, y) = _F1(x^2 + y^2)
```

For more information on solving PDEs, including numeric solutions and solving PDE systems, refer to the `pdsolve` help page.

Integer Equations
To find only integer solutions to an equation, use the `isolve` command. The `isolve` command finds solutions for all variables. For more information, refer to the `isolve` help page.
Integer Equations in a Finite Field

To solve an equation modulo an integer, use the `msolve` command. The msolve command finds solutions for all variables. For more information, refer to the `msolve` help page.

\[
> \text{msolve}\{x^2 = 1, 13\}
\]

\[
\{x = 1\}, \{x = 12\}
\]

Solving Linear Systems

To solve a linear system, use the `LinearAlgebra[LinearSolve]` command. The LinearSolve command returns the vector \(x \) that satisfies \(A \cdot x = B \). For more information, refer to the `LinearAlgebra[LinearSolve]` help page.

For example, construct an augmented matrix using the `Matrix` palette (see Creating Matrices and Vectors (page 116)) in which the first four columns contain the entries of \(A \) and the final column contains the entries of \(B \).

\[
> \text{linearsystem} := \begin{bmatrix}
\begin{array}{cccc}
59 & 44 & 17 & 1 \\
10 & 25 & 2 & 100 \\
1 & 0 & 7 & 533 \\
98 & 21 & 3 & 10 \\
23 & 9 & 12 & 51 \\
\end{array}
& \begin{array}{c}
1 \\
2 \\
100 \\
50 \\
10 \\
25 \\
\end{array}
\end{bmatrix}
\]

\[
> \text{LinearAlgebra[LinearSolve]}(\text{linearsystem})
\]

\[
\begin{bmatrix}
31753441047 \\
41858667400 \\
16991806239 \\
8371733480 \\
1489266217 \\
1674346696 \\
262603866 \\
209293337 \\
\end{bmatrix}
\]

For more information on using Maple to solve linear algebra problems, see Linear Algebra (page 116).

Solving Recurrence Relations

To solve a recurrence relation, use the `rsolve` command. The rsolve command finds the general term of the function. For more information, refer to the `rsolve` help page.
In addition to manipulating exact symbolic and numeric quantities, Maple can perform computations with units and uncertainties.

Maple supports hundreds of units, for example, miles, coulombs, and bars, and provides facilities for adding custom units.

Maple has a library of hundreds of scientific constants with units, including element and isotope properties.

To support computations with uncertainties, Maple propagates errors through computations.

Units

The Units package in Maple provides a library of units, and facilities for using units in computations. It is fully extensible so that you can add units and unit systems as required.

Overview of Units

A *dimension* is a measurable quantity, for example, length or force. The set of dimensions that are fundamental and independent are known as *base dimensions*.

In Maple, the base dimensions include length, mass, time, electric current, thermodynamic temperature, amount of substance, luminous intensity, information, and currency. For a complete list, enter and execute `Units[GetDimensions]()`.

Complex dimensions (or composite dimensions) measure other quantities in terms of a combination of base dimensions. For example, the complex dimension force is a measurement of \(\frac{\text{mass} \cdot \text{length}}{\text{time}^2} \).

Each dimension, base or complex, has associated units. (Base units measure a base dimension. Complex units measure a complex dimension.) Maple supports over 40 units of length, including feet, miles, meters, angstroms, microns, and astronomical units. A length must be measured in terms of a unit, for example, a length of 2 parsecs.

Table 4.4 lists some dimensions, their corresponding base dimensions, and example units.

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Base Dimensions</th>
<th>Example Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>time</td>
<td>second, minute, hour, day, week, month, year, millennium, blink, lune</td>
</tr>
<tr>
<td>Energy</td>
<td>(\frac{\text{length}^2 \cdot \text{mass}}{\text{time}^2})</td>
<td>joule, electron volt, erg, watt hour, calorie, Calorie, British thermal unit</td>
</tr>
<tr>
<td>Electric potential</td>
<td>(\frac{\text{length}^2 \cdot \text{mass}}{\text{time}^3 \cdot \text{electric current}})</td>
<td>volt, abvolt, statvolt</td>
</tr>
</tbody>
</table>

For the complete list of units (and their contexts and symbols) available for a dimension, refer to the corresponding help page, for example, the Units/length help page for the units of length.
Each unit has a context. The context differentiates between different definitions of the unit. For example, the standard and US survey miles are different units of length, and the second is a unit of time and of angle. You can specify the context for a unit by appending the context as an index to the unit, for example, \texttt{mile[US_survey]}. If you do not specify a context, Maple uses the default context.

Units are collected into systems, for example, the foot-pound-second (FPS) system and international system, or \textit{système international}, (SI). Each system has a default set of units used for measurements. In the FPS system, the foot, pound, and second are used to measure the dimensions of length, mass, and time. The unit of speed is the foot/second. In SI, the meter, kilogram, and second are used to measure the dimensions of length, mass, and time. The units of speed, magnetic flux, and power are the meter/second, weber, and watt, respectively.

Unit Conversions

To convert a value measured in a unit to the corresponding value in a different unit, use the \textbf{Units Converter}.

- From the Tools→Assistants menu, select \textbf{Units Converter}.

The \textbf{Units Converter} application (\textbf{Figure 4.6}) opens.

\begin{center}
\textbf{Units Converter}
\end{center}

Convert between over 500 units of measurement. See \texttt{Units help index} for details.

First, select a dimension from the drop-down box. Then select the units to convert from and to. Click the “Perform Unit Conversion” button. The “Convert Back” button converts in the opposite direction.

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{units_converter.png}
\caption{Units Converter Assistant}
\end{figure}

\textbf{To perform a conversion:}

1. In the Convert text field, enter the numeric value to convert.
2. In the Dimension drop-down list, select the dimensions of the unit.
3. In the From and To drop-down lists, select the original unit and the unit to which to convert.
4. Click \textbf{Perform Unit Conversion}.

The same conversion can be done with the convert/units command.

\begin{verbatim}
> convert(1.0, 'units', 'lb/ft(radius)', 'Nm(radius)')

1.355817948331400400000000
\end{verbatim}

Using the \textbf{Units Converter}, you can convert temperatures and temperature changes.

- To perform a temperature conversion, in the Dimension drop-down list, select \texttt{temperature(absolute)}.
- To perform a temperature change conversion, in the Dimension drop-down list, select \texttt{temperature(relative)}.

To convert temperature changes, the \textbf{Units Converter} uses the convert/units command. For example, an increase of 32 degrees Fahrenheit corresponds to an increase of almost 18 degrees Celsius.
To convert absolute temperatures, the Unit Converter uses the `convert/temperature` command. For example, 32 degrees Fahrenheit corresponds to 0 degrees Celsius.

\[
\text{32 degrees Fahrenheit} \quad \rightarrow \quad \text{0 degrees Celsius}
\]

Applying Units to an Expression

To insert a unit, use the Units palette. See Figure 4.7.

Figure 4.7: Units Palette

To insert a unit:
- In the Units palette, select a unit dimension, then click the desired unit symbol.

\[
\text{3 feet} \quad \rightarrow \quad 3 \text{ ft}
\]

To insert a unit that is unavailable in the palettes:

1. In the Units palette, click the `unit` symbol. Maple inserts a Unit object with the placeholder selected.
2. In the placeholder, enter the unit name (or symbol). Note that you see double brackets around the unit when you are editing it.

For example, to enter 0.01 standard (the default context) miles, you can specify the unit name, `mile`, or symbol, `mi`.

As you edit, the unit is enclosed in double brackets:

\[
0.01 \text{[mile]}
\]

\[
> \text{0.01 mile} \quad \rightarrow \quad 0.01 \text{ mi}
\]

The context of a unit is displayed only if it is not the default context.

Alternative ways to enter units:
- Enter `Unit`, and then press the symbol completion key (see Symbol Names (page 21)) and then enter the unit.
- Use the shortcut key `Ctrl + Shift + U` (Command + Shift + U, on Mac) and then enter the unit.
• Use the **Unit** command. Note that to write a quantity with a unit using this command, write multiplication between them; this is especially evident in 1-D math:

Important: In 1-D Math input, the quantity and unit (entered using the top-level **Unit** command) are a product, not a single entity. The following calling sequences define different expressions.

\[
\frac{1\ \text{m}}{2\ \text{s}} \quad \frac{1}{2} \text{m s}
\]

Some units support **prefixes**. For example, SI units support prefixes to names and symbols. You can specify 1000 meters using kilometer or km. For more information, refer to the **Units/prefixes** help page.

\[
> 1.5 \left[\text{km}_{\text{SI}} \right]
\]

\[
1.5 \text{ km}
\]

Performing Computations with Units

In the default Maple environment, you cannot perform computations with quantities that have units. You can perform only unit conversions. For more information about the default environment, refer to the **Units/Default** help page.

To compute with expressions that have units, you must load a **Units** environment: Simple, Standard, or Natural. It is recommended that you use the **Simple environment**, and that environment is loaded by default when you load the Units package:

\[
> \text{with(Units)}:
\]

Automatically loading the Units[Standard] subpackage

In the **Simple Units** environment, commands that support expressions with units return results with the correct units.

\[
> \text{area} := 3 \text{ft} \cdot \frac{1}{8} \text{mile}
\]

\[
\text{area} := \frac{14370939}{78125} \text{m}^2
\]

\[
> \left(-12 \sin(x) + x^2 \right) \frac{\text{m}}{\text{s}}
\]

\[
\left(-12 \sin(x) + x^2 \right) \frac{\text{m}}{\text{s}}
\]

\[
(4.17)
\]

\[
> \text{int}((4.17), x)
\]

\[
\left(\frac{x^3}{3} + 12 \cos(x) \right) \frac{\text{m}}{\text{s}}
\]

\[
(4.18)
\]

\[
> \text{diff}(4.18), x)
\]

\[
\left(-12 \sin(x) + x^2 \right) \frac{\text{m}}{\text{s}^2}
\]

For information on differentiation and integration, see *Calculus (page 128).*
Changing the Current System of Units

If a computation includes multiple units, all units are expressed using units from the current system of units.

> 132.25mile

132.25 mi

(4.19)

By default, Maple uses the SI system of units, in which length is measured in meters and time is measured in seconds.

> (4.19)

3hour

19.707013333333333333333333333333 m

s

To view the name of the default system of units, use the Units[DUnits] command or view the current selection for Choose System, under the Convert Output Units section of the context panel.

> with(Units):

Automatically loading the Units[Standard] subpackage

> UsingSystem()

SI

To change the system of units, use the Units[UseSystem] command or click the output and then select the desired system of units in the Choose System list, under the Convert Output Units section of the context panel.

> UseSystem(FPS):

> (4.19) \cdot 3m \cdot 1.1kg

1.666720740967538865885452 \times 10^7 \text{ ft}^2 \text{ lb}

Extensibility

You can extend the set of:

• Base dimensions and units
• Complex dimensions
• Complex units
• Systems of units

For more information, refer to the Units[AddBaseUnit], Units[AddDimension], Units[AddUnit], and Units[AddSystem] help pages.

For more information about units, refer to the Units help page.

Scientific Constants and Element Properties

Computations often require not only units (see Units (page 93)), but also the values of scientific constants, including properties of elements and their isotopes. Maple supports computations with scientific constants. You can use the built-in constants and add custom constants.
Overview of Scientific Constants and Element Properties

The ScientificConstants package provides the values of constant physical quantities, for example, the velocity of light and the atomic weight of sodium. The ScientificConstants package also provides the units for the constant values, allowing for greater understanding of the equation as well as unit-matching for error checking of the solution.

The quantities available in the ScientificConstants package are divided into two distinct categories.

- Physical constants
- Chemical element (and isotope) properties

Scientific Constants

List of Scientific Constants

You have access to scientific constants important in engineering, physics, chemistry, and other fields. Table 4.5 lists some of the supported constants. For a complete list of scientific constants, refer to the ScientificConstants/Physical-Constants help page.

Table 4.5: Scientific Constants

<table>
<thead>
<tr>
<th>Name</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newtonian _constant_of_gravitation</td>
<td>G</td>
</tr>
<tr>
<td>Planck _constant</td>
<td>h</td>
</tr>
<tr>
<td>elementary_charge</td>
<td>e</td>
</tr>
<tr>
<td>Bohr _radius</td>
<td>a[0]</td>
</tr>
<tr>
<td>deuteron _magnetic_moment</td>
<td>mu[d]</td>
</tr>
<tr>
<td>Avogadro _constant</td>
<td>N[A]</td>
</tr>
<tr>
<td>Faraday _constant</td>
<td>F</td>
</tr>
</tbody>
</table>

You can specify a constant using either its name or symbol.

Accessing Constant Definition

The GetConstant command in the ScientificConstants package returns the complete definition of a constant.

To view the definition of the Newtonian gravitational constant, specify the symbol \(G \) (or its name) in a call to the GetConstant command.

> with(ScientificConstants):

> GetConstant('G')

\[
\text{Newtonian_constant_of_gravitation, symbol = G, value = 6.67408 \times 10^{-11}, uncertainty = 3.1 \times 10^{-15}, units = \frac{m^3}{kg \cdot s^2}}
\]

For information on accessing a constant's value, units, or uncertainty, see Value, Units, and Uncertainty (page 99).

Element Properties

Maple also contains element properties and isotope properties.
Elements

Maple supports all 117 elements of the periodic table. Each element has a unique name, atomic number, and chemical symbol. You can specify an element using any of these labels. For a complete list of supported elements, refer to the `ScientificConstants/elements` help page.

Maple supports key element properties, including atomic weight (`atomicweight`), electron affinity (`electronaffinity`), and density. For a complete list of element properties, refer to the `ScientificConstants/properties` help page.

Isotopes

Isotopes, variant forms of an element that contain the same number of protons but a different number of neutrons, exist for many elements.

To see the list of supported isotopes for an element, use the `GetIsotopes` command.

> `GetIsotopes('element' = 'Li')`

`\text{Li}_4, \text{Li}_7, \text{Li}_9, \text{Li}_{10}, \text{Li}_{11}, \text{Li}_{12}`

Maple supports isotopes and has a distinct set of properties for isotopes, including abundance, binding energy (`bindingenergy`), and mass excess (`massexcess`). For a complete list of isotope properties, refer to the `ScientificConstants/properties` help page.

Accessing an Element or Isotope Property Definition

The `GetElement` command in the `ScientificConstants` package returns the complete definition of an element or isotope.

> `GetElement('Li')`

3, `symbol = Li, name = lithium, names = \{lithium\}`, `atomicweight = [value = 6.941, uncertainty = 0.002, units = \text{amu}]`, `ionizationenergy = [value = 5.3917, uncertainty = \text{undefined}, units = \text{eV}]`, `electronaffinity = [value = 0.6180, uncertainty = 0.0005, units = \text{eV}]`, `density = [value = 0.534, uncertainty = \text{undefined}, units = \frac{g}{cm^3}]`, `boilingpoint = [value = 1615.\text{e}^0, uncertainty = \text{undefined}, units = \text{K}]`, `electronegativity = [value = 0.98, uncertainty = \text{undefined}, units = 1]`, `meltingpoint = [value = 453.65, uncertainty = \text{undefined}, units = \text{K}]`

> `GetElement('Li[4]')`

\text{Li}_4, `atomicmass = [value = 4.027182329 \times 10^6, uncertainty = 227.733, units = \mu\text{amu}]`, `massexcess = [value = 25320.173, uncertainty = 212.132, units = \text{keV}]`, `bindingenergy = [value = 4618.058, uncertainty = 212.132, units = \text{keV}]`

Value, Units, and Uncertainty

To use constants or element properties, you must first construct a `ScientificConstants` object.

To construct a scientific constant, use the `Constant` command.

> `G := Constant('G'):`

To construct an element (or isotope) property, use the `Element` command.
Value
To obtain the value of a \texttt{ScientificConstants} object, use the \texttt{evalf} command.

\[
> \text{evalf}(\text{G}) \\
1.069085060348798883657843 \times 10^{-9}
\]

\[
> \text{evalf}(\text{LiAtomicWeight}) \\
2.541006042098988569847416 \times 10^{-26}
\]

\textbf{Note:} The value returned depends on the current system of units.

Units
To obtain the units for a \texttt{ScientificConstants} object, use the \texttt{GetUnit} command.

\[
> \text{GetUnit}(\text{G}) \\
\frac{\text{ft}^3}{\text{lb s}^2}
\]

\[
> \text{GetUnit}(\text{LiAtomicWeight}) \\
\text{lb}
\]

For information on changing the default system of units, for example, from SI to foot-pound-second, see \textit{Changing the Current System of Units} (page 97).

Value and Units
If you are performing computations with units, you can access the value and units for a \texttt{ScientificConstants} object by specifying the \texttt{units} option when constructing the object, and then evaluating the object.

\[
> \text{evalf}(\text{Constant}('\text{G}', \text{units})) \\
1.069085060348798883657843 \times 10^{-9} \ \frac{\text{ft}^3}{\text{lb s}^2}
\]

\[
> \text{evalf}(\text{Element}('\text{Li}[5]', \text{atomicmass, units})) \\
1.835022161919831058886639 \times 10^{-26} \ \text{lb}
\]

Uncertainty
The value of a constant is often determined by direct measurement or derived from measured values. Hence, it has an associated uncertainty. To obtain the uncertainty in the value of a \texttt{ScientificConstants} object, use the \texttt{GetError} command.
Performing Computations

You can use constant values in any computation. To use constant values with units, use a Units environment as described in Performing Computations with Units (page 96). For information on computing with quantities that have an uncertainty, see the following section.

Modification and Extensibility

You can change the definition of a scientific constant or element (or isotope) property. For more information, refer to the ScientificConstants[ModifyConstant] and ScientificConstants[ModifyElement] help pages.

You can extend the set of:

• Constants
• Elements (and isotopes)
• Element (or isotope) properties

For more information, refer to the ScientificConstants[AddConstant], ScientificConstants[AddElement], and ScientificConstants[AddProperty] help pages.

For more information about constants, refer to the ScientificConstants help page.

Uncertainty Propagation

Some computations involve uncertainties (or errors). Using the ScientificErrorAnalysis package, you can propagate the uncertainty in these values through the computation to indicate the possible error in the final result.

The ScientificErrorAnalysis package does not perform interval arithmetic. That is, the error of an object does not represent an interval in which possible values must be contained. (To perform interval arithmetic, use the Tolerances package. For more information, refer to the Tolerances help page.) The quantities represent unknown values with a central tendency. For more information on central tendency, refer to any text on error analysis for the physical sciences or engineering.

Quantities with Uncertainty

Creating: To construct quantities with uncertainty, use the Quantity command. You must specify the value and uncertainty. The uncertainty can be defined absolutely, relatively, or in units of the last digit. For more information on uncertainty specification, refer to the ScientificErrorAnalysis[Quantity] help page.

The output displays the value and uncertainty of the quantity.

> restart :

> with(ScientificConstants): with(ScientificErrorAnalysis):
To specify the error in units of the last digit, the value must be of floating-point type.

> Quantity(105.0, 12, 'uld')

Quantity(105.0, 12)

To access the value and uncertainty of a quantity with uncertainty, use the `evalf` and `ScientificErrorAnalysis[GetError]` commands.

> evalf(4.20)

105.

> GetError(4.20)

3.15

Rounding: To round the error of a quantity with uncertainty, use the `ApplyRule` command. For a description of the predefined rounding rules, refer to the `ScientificErrorAnalysis/rules` help page.

> GetError(ApplyRule(4.20, 'round[2]'))

3.2

Units: Quantities with errors can have units. For example, the scientific constants and element (and isotope) properties in the `ScientificConstants` packages are quantities with errors and units.

To construct a new quantity with units and an uncertainty, include units in the `Quantity` calling sequence.

For an absolute error, you must specify the units in both the value and error.

> with(Units[Standard]) : with(ScientificErrorAnalysis) :

> Quantity(3.5 m, 0.1 m)

Quantity(3.5 m, 0.1 m)

For a relative error, you can specify the units in only the value.

> Quantity(3.5 m, 0.1, 'relative')

Quantity(3.5 m, 0.35 m)

For information on the correlation between, variance of, and covariance between quantities with uncertainty, refer to the `ScientificErrorAnalysis` help page.

Performing Computations with Quantities with Uncertainty

Many Maple commands support quantities with uncertainty.

> q1 := Quantity(31., 2):
Compute the value of the derivative of $q1 \cdot x^2 + \sin(q2 \cdot x)$ at $x = \sin(\pi/4)$.

```maple
> q2 := Quantity(20., 1.):

> d1 := diff(q1*x^2 + sin(q2*x), x)
    d1 := 2 Quantity(31., 2.) x + Quantity(20., 1.) cos(Quantity(20., 1.) x)

> d2 := eval(d1, x = sin(\pi/4)):

To convert the solution to a single quantity with uncertainty, use the `combine/errors` command.

```maple
> result := combine(d2, 'errors'):

The value of the result is:

```maple
> evalf(result)
    43.74124725
```

The uncertainty of the result is:

```maple
> GetError(result)
    14.42690612
```

Additional Information

For information on topics including:

- Creating new rounding rules,
- Setting the default rounding rule, and
- Creating a new interface to quantities with uncertainty,

refer to the `ScientificErrorAnalysis` help page.

4.6 Restricting the Domain

By default, Maple computes in the complex number system. Most computations are performed without any restrictions or assumptions on the variables. Maple often returns results that are extraneous or unsimplified when computing in the field of complex numbers. Using restrictions, you can more easily and efficiently perform computations in a smaller domain.

Maple has facilities for performing computations in the real number system and for applying assumptions to variables.

Real Number Domain

To force Maple to perform computations in the field of real numbers, use the `RealDomain` package.

The `RealDomain` package contains a small subset of Maple commands related to basic precalculus and calculus mathematics, for example, `arccos`, `limit`, and `log`, and the symbolic manipulation of expressions and formulae, for example, `expand`, `eval`, and `solve`. For a complete list of commands, refer to the `RealDomain` help page.

After you load the `RealDomain` package, Maple assumes that all variables are real. Commands return simplified results appropriate to the field of real numbers.
Table 4.6: Restricting to Real Numbers

<table>
<thead>
<tr>
<th>Without Loading RealDomain</th>
<th>After Loading RealDomain</th>
</tr>
</thead>
<tbody>
<tr>
<td>In Maple’s default environment, without loading RealDomain, the answers are correct for the entire complex field.</td>
<td>After loading RealDomain, the answers are simplified.</td>
</tr>
</tbody>
</table>
| > simplify(\(\sqrt{x^2}\)) | > with(RealDomain) :
| \(\text{csgn}(x) \times x\) (4.21) | \(\text{simplify}(\sqrt{x^2})\) |
| > ln(\(e^x\)) | > ln(\(e^x\)) \(\times x\) (4.22) |
| \(\ln(e^x)\) | > \((-32)^{\frac{1}{5}}\) |
| \((-32)^{\frac{1}{5}}\) | \(-2\) (4.23) |
| > solve(\(x^2 = -1\)) | Complex return values are excluded or replaced by undefined. |
| \(I, -I\) | > solve(\(x^2 = -1\)) |
| > arcsin(\(e^2\)) | > arcsin(\(e^2\)) undefined |
| \(\text{arcsin}(e^2)\) | |

After loading the RealDomain package, you can also use the context-sensitive items for simplify and solve to perform computations in the field of real numbers. For example, using the context panel item Simplify > Simplify,

\[\sqrt{x^2} \quad \text{simplify} \quad |x|\]

Assumptions on Variables

To simplify problem solving, it is recommended that you always apply any known assumptions to variables. You can impose assumptions using the assume command. To apply assumptions for a single computation, use the assuming command.

Note: The assume and assuming commands are not supported by the RealDomain package.

The assume Command

You can use the assume command to set variable properties, for example, \(x::\text{real}\), and relationships between variables, for example, \(x < 0\) or \(x < y\). For information on valid properties, refer to the assume help page. For information on the double colon (::) operator, refer to the type help page.

The assume command allows improved simplification of symbolic expressions, especially multiple-valued functions, for example, computing the square root.

To assume that \(x\) is a positive real number, use the following calling sequence. Then compute the square root of \(x^2\).
4.6 Restricting the Domain • 105

> `assume(0 < x): \sqrt{x^2}`

\[\sqrt{x^2} \]

The trailing tilde (\(~\)) on the name `x` indicates that it carries assumptions.

When you use the `assume` command to place another assumption on `x`, all previous assumptions are removed.

> `assume(x < 0): \sqrt{x^2}`

\[\sqrt{x^2} \]

Displaying Assumptions: To view the assumptions on an expression, use the `about` command.

> `about(x)`

Originally `x`, renamed `x~`:

```markdown
is assumed to be: RealRange(-infinity,Open(0))
```

Imposing Multiple Assumptions: To simultaneously impose multiple conditions on an expression, specify multiple arguments in the `assume` calling sequence.

> `assume(0 < x, x < 2)`

To specify additional assumptions without replacing previous assumptions, use the `additionally` command. The syntax of the `additionally` calling sequence is the same as that of the `assume` command.

> `additionally(x::integer): about(x)`

Originally `x`, renamed `x~`:

```markdown
is assumed to be: 1
```

The only integer in the open interval \((0, 2)\) is 1.

Testing Properties: To test whether an expression always satisfies a condition, use the `is` command.

> `assume(15 < x, 7 < y): is(100 < x y)`

```markdown
true
```

The following test returns `false` because there are values of `x` and `y` \((x = 0, y = 10)\) that satisfy the assumptions, but do not satisfy the relation in the `is` calling sequence.

> `assume(x::nonnegint, 10 <= y): is(10 < x + y)`

```markdown
false
```

To test whether an expression can satisfy a condition, use the `coulditbe` command.

> `coulditbe(10 < x + y)`

```markdown
true
```

Removing Assumptions: To remove all assumptions on a variable, unassign its name.

> `unassign (x', y')`
For more information, see *Unassigning Names (page 67)*.

For more information on the `assume` command, refer to the `assume` help page.

The assuming Command

To perform a single evaluation under assumptions on the names in an expression, use the `assuming` command.

The syntax of the assuming command is `<expression> assuming <property or relation>`. Properties and relations are introduced in *The assume Command (page 104)*.

The `frac` command returns the fractional part of an expression.

\[
> \text{frac}(x) \text{ assuming } x :: \text{integer} \\
\quad 0
\]

Using the `assuming` command is equivalent to imposing assumptions with the `assume` command, evaluating the expression, and then removing the assumptions.

\[
> \text{about}(x) \\
\quad x: \\
\quad \text{nothing known about this object}
\]

If you do not specify the names to which to apply a property, it is applied to all names.

\[
> \sqrt{\left(\frac{a^2}{b} \right)} \text{ assuming } \text{positive} \\
\quad \sqrt{\frac{a^2}{b^2}}
\]

Assumptions placed on names using the `assume` command are ignored by the `assuming` command, unless you include the `additionally` option.

\[
> \text{assume}(x < 1) \\
> \text{is}(1 - x^2 > 0) \text{ assuming } x > -1 \\
\quad \text{false}
\]

\[
> \text{is}(1 - x^2 > 0) \text{ assuming additionally, } x > -1 \\
\quad \text{true}
\]

The `assuming` command does not affect variables inside procedures. (For information on procedures, see *Procedures (page 296)*.) You must use the `assume` command.
\[
\begin{align*}
> \quad & f := \text{proc}(x) \sqrt{a^2} + x \text{ end proc;} \\
\quad & f := \text{proc}(x) \text{ Units:-Standard:-} ' + ' (\text{RealDomain:-sqrt(RealDomain:-}\text{^}(a, 2)), x) \text{ end proc} \\
> \quad & f(1) \text{ assuming } a > 0 \\
& \quad \quad \sqrt{a^2} + 1 \\
> \quad & \text{assume}(a > 0): \quad f(1) \\
& \quad \quad \sqrt{a^2} + 1
\end{align*}
\]

For more information on the `assuming` command, refer to the `assuming` help page.
5 Mathematical Problem Solving

This chapter focuses on solving problems in specific mathematical disciplines. The areas described below are not all that Maple provides, but represent the most commonly used packages. Examples are provided to teach you how to use the different methods of calculation available in Maple, including tutors, assistants, commands, task templates, plotting, and context-sensitive operations.

The examples in this chapter assume knowledge of entering commands and mathematical symbols. For information, see Entering Expressions (page 13). For information on basic computations, including integer operations and solving equations, see Basic Computations (page 73).

5.1 In This Chapter

<table>
<thead>
<tr>
<th>Section</th>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algebra (page 109) - Performing algebra computations</td>
<td>• Polynomial Algebra</td>
</tr>
<tr>
<td>Linear Algebra (page 116) - Performing linear algebra computations</td>
<td>• Creating Matrices and Vectors</td>
</tr>
<tr>
<td>Calculus (page 128) - Performing calculus computations</td>
<td>• Limits</td>
</tr>
<tr>
<td>Optimization (page 137) - Performing optimization computations using the Optimization package</td>
<td>• Point-and-Click Interface</td>
</tr>
<tr>
<td>Statistics (page 141) - Performing statistics computations using the Statistics package</td>
<td>• Probability Distributions and Random Variables</td>
</tr>
<tr>
<td>Teaching and Learning with Maple (page 145) - Student and Instructor resources for using Maple in an academic setting</td>
<td>• Table of Student and Instructor Resources</td>
</tr>
<tr>
<td>Clickable MathTM (page 157) - Solve math problems using some of the interactive methods available in Maple</td>
<td>• Step-by-Step examples</td>
</tr>
</tbody>
</table>

5.2 Algebra

Maple contains a variety of commands that perform integer operations, such as factoring and modular arithmetic, as described in Integer Operations (page 77). In addition, it supports polynomial algebra.

For information on matrix and vector algebra, see Linear Algebra (page 116).
Polynomial Algebra

A Maple polynomial is an expression in powers of an unknown. *Univariate* polynomials are polynomials in one unknown, for example, \(x^3 - 2x + 13 \). *Multivariate* polynomials are polynomials in multiple unknowns, such as
\[
x^3 y - \frac{3}{2} x y^2 + 7 x.
\]

The coefficients can be integers, rational numbers, irrational numbers, floating-point numbers, complex numbers, variables, or a combination of these types.

\[
> a x^2 + 7x - \frac{b}{2}
\]

\[
a x^2 + 7 x - \frac{1}{2} b
\]

Arithmetic

The polynomial arithmetic operators are the standard Maple arithmetic operators excluding the division operator (/). (The division operator accepts polynomial arguments, but does not perform polynomial division.)

Polynomial division is an important operation. The `quo` and `rem` commands find the quotient and remainder of a polynomial division. See Table 5.1. (The `iquo` and `irem` commands find the quotient and remainder of an integer division. For more information, see Integer Operations (page 77).)

<table>
<thead>
<tr>
<th>Table 5.1: Polynomial Arithmetic Operators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation</td>
</tr>
<tr>
<td>Addition</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Subtraction</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Multiplication</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Division: Quotient and Remainder</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Exponentiation</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
You can specify multiplication explicitly by entering *, which displays in 2-D Math as \(\cdot \). In 2-D Math, you can also implicitly multiply by placing a space character between two expressions. In some cases, the space character is optional. For example, Maple interprets a number followed by a name as an implicit multiplication.

In 2-D Math, exponents display as superscripts.

To expand a polynomial, use the `expand` command.

\[
\text{expand}(3 \, x^2 \cdot (3 \, x+5) - (x^2 - 2))
\]

\[9 \, x^3 + 14 \, x^2 + 2\]

If you need to determine whether one polynomial divides another, but do not need the quotient, use the `divide` command. The `divide` command tests for exact polynomial division.

\[
\text{divide}(x^4 y^2 + x^3 y^2 - x^2 y^2 + 13 \, x^2 + 13 \, x - 13 + y \cdot x^2 + x \cdot y - y, x^2 + x - 1)
\]

\[true\]

Important: You must insert a space character or a multiplication operator (\(\cdot \)) between adjacent variables names. Otherwise, they are interpreted as a single variable.

For example, without a space, \(xy \) is considered a single variable, and \(x \) does not divide the single variable \(xy \).

\[
\text{divide}(xy, x)
\]

\[false\]

But, \(x \) divides the product of \(x \) and \(y \).

\[
\text{divide}(x \, y, x); \quad \text{divide}(x \, y, x)
\]

\[true\]

\[true\]

For information on polynomial arithmetic over finite rings and fields, refer to the `mod` help page.

Sorting Terms

To sort the terms of a polynomial, use the `sort` command.

\[
p1 := x^2 + x^4 + x^3 - x;
\]

\[
\text{sort}(p1)
\]

\[x^4 + x^3 + x^2 - x\]

Note: The `sort` command returns the sorted polynomial, and updates the order of the terms in the polynomial.

The terms of \(p1 \) are sorted.
> p1

\[x^4 + x^3 + x^2 - x \]

To specify the unknowns of the polynomial and their ordering, include a list of names.

> sort(a^2x^3 + x^2 + xa + a + b, [a])

\[a^2 x^3 + x^2 + xa + a + x^2 + b \]

> sort(a^2x^3 + x^2 + xa + a + b, [x, b])

\[a^2 x^3 + x^2 + ax + b + a \]

By default, the \texttt{sort} command sorts a polynomial by decreasing total degree of the terms.

> p2:=x^3+y^3+x^2y^2:

> sort(p2, [x, y])

\[x^2 y^2 + x^3 + y^3 \]

The first term has total degree 4. The other two terms have total degree 3. The order of the final two terms is determined by the order of their names in the list.

To sort the terms by pure lexicographic order, that is, first by decreasing order of the first unknown in the list option, and then by decreasing order of the next unknown in the list option, specify the \texttt{plex} option.

> sort(p2, [x, y], 'plex')

\[x^3 + x^2 y^2 + y^3 \]

For information on enclosing keywords in right single quotes ('), see \textit{Delaying Evaluation (page 282)}.

The first term contains \(x \) to the power 3; the second, \(x \) to the power 2; and the third, \(x \) to the power 0.

Using context-sensitive operations, you can perform operations, such as sorting, for polynomials and many other Maple objects.

To sort a polynomial:

1. Select the polynomial.
2. From the Context Panel, under the \textbf{Sorts} menu, select:

 - \textbf{Single-variable}, and then the unknown, or,
 - \textbf{Two-variable} (or \textbf{Three-variable}), \textbf{Pure Lexical} or \textbf{Total Degree}, and then the sort priority of the unknowns.

See Figure 5.1.
Figure 5.1: Sorting a Polynomial Using the Context Panel

Maple sorts the polynomial.

In Worksheet mode, Maple inserts the calling sequence that performs the sort followed by the sorted polynomial. For this example, choose \textbf{Sorts > Two-variable > Pure Lexical > y,x}.

\begin{align*}
> \ & x^3 + y^3 + x^2y^2 \\
\end{align*}

\begin{align*}
> \ & x^3 + x^2 y^2 + y^3 \\
\end{align*}

\begin{align*}
> \ & \text{sort}(y^3 + y^2x^2 + x^3, [y,x], '\text{plex}') \\
\end{align*}

\begin{align*}
> \ & y^3 + y^2x^2 + x^3 \\
\end{align*}
You can use the Context Panel to perform context-sensitive operations on 2-D Math content including output. For more information, see Computing with the Context Panel (page 48) (for Document mode) or The Context Panel (page 63) (for Worksheet mode).

Collecting Terms

To collect the terms of polynomial, use the `collect` command.

$$\text{> collect} \left(2 axy + c x^2 y - z y^2 + az - 13 by + \frac{3y^2}{x}, y \right)$$

$$\left(-z + \frac{3}{x}\right)y^2 + (c x^2 + 2ax - 13b)y + a z$$

Coefficients and Degrees

Maple has several commands that return coefficient and degree values for a polynomial. See Table 5.2.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>coeff</code></td>
<td>Coefficient of specified degree term</td>
<td>(\text{> coeff} \left(\frac{1}{2}x^3 - 2x + 5, x^3 \right))</td>
</tr>
<tr>
<td><code>lcoeff</code></td>
<td>Leading coefficient</td>
<td>(\text{> lcoeff} \left(\frac{1}{2}x^3 - 2x + 5 \right))</td>
</tr>
<tr>
<td><code>tcoeff</code></td>
<td>Trailing coefficient</td>
<td>(\text{> tcoeff} \left(\frac{1}{2}x^3 - 2x + 5 \right))</td>
</tr>
<tr>
<td><code>coeffs</code></td>
<td>Sequence of all coefficients, in one-to-one correspondence with the terms</td>
<td>(\text{> coeffs} \left(\frac{1}{2}x^3 - 2x + 5 \right))</td>
</tr>
<tr>
<td></td>
<td>Note: It does not return zero coefficients</td>
<td>5, (-2, \frac{1}{2})</td>
</tr>
<tr>
<td><code>degree</code></td>
<td>(Highest) degree</td>
<td>(\text{> degree} \left(\frac{1}{2}x^3 - 2x + 5 \right))</td>
</tr>
<tr>
<td><code>ldegree</code></td>
<td>Lowest degree term with a non-zero coefficient</td>
<td>(\text{> ldegree} \left(\frac{1}{2}x^3 - 2x \right))</td>
</tr>
</tbody>
</table>

Factorization

To express a polynomial in fully factored form, use the `factor` command.
The `factor` command factors the polynomial over the ring implied by the coefficients, for example, integers. You can specify an algebraic number field over which to factor the polynomial. For more information, refer to the `factor` help page. (The `ifactor` command factors an integer. For more information, see Integer Operations (page 77).)

To solve for the roots of a polynomial, use the `solve` command. For information on the `solve` command, see Solving Equations and Inequalities (page 80). (The `isolve` command solves an equation for integer solutions. For more information, see Integer Equations (page 91).)

Other Commands

Table 5.3 lists other commands available for polynomial operations.

Table 5.3: Select Other Polynomial Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>content</td>
<td>Content (multivariate polynomial)</td>
</tr>
<tr>
<td>compoly</td>
<td>Decomposition</td>
</tr>
<tr>
<td>discrim</td>
<td>Discriminant</td>
</tr>
<tr>
<td>gcd</td>
<td>Greatest common divisor (of two polynomials)</td>
</tr>
<tr>
<td>gcdex</td>
<td>Extended Euclidean algorithm (for two polynomials)</td>
</tr>
<tr>
<td>CurveFitting[PolynomialInterpolation]</td>
<td>Interpolating polynomial (for list of points)</td>
</tr>
<tr>
<td>lcm</td>
<td>Least common multiple (of two polynomials)</td>
</tr>
<tr>
<td>norm</td>
<td>Norm</td>
</tr>
<tr>
<td>prem</td>
<td>Pseudo-remainder (of two multivariate polynomials)</td>
</tr>
<tr>
<td>primpart</td>
<td>Primitive part (multivariate polynomial)</td>
</tr>
<tr>
<td>randpoly</td>
<td>Random polynomial</td>
</tr>
<tr>
<td>PolynomialTools[IsSelfReciprocal]</td>
<td>Determine whether self-reciprocal</td>
</tr>
<tr>
<td>resultant</td>
<td>Resultant (of two polynomials)</td>
</tr>
<tr>
<td>roots</td>
<td>Exact roots (over algebraic number field)</td>
</tr>
<tr>
<td>sqrfree</td>
<td>Square-free factorization (multivariate polynomial)</td>
</tr>
</tbody>
</table>

Additional Information

Table 5.4: Additional Polynomial Help

<table>
<thead>
<tr>
<th>Topic</th>
<th>Resource</th>
</tr>
</thead>
<tbody>
<tr>
<td>General polynomial information</td>
<td><code>polynom</code> help page</td>
</tr>
<tr>
<td>PolynomialTools package</td>
<td>PolynomialTools package overview help page</td>
</tr>
<tr>
<td>Algebraic manipulation of numeric polynomials</td>
<td>SNAP (Symbolic-Numeric Algorithms for Polynomials) package overview help page</td>
</tr>
<tr>
<td>Polynomial information and commands</td>
<td>Maple Help System Table of Contents: Mathematics→Algebra→Polynomials section</td>
</tr>
</tbody>
</table>
5.3 Linear Algebra

Linear algebra operations act on Matrix and Vector data structures.

You can perform many linear algebra operations using task templates. In the Task Browser (Tools → Tasks → Browse), expand the Linear Algebra folder.

Creating Matrices and Vectors

Creating Matrices

You can create a Matrix using

• The Matrix command
• The angle bracket shortcut notation
• The Matrix palette (see Figure 5.2).

When creating a Matrix using the Matrix command, there are several input formats available. For example, enter a list of lists. The dimensions of the matrix are inferred from the number of entries given.

\[
\text{Matrix}\left(\begin{bmatrix}1, \pi, 0, \frac{\pi}{2}, 0, 0, 5e\end{bmatrix}\right)
\]

\[
\begin{bmatrix}
1 & \pi & 0 \\
\pi^2 & \sin(t) & \frac{\pi}{2} \\
0 & 0 & 5e
\end{bmatrix}
\]

Alternatively, use the angle bracket shortcut, <>. Separate items in a column with commas, and separate columns with vertical bars, |.

\[
\begin{bmatrix}
1, \pi, 0 \\
\pi^2, \sin(t), \frac{\pi}{2} \\
0, 0, 5e
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & \pi^2 & 0 \\
\pi & \sin(t) & 0 \\
0 & \frac{\pi}{2} & 5e
\end{bmatrix}
\]

For information on the Matrix command options, see Creating Matrices and Vectors with Specific Properties (page 120).
Use the Matrix palette to interactively create a matrix without commands:

![Matrix Palette](Figure5.2:MatrixPalette)

Figure 5.2: Matrix Palette

In the Matrix palette, you can specify the matrix size (see Figure 5.3) and properties. To insert a matrix, click the **Insert Matrix** button.

![Matrix Palette: Choosing the Size](Figure5.3:MatrixPalette:ChoosingtheSize)

Figure 5.3: Matrix Palette: Choosing the Size

After inserting the matrix:

1. Enter the values of the entries. To move to the next entry placeholder, press **Tab**.
2. After specifying all entries, press **Enter**.
Creating Vectors

You can create a Vector using angle brackets (< >).

To create a column vector, specify a comma-delimited sequence, \(<a, b, c>\). The number of elements is inferred from the number of expressions.

\[
> (1, 2, 3)
\]

\[(1)e_x + (2)e_y + (3)e_z\]

To create a row vector, specify a vertical-bar-delimited (|) sequence, \(<a | b | c>\). The number of elements is inferred from the number of expressions.

\[
> (1 | 2 | 3)
\]

\[(1)e_x + (2)e_y + (3)e_z\]

For information on the Vector command options, refer to the Vector help page.

You can also create vectors using the Matrix palette. If either the number of rows or number of columns specified is 1, then you have the option of inserting a matrix, or inserting a vector of the appropriate type. See Figure 5.4.

![Matrix palette](image)

Figure 5.4: Insert Matrix or Insert Vector

Viewing Large Matrices and Vectors

Matrices 10 × 10 and smaller, and vectors with 10 or fewer elements, display in the document. For larger matrices or vectors, a portion is shown inline.

For example, insert a 15 × 15 matrix.

In the Matrix palette:

1. Specify the dimensions: 15 rows and 15 columns.
2. In the **Type** drop-down list, select a matrix type, for example, **Random**.
3. Click **Insert Matrix**. The command is inserted; execute it to see the result.

\[\text{LinearAlgebra} \cdot \text{RandomMatrix}(15, 15) \]

\[
\begin{bmatrix}
19 & 67 & 60 & -60 & -60 & -13 & -33 & 54 & -1 & 41 & \ldots \\
87 & -55 & 79 & -24 & 77 & -35 & 79 & 31 & 21 & 18 & \ldots \\
33 & 14 & -26 & 37 & -65 & 88 & 93 & 32 & -10 & -9 & \ldots \\
79 & 5 & 1 & 28 & -84 & -72 & 40 & -31 & -82 & -92 & \ldots \\
-43 & -32 & -16 & -35 & 4 & -7 & 75 & -19 & 23 & -24 & \ldots \\
36 & 79 & -33 & 51 & 10 & -20 & 72 & -84 & 82 & -62 & \ldots \\
6 & 40 & -36 & 51 & -54 & -74 & 48 & -48 & 42 & -95 & \ldots \\
38 & 42 & -27 & -89 & 52 & 0 & -44 & -81 & -25 & 79 & \ldots \\
-55 & -38 & -17 & -23 & -94 & -19 & -46 & 93 & 16 & 72 & \ldots \\
41 & 25 & 9 & 21 & 43 & -43 & 80 & -28 & 73 & -60 & \ldots \\
\vdots & \vdots \\
\end{bmatrix}
\]

15 × 15 Matrix

To view the entire matrix or vector, double-click the summary placeholder. This launches the **Matrix Browser**. See Figure 5.5.
To modify the entries using the Matrix Browser:

1. Select the Table tab.
2. Double-click an entry, and then edit its value. Press Enter.
3. Repeat for each entry to edit.
4. When you have finished updating entries, click Done.

You can view the matrix or vector as a table or as an image, which can be inserted into the document. For more information, refer to the MatrixBrowser help page.

To set the maximum dimension of matrices and vectors displayed inline:

- Use the interface command with the rtablesize option.

For example, interface(rtablesize = 15).

For more information, refer to the interface help page.

Creating Matrices and Vectors with Specific Properties

By default, matrices and vectors can store any values. To increase the efficiency of linear algebra computations, create matrices and vectors with properties. You must specify the properties, for example, the matrix shape or data type, when defining the object.

The Matrix palette (Figure 5.2) supports several properties.

To specify the matrix type:

- Use the Shape and Type drop-down lists.

To specify the data type:

- Use the Datatype drop-down list.

For example, define a diagonal matrix with small integer coefficients.

In the Matrix palette:

1. Specify the size of the matrix, for example, 3 × 3.
2. In the Shapes drop-down list, select Diagonal.
3. In the Datatype drop-down list, select integer[1].
4. Click the Insert Matrix button.
5. Enter the values in the diagonal entries.

\[
\begin{bmatrix}
-23 & 0 & 0 \\
0 & 17 & 0 \\
0 & 0 & 32
\end{bmatrix}
\]

You cannot specify properties when defining vectors using the angle-bracket notation. You must use the Vector constructor.

To define a column vector using the Vector constructor, specify:

- The number of elements. If you explicitly specify all element values, this argument is not required.
- A list of expressions that define the element values.
- Parameters such as shape, datatype, and fill that set properties of the vector.
The following two calling sequences are equivalent.

> `Vector([0, 0, 0])`

\((0)e_x + (0)e_y + (0)e_z \)

> `Vector(3, 'shape' = 'zero')`

\((0)e_x + (0)e_y + (0)e_z \)

To create a row vector using the `Vector` constructor, include `row` as an index.

> `Vector[row](3,'fill'= 1)`

\((1)e_x + (1)e_y + (1)e_z \)

> `Vector[row]([127, 0, 34], 'datatype' = 'integer[1]')`

\((127)e_x + (0)e_y + (34)e_z \)

The `Matrix` palette does not support some properties. To set all properties, use the `Matrix` constructor.

To define a matrix using the Matrix constructor, specify:

- The number of rows and columns. If you explicitly specify all element values, these arguments are not required.
- A list of lists that define the element values row-wise.
- Parameters such as `shape`, `datatype`, and `fill` that set properties of the matrix.

For example:

> `Matrix([[1, 2, 3], [4, 5, 6]])`

\[
\begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
\end{bmatrix}
\]

The `Matrix` palette cannot fill the matrix with an arbitrary value. Use the `fill` parameter.

> `Matrix(3, 4, [[1, 2, 3], [4, 5, 6]], 'fill' = 2 + I)`

\[
\begin{bmatrix}
1 & 2 & 3 & 2 + I \\
4 & 5 & 6 & 2 + I \\
2 + I & 2 + I & 2 + I & 2 + I \\
\end{bmatrix}
\]

For more information on the constructors, including other calling sequence syntaxes and parameters, refer to the `storage`, `Matrix`, and `Vector` help pages.

See also *Numeric Computations (page 128).*

Accessing Entries in Matrices and Vectors

Matrices

To select an entry in a Matrix, enter the matrix name with a sequence of two non-zero integer indices, row first.
To select an entire row, enter a single index; to select an entire column, enter first the entire range of rows, 1 ..-1, then the column index.

> M[1, 3]

9.3

To select an entire row, enter a single index; to select an entire column, enter first the entire range of rows, 1 ..-1, then the column index.

> M[2]

[-6.7 -1.2 -8.0]

> M[1 ..-1, 1]

[-4.3
 -6.7
 1.9]

Similarly, you can access submatrices. Enter the indices as a list or range.

> M[2 ..-3, 1 ..2]

[-6.7 -1.2]
[1.9 9.6]

Vectors

To select an entry in a vector, enter the vector name with a non-zero integer index.

> a := <85.3, 47.1, 59.9, 38.1>

\[a := (85.3) e_{x1} + (47.1) e_{x2} + (59.9) e_{x3} + (38.1) e_{x4} \]

> a[1]

85.3

Negative integers select entries from the end of the vector.

> a[−1]

38.1

To create a Vector consisting of multiple entries, specify a list or range of integers in the index. For more information, refer to the set and range help pages.
Linear Algebra Computations

Maple has extensive support for linear algebra. You can perform many matrix and vector computations using context-sensitive operations. Matrix operations such as multiplication and inverses can be done with the basic matrix arithmetic operators. The \texttt{LinearAlgebra} package provides the full range of Maple commands for linear algebra and vector space computations, queries, and linear system solving.

Matrix Arithmetic

The matrix and vector arithmetic operators are the standard Maple arithmetic operators up to the following two differences.

- The scalar multiplication operator is the asterisk (\ast), which displays in 2-D Math as \cdot. The noncommutative matrix and vector multiplication operator is the period ($.$).
- There is no division operator ($/$) for matrix algebra. (You can construct the inverse of a matrix using the exponent $^{-1}$.)

Table 5.5 lists the basic matrix operators.

\begin{verbatim}
> A := matrix([[93, 43], [19, 37]]): B := matrix([[48, 20], [19, 37]]): C := vector([23, 6]):

Table 5.5: Matrix and Vector Arithmetic Operators

<table>
<thead>
<tr>
<th>Operation</th>
<th>Operator</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addition</td>
<td>$+$</td>
<td>$A + B$</td>
</tr>
</tbody>
</table>
| | | \[
\begin{bmatrix}
141 & 63 \\
38 & 74
\end{bmatrix}
\] |
| Subtraction| $-$ | $A - B$ |
| | | \[
\begin{bmatrix}
45 & 23 \\
0 & 0
\end{bmatrix}
\] |
| Multiplication | \cdot | $A.C$ |
| | | $(2397)e_x + (659)e_y$ |
\end{verbatim}
Scalar Multiplication\(^1\) & * & \[
\begin{bmatrix}
116 & 516 \\
228 & 444
\end{bmatrix}
\]
\[
\begin{array}
> 12 \cdot A \\
> 4 \cdot C
\end{array}
\]
\[(92)e_x + (24)e_y\]

Exponentiation\(^2\) & ^ & \[
\begin{bmatrix}
986548 & 613868 \\
271244 & 187092
\end{bmatrix}
\]
\[
\begin{array}
> A^3 \\
> B^{-1}
\end{array}
\]
\[
\begin{bmatrix}
37 & 5 \\
1396 & 349 \\
19 & 12 \\
1396 & 349
\end{bmatrix}
\]

\(^1\)You can specify scalar multiplication explicitly by entering *, which displays in 2-D Math as . In 2-D Math, you can also implicitly multiply a scalar and a matrix or vector by placing a space character between them. In some cases, the space character is optional. For example, Maple interprets a number followed by a name as an implicit multiplication.

\(^2\)In 2-D Math, exponents display as superscripts.

A few additional matrix and vector operators are listed in Table 5.6.

Define two column vectors.

\[d := \langle 1, 2, 3 \rangle; e := \langle 4, 5, 6 \rangle;\]

Table 5.6: Select Matrix and Vector Operators

<table>
<thead>
<tr>
<th>Operation</th>
<th>Operator</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transpose</td>
<td>(^%T^1) & [d^T]</td>
<td></td>
</tr>
</tbody>
</table>
| Hermitian Transpose | \(^%H^1\) & \[
\begin{bmatrix}
I & -2I \\
3 + 4I & 2 - I
\end{bmatrix}
\]
\[
\begin{bmatrix}
-1 & 3 - 4I \\
2I & 2 + I
\end{bmatrix}
\]
Operation | **Operator** | **Example**
--- | --- | ---
Cross Product (3-D vectors only) | $\&x^2$ | $> \text{with(LinearAlgebra):}$

$> d \& x \ e$

$\begin{bmatrix}
-3 \\
6 \\
-3
\end{bmatrix}$

1 Exponential operators display in 2-D Math as superscripts.

2 After loading the `LinearAlgebra` package, the cross product operator is available as the infix operator $\&x$. Otherwise, it is available as the `LinearAlgebra[CrossProduct]` command.

For information on matrix arithmetic over finite rings and fields, refer to the `mod` help page.

Point-and-Click Interaction

Using the Context Panel, you can perform many matrix and vector operations.

Matrix operations available in the Context Panel include the following.

- Perform standard operations: determinant, inverse, norm (1, Euclidean, infinity, or Frobenius), transpose, and trace
- Compute eigenvalues, eigenvectors, and singular values
- Compute the dimension or rank
- Convert to the Jordan form, or other forms
- Perform Cholesky decomposition and other decompositions
For example, compute the infinity norm of a matrix. See Figure 5.6.

Figure 5.6: Computing the Infinity Norm of a Matrix

In Document mode, Maple inserts a right arrow and the name of the computation performed, followed by the norm.

\[
\begin{bmatrix}
18735.6985 & 349723.234987 \\
9859.459 & 7981224.14089
\end{bmatrix} \xrightarrow{\text{infinity-norm}} 807983.5999
\]

Vector operations available in the Context Panel include the following.

- Compute the dimension
- Compute the norm (1, Euclidean, and infinity)
- Compute the transpose
- Select an element

For more information on context-sensitive operations, see *Computing with the Context Panel* (page 48) (for Document mode) or *The Context Panel* (page 63) (for Worksheet mode).

LinearAlgebra Package Commands

The *LinearAlgebra* package contains commands that construct and manipulate matrices and vectors, compute standard operations, perform queries, and solve linear algebra problems.

Table 5.7 lists some *LinearAlgebra* package commands. For a complete list, refer to the *LinearAlgebra/Details* help page.
Table 5.7: Select LinearAlgebra Package Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basis</td>
<td>Return a basis for a vector space</td>
</tr>
<tr>
<td>CrossProduct</td>
<td>Compute the cross product of two vectors</td>
</tr>
<tr>
<td>DeleteRow</td>
<td>Delete a row or rows of a matrix</td>
</tr>
<tr>
<td>Dimension</td>
<td>Determine the dimension of a matrix or a vector</td>
</tr>
<tr>
<td>Eigenvalues</td>
<td>Compute the eigenvalues of a matrix</td>
</tr>
<tr>
<td>Eigenvectors</td>
<td>Compute the eigenvectors of a matrix</td>
</tr>
<tr>
<td>FrobeniusForm</td>
<td>Reduce a matrix to Frobenius form</td>
</tr>
<tr>
<td>GaussianElimination</td>
<td>Perform Gaussian elimination on a matrix</td>
</tr>
<tr>
<td>HessenbergForm</td>
<td>Reduce a square matrix to Hessenberg form</td>
</tr>
<tr>
<td>HilbertMatrix</td>
<td>Construct a generalized Hilbert matrix</td>
</tr>
<tr>
<td>IsOrthogonal</td>
<td>Test if a matrix is orthogonal</td>
</tr>
<tr>
<td>LeastSquares</td>
<td>Compute the least-squares approximation to $A \cdot x = b$</td>
</tr>
<tr>
<td>LinearSolve</td>
<td>Solve the linear system $A \cdot x = b$</td>
</tr>
<tr>
<td>MatrixInverse</td>
<td>Compute the inverse of a square matrix or pseudo-inverse of a non-square matrix</td>
</tr>
<tr>
<td>QRDecomposition</td>
<td>Compute the QR factorization of a matrix</td>
</tr>
<tr>
<td>RandomMatrix</td>
<td>Construct a random matrix</td>
</tr>
<tr>
<td>SylvesterMatrix</td>
<td>Construct the Sylvester matrix of two polynomials</td>
</tr>
</tbody>
</table>

For information on arithmetic operations, see Matrix Arithmetic (page 123).

For information on selecting entries, subvectors, and submatrices, see Accessing Entries in Matrices and Vectors (page 121).

Example: Determine a basis for the space spanned by the set of vectors $\{(2, 13, -15), (7, -2, 13), (5, -4, 9)\}$. Express the vector $(25, -4, 9)$ with respect to this basis.

> with(LinearAlgebra):

> v1 := <2, 13, -15>: v2 := <7, -2, 13>: v3 := <5, -4, 9>:

Find a basis for the vector space spanned by these vectors, and then construct a matrix from the basis vectors.

> basis := Matrix(Basis([v1, v2, v3]));

\[
\begin{bmatrix}
2 & 7 & 5 \\
13 & -2 & -4 \\
-15 & 13 & 9
\end{bmatrix}
\]

To express $(25, -4, 9)$ in this basis, use the LinearSolve command.

> LinearSolve(basis, <25, -4, 9>)

\[
\begin{bmatrix}
170 \\
91 \\
285 \\
91 \\
786 \\
91
\end{bmatrix}
\]
Numeric Computations

You can very efficiently perform computations on large matrices and vectors that contain floating-point data using the built-in library of numeric linear algebra routines. Some of these routines are provided by the Numerical Algorithms Group (NAG®). Maple also contains portions of the CLAPACK and optimized ATLAS libraries.

For information on performing efficient numeric computations using the LinearAlgebra package, refer to the EfficientLinearAlgebra help page.

See also Creating Matrices and Vectors with Specific Properties (page 120) and Reading from Files (page 319).

Student LinearAlgebra Package

The Student package contains subpackages that help instructors teach concepts and allow students to visualize and explore ideas. These subpackages also contain computational commands.

In the Student[LinearAlgebra] subpackage, the environment differs from that of the LinearAlgebra package in that floating-point computations are generally performed using software precision, instead of hardware precision, and symbols are generally assumed to represent real, rather than complex, quantities. These defaults, and others, can be controlled using the SetDefault command. For more information, refer to the Student[SetDefault] help page.

For information on using Maple as a teaching and learning tool, see Teaching and Learning with Maple (page 145).

5.4 Calculus

The Task Browser (Tools→Tasks→Browse) contains numerous calculus task templates. For a list of tasks, navigate to one of the related folders, such as Calculus, Differential Equations, Multivariate Calculus, or Vector Calculus.

This section describes the key Maple calculus commands, many of which are used in task templates or available in the Context Panel.

For a complete list of calculus commands, refer to the Mathematics (including Calculus, Differential Equations, Power Series, and Vector Calculus subfolders) and Student Package sections of the Maple Help System Table of Contents.

Limits

To compute the limit of an expression as the independent variable approaches a value:

1. In the Calculus palette, click the limit item \(\lim_{x \rightarrow a} f \).

2. Specify the independent variable, limit point, and expression, and then evaluate it. Press Tab to move to the next placeholder.

For example:

\[
> \lim_{x \rightarrow 0} \left(\frac{x}{\sin(x)} \right)
\]

1

The limit Command

By default, Maple searches for the real bidirectional limit (unless the limit point is \(\infty \) or \(-\infty \)). To specify a direction, include one of the options left, right, real, or complex in a call to the limit command. See Table 5.8.
Using the `limit` command, you can also compute multidimensional limits.

\[
> \text{limit} \left(\frac{x^2}{y}, \{x = 1, y = \infty\} \right)
\]

\[
0
\]

For more information on multidimensional limits, refer to the `limit/multi` help page.

Numerically Computing a Limit

To numerically compute a limit:

• Use the `evalf(Limit(arguments))` calling sequence.

Important: Use the inert `Limit` command, not the `limit` command. For more information, refer to the `limit` help page.

The `Limit` command accepts the same arguments as the `limit` command.

For example:

\[
> \text{evalf} \left(\text{Limit} \left(\frac{\sin(x)}{\cos(x) + \tan(x)}, x = 1.225 \right) \right)
\]

\[
0.3020605357
\]

For information on the `evalf` command, see Numerical Approximation (page 279).

The `Limit` command does not compute the limit. It returns an unevaluated limit.

\[
> \text{Limit} \left(\frac{\sin(x)}{\cos(x) + \tan(x)}, x = 1.225 \right)
\]

\[
\lim_{x \to 1.225} \frac{\sin(x)}{\cos(x) + \tan(x)}
\]

For more information on the `Limit` command, refer to the `Limit` help page.

Differentiation

Maple can perform symbolic and numeric differentiation.
To differentiate an expression:

1. In the Calculus palette, click the differentiation item \(\frac{d}{dx} f \) or the partial differentiation item \(\frac{\partial}{\partial x} f \).

2. Specify the expression and independent variable, and then evaluate it.

For example, to differentiate \(x \sin(ax) \) with respect to \(x \):

\[
> \text{unassign('a')} : \\
> \frac{d}{dx} (x \sin(ax)) \\
\quad \sin(ax) + xa \cos(ax)
\]

You can also differentiate using the Context Panel. For more information, see The Context Panel (page 27).

To calculate a higher order or partial derivative, edit the derivative symbol inserted. For example, to calculate the second derivative of \(x \sin(ax) + x^2 \) with respect to \(x \):

\[
> \frac{d^2}{dx^2} (x \sin(ax) + x^2) \\
\quad 2a \cos(ax) - xa^2 \sin(ax) + 2
\]

To calculate the mixed partial derivative of \(x \sin(3y) + yx^5 \):

\[
> \frac{\partial^2}{\partial y \partial x} (x \sin(3y) + yx^5) \\
\quad 3 \cos(3y) + 5x^4
\]

Note: To enter another \(\partial \) symbol, you can copy and paste the existing symbol, or enter \(d \) and use symbol completion.

The diff Command

Maple computes derivatives using the \texttt{diff} command. To directly use the \texttt{diff} command, specify the expression to differentiate and the variable.

\[
> x \sin(ax) + x^2 \\
\quad x \sin(ax) + x^2 \quad (5.6)
\]

\[
> \text{diff(5.6,x)} \\
\quad \sin(ax) + xa \cos(ax) + 2x \quad (5.7)
\]

For information on equation labels such as \(5.6 \), see Equation Labels (page 68).

You can calculate a higher order derivative by specifying a sequence of differentiation variables. Maple recursively calls the \texttt{diff} command.
> \texttt{diff((5.6), x, x)}

\begin{equation}
2 \, a \cos(a \, x) - x \, a^2 \sin(a \, x) + 2
\end{equation}

(5.8)

To calculate a partial derivative, use the same syntax. Maple assumes that the derivatives commute.

> \texttt{diff(x \, \sin(3 \, y) + y \sqrt{x}, x, y)}

\begin{equation}
3 \cos(3 \, y) + \frac{1}{2 \sqrt{x}}
\end{equation}

To enter higher order derivatives, it is convenient to use the syntax \texttt{diff(f, x^n)}. This syntax can also be used to compute the symbolic nth order derivative.

For example:

> \texttt{diff(cos(t), t^n)}

\begin{equation}
\cos\left(t + \frac{n \pi}{2}\right)
\end{equation}

\textbf{Differentiating an Operator}

You can also specify a mathematical function as a functional operator (a mapping). For a comparison of operators and other expressions, see Distinction between Functional Operators and Other Expressions (page 266).

\textbf{To find the derivative of a functional operator:}

\begin{itemize}
 \item Use the \texttt{D} operator.
\end{itemize}

The \texttt{D} operator returns a functional operator.

For example, find the derivative of an operator that represents the mathematical function \(F: x \rightarrow x \cos(x). \)

First, define the operator \(F. \)

1. In the Expression palette, click the single-variable function definition item \(f = a \rightarrow y. \)
2. Enter placeholder values.
 \begin{itemize}
 \item To move to the next placeholder, press the \texttt{Tab} key. \textbf{Note:} If pressing the \texttt{Tab} key inserts a tab, click the Tab icon \(\text{Tab} \) in the toolbar.
 \end{itemize}

\texttt{> F := x \rightarrow x \cos(x);}

Now, define the operator, \(G, \) that maps \(x \) to the derivative of \(x \cos(x). \)

\texttt{> G := D(F)}

\texttt{\quad G := x \mapsto \cos(x) - x \sin(x)}

\(F \) and \(G \) evaluated at \(\frac{\pi}{2} \) return the expected values.
For more information on the \texttt{D} operator, refer to the \texttt{D} help page. For a comparison of the \texttt{diff} command and \texttt{D} operator, refer to the \texttt{diffVersusD} help page.

\subsection*{Directional Derivative}

To compute and plot a directional derivative, use the \texttt{Directional Derivative Tutor}. The tutor computes a floating-point value for the directional derivative.

\textbf{To launch the tutor:}

\begin{itemize}
 \item From the \texttt{Tools} menu, select \texttt{Tutors, Calculus - Multivariate}, and then \texttt{Directional Derivatives}. Maple launches the \texttt{Directional Derivative Tutor}. See Figure 5.7.
\end{itemize}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{directional_derivative_tutor.png}
\caption{Directional Derivative Tutor}
\end{figure}

To compute a symbolic value for the directional derivative, use the \texttt{Student[MultivariateCalculus][DirectionalDerivative]} command. The first list of numbers specifies the point at which to compute the derivative. The second list of numbers specifies the direction in which to compute the derivative.
For example, at the point \([1, 2] \), the gradient of \(x^2 + y^2 \) points in the direction \([2, 4] \), which is the direction of greatest increase. The directional derivative in the orthogonal direction \([-2, 1] \) is zero.

\[
\text{DirectionalDerivative}(x^2 + y^2, [x, y] = [1, 2], [1, 2]);
\]

\[
2 \sqrt{5}
\]

\[
\text{DirectionalDerivative}(x^2 + y^2, [x, y] = [1, 2], [-2, 1]);
\]

\[
0
\]

Series

To generate the **Taylor series** expansion of a function about a point, use the `taylor` command.

\[
taylor(\sin(4x)\cos(x), x = 0)
\]

\[
4x - \frac{38}{3} x^3 + \frac{421}{30} x^5 + O(x^7)
\]

Note: If a Taylor series does not exist, use the `series` command to find a general series expansion.

For example, the cosine integral function does not have a taylor series expansion about 0. For more information, refer to the `Ci` help page.

\[
taylor(Ci(x), x = 0)
\]

Error, does not have a taylor expansion, try series()

To generate a truncated series expansion of a function about a point, use the `series` command.

\[
series(Ci(x), x = 0)
\]

\[
\gamma + \ln(x) - \frac{1}{4} x^2 + \frac{1}{96} x^4 + O(x^6)
\]

By default, Maple performs series calculations up to order 6. To use a different order, specify a non-negative integer third argument.

\[
\text{expansion} := \text{series}(Ci(t), t = 0, 4)
\]

\[
\text{expansion} := \gamma + \ln(t) - \frac{1}{4} t^2 + O(t^4)
\]

To set the order for all computations, use the `Order` environment variable. For information about the `Order` variable and the \(O(t^4) \) term, refer to the `Order` help page.

The expansion is of type `series`. Some commands do not accept arguments of type `series`. To use the expansion, you must convert it to a polynomial using the `convert/polynom` command.
Integration

Maple can perform symbolic and numeric integration.

To compute the indefinite integral of an expression:

1. In the **Calculus** palette, click the indefinite integration item \(\int \).
2. Specify the integrand and variable of integration, and then evaluate it.

For example, to integrate \(x \sin(a \cdot x) \) with respect to \(x \):

\[
> \int x \sin(a \cdot x) \, dx
\]

\[
\frac{\sin(a \cdot x) - x \cdot a \cos(a \cdot x)}{a^2}
\]

Recall that you can also enter symbols, including \(\int \) and \(d \), using symbol completion.

- Enter the symbol name (or part of the name), for example, \(\text{int} \) or \(\text{d} \), and then press the completion shortcut key.

For more information, see **Symbol Names (page 21)**.

You can also compute an indefinite integral using the Context Panel. For more information, see **The Context Panel (page 27)**.
To compute the definite integral of an expression:

1. In the Calculus palette, click the definite integration item $\int_a^b f(x) \, dx$.
2. Specify the endpoints of the interval of integration, integrand expression, and variable of integration, and then evaluate it.

For example, to integrate $e^{-at} \ln(t)$ over the interval $(0, \infty)$:

$$\int_0^\infty e^{-at} \ln(t) \, dt$$

$$\lim_{t \to \infty} \left(-\frac{e^{-at} \ln(t) + \text{Ei}_1(at) + \gamma + \ln(a)}{a} \right)$$

Maple treats the parameter a as a complex number. As described in Assumptions on Variables (page 104), you can compute under the assumption that a is a positive, real number using the assuming command.

$$\int_0^\infty e^{-at} \ln(t) \, dt \text{ assuming } a > 0$$

$$\frac{\gamma + \ln(a)}{a}$$

To compute iterated integrals, line integrals, and surface integrals, use the task templates (Tools → Tasks → Browse) in the Multivariate and Vector Calculus folders.

The int Command

$$\int f \, dx \text{ and } \int_a^b f \, dx$$ use the int command. To use the int command directly, specify the following arguments.

- Expression to integrate
- Variable of integration

$$> x \sin(a \, x)$$

$$x \sin(a \, x)$$ (5.9)

$$> \text{int}(\{5.9\}, x)$$

$$\frac{\sin(a \, x) - x \, a \, \cos(a \, x)}{a^2}$$ (5.10)

For a definite integration, set the variable of integration equal to the interval of integration.

$$> \text{int}(\{5.9\}, x = 0..\pi/a)$$

$$\frac{\pi}{a^2}$$ (5.11)
Numeric Integration

To perform numeric integration:

• Use the \texttt{evalf(Int(arguments))} calling sequence.

\textbf{Important:} Use the inert \texttt{Int} command, not the \texttt{int} command. For more information, refer to the \texttt{int} help page.

In addition to the arguments accepted by the \texttt{int} command, you can include optional arguments such as \texttt{method}, which specifies the numeric integration method.

\begin{verbatim}
> evalf(Int(1/G(x), x = 0 .. 2, 'method' = `Dexp`))

1.626378399
\end{verbatim}

For information on the \texttt{evalf} command, see \textit{Numerical Approximation (page 279)}.

For information on numeric integration, including iterated integration and controlling the algorithm, refer to the \texttt{evalf/Int} help page.

Differential Equations

Maple has a powerful set of solvers for ordinary differential equations (ODEs) and partial differential equations (PDEs), and systems of ODEs and PDEs.

For information on solving ODEs and PDEs, see \textit{Other Specialized Solvers (page 87)}.

Calculus Packages

In addition to top-level calculus commands, Maple contains calculus packages.

VectorCalculus Package

The \texttt{VectorCalculus} package contains commands that perform multivariate and vector calculus operations on \texttt{VectorCalculus vectors} (vectors with an additional coordinate system attribute) and \texttt{vector fields} (vectors with additional coordinate system and \texttt{vectorfield} attributes), for example, \texttt{Curl}, \texttt{Flux}, and \texttt{Torsion}.

\begin{verbatim}
> with(VectorCalculus) :

> BasisFormat(false) :

> SetCoordinates(`cartesian[x, y, z]`):

> VectorField1 := VectorField((-y, x, z))

\end{verbatim}

\texttt{VectorField1} := \begin{bmatrix} -y \\ x \\ z \end{bmatrix}

\textbf{Note:} For information on changing the display format in the VectorCalculus package, see the \texttt{VectorCalculus[BasisFormat]} help page.

Find the curl of \texttt{VectorField1}.
Find the flux of VectorField1 through a sphere of radius r at the origin.

\[\text{Flux(VectorField1, Sphere((0, 0, 0), r))} \]

\[\frac{4}{3} r^3 \pi \]

Compute the torsion of a space curve. The curve must be a vector with parametric function components.

\[\text{simplify(Torsion((t, t^2, t^3), t)) assuming t:real} \]

\[\frac{3}{9 t^4 + 9 t^2 + 1} \]

For information on the assuming command, see The assuming Command (page 106).

For more information on the VectorCalculus package, including a complete list of commands, refer to the VectorCalculus help page.

To find other calculus packages, such as VariationalCalculus, refer to the index/package help page.

Student Calculus Packages

The Student package contains subpackages that help instructors teach concepts and allow students to visualize and explore ideas. These subpackages also contain computational commands. The Student calculus subpackages include Calculus1, MultivariateCalculus, and VectorCalculus. The Student[VectorCalculus] package provides a simple interface to a limited subset of the functionality available in the VectorCalculus package.

For information on using Maple as a teaching and learning tool, and some computational examples, see Teaching and Learning with Maple (page 145).

5.5 Optimization

Using the Optimization package, you can numerically solve optimization problems. The package uses fast Numerical Algorithms Group (NAG) algorithms to minimize or maximize an objective function.

The Optimization package solves constrained and unconstrained problems.

- Linear programs
- Quadratic programs
- Nonlinear programs
- Linear and nonlinear least-squares problems

The Optimization package contains local solvers. In addition, for univariate finitely-bounded nonlinear programs with no other constraints, you can compute global solutions using the NLPsolve command. To find global solutions generally, purchase the Global Optimization Toolbox. For more information, visit http://www.maplesoft.com/products/toolboxes.
Point-and-Click Interface

The primary method for solving optimization problems is the Optimization Assistant.

To launch the Optimization Assistant:

- From the Tools menu, select Tutors, Optimization, and then Optimization.

Maple launches the Optimization Assistant. See Figure 5.8.

![Optimization Assistant](image)

Figure 5.8: Optimization Assistant

To solve a problem:

1. Enter the objective function, constraints, and bounds.
2. Select the Minimize or Maximize radio button.
3. Click the Solve button. The solution is displayed in the Solution text box.

You can also enter the problem (objective function, constraints, and bounds) in the calling sequence of the Optimization[Interactive] command.

For example, find the maximum value of $x^3y - y^2$ subject to the constraints $x + y \leq 6$, $x \in [0,5]$, $y \in [0,5]$.

> Optimization[Interactive]($x^3y - y^2$, ($x + y \leq 6$, $x = 0..5$, $y = 0..5$))

\[
[134.491161539748163, [x = 4.53559292539129, y = 1.46440707460871]]
\]

- When the Optimization Assistant opens, select Maximize, then Solve.

After finding a solution, you can plot it. To plot a solution:

- In the Optimization Assistant window, click the Plot button. The Optimization Plotter window is displayed. See Figure 5.9.
Note: When you close the Optimization Assistant, you can choose to return the solution, problem, command used, plot, or nothing, using the drop-down in the bottom right corner of the assistant window.

Figure 5.9: Optimization Assistant Plotter Window

For information on the algorithms used to solve optimization problems, refer to the Optimization/Methods help page.

Large Optimization Problems

The Optimization Assistant accepts input in an algebraic form. You can specify input in other forms, described in the Optimization/InputForms help page, in command calling sequences.

The Matrix form, described in the Optimization/MatrixForm help page, is more complex but offers greater flexibility and efficiency.

For example, solve the linear program:

Maximize \(c^T x \) subject to \(Ax \leq b \), where \(x \) is the vector of problem variables.

1. Define the column vector, \(e \), of the linear objective function.

\[\text{> restart; } \]
\[\text{> with(LinearAlgebra): } \]
> c := RandomVector[column](20, outputoptions = ['datatype'='float']) :

2. Define the matrix A, the coefficient matrix for the linear inequality constraints.

> A := RandomMatrix(19, 20, outputoptions = ['datatype' = 'float']):

3. Define the column vector b, the linear inequality constraints.

> b := RandomVector[column](19, outputoptions = ['datatype' = 'float']):

4. The QPSolve command solves quadratic programs.

> Optimization[LPSolve](c, [A, b, maximize, assume = nonnegative])

This example uses a random data set to demonstrate the problem. You could also read data from an external file as Matrices, and use that data. For details and an example, see Reading from Files (page 319).

Note: For information on creating matrices and vectors (including how to use the Matrix palette to easily create matrices), see Linear Algebra (page 116).

For additional information on performing efficient computations, refer to the Optimization/Computation help page.

MPS(X) File Support

To import linear programs from a standard MPS(X) data file, use the ImportMPS command.

Optimization Package Commands

Each Optimization package command solves the problem using a different optimization method. These are described in Table 5.9, along with the general input form for each command.

Table 5.9: Optimization Package Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPSolve</td>
<td>Solve a linear program (LP), which involves computing the minimum (or maximum) of a linear objective function subject to linear constraints; input is in equation or Matrix form</td>
</tr>
</tbody>
</table>
Command Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSSolve</td>
<td>Solve a least-squares (LS) problem, which involves computing the minimum of a real-valued objective function having the form $\frac{1}{2} \left(f_1(x)^2 + f_2(x)^2 + \ldots + f_q(x)^2 \right)$, where x is a vector of problem variables, possibly subject to constraints; input is in equation or Matrix form.</td>
</tr>
<tr>
<td>Maximize</td>
<td>Compute a local maximum of an objective function, possibly subject to constraints.</td>
</tr>
<tr>
<td>Minimize</td>
<td>Compute a local minimum of an objective function, possibly subject to constraints.</td>
</tr>
<tr>
<td>NLPSolve</td>
<td>Solve a non-linear program (NLP), which involves computing the minimum (or maximum) of a real-valued objective function, possibly subject to constraints; input is in equation or Matrix form.</td>
</tr>
<tr>
<td>QPSolve</td>
<td>Solve a quadratic program (QP), which involves computing the minimum (or maximum) of a quadratic objective function, possibly subject to linear constraints; input is in equation or Matrix form.</td>
</tr>
</tbody>
</table>

For a complete list of commands and other Optimization package information, refer to the Optimization help page.

5.6 Statistics

The Statistics package provides tools for mathematical statistics and data analysis. The package supports a wide range of common statistical tasks including quantitative and graphical data analysis, simulation, and curve fitting.

In addition to standard data analysis tools, the Statistics package provides a wide range of symbolic and numeric tools for computing with random variables. The package supports over 35 major probability distributions and can be extended to include new distributions.

Probability Distributions and Random Variables

The Statistics package supports:

- Continuous distributions, which are defined along the real line by probability density functions. Maple supports many continuous distributions, including the normal, Student-t, Laplace, and logistic distributions.

- Discrete distributions, which have nonzero probability only at discrete points. A discrete distribution is defined by a probability function. Maple supports many discrete distributions, including the Bernoulli, geometric, and Poisson distributions.

For a complete list of distributions, refer to the Statistics/Distributions help page.

You can define random variables by specifying a distribution in a call to the RandomVariable command.

```
> with(Statistics) :

> X := RandomVariable(Poisson(\lambda)) :
```

Find the probability distribution function for X. (For information on statistics computations, see Statistical Computations (page 142).)

```
> PDF(X, t)

\[
\sum_{k=0}^{\infty} \frac{\lambda^k e^{-\lambda}}{k!} \delta(t-k)
\]
```

Adding Custom Distributions

To add a new distribution, specify a probability distribution in a call to the Distribution command.
To construct a piecewise-continuous function in 1-D Math, use the `piecewise` command, for example, \(t \rightarrow \text{piecewise}(t < 0, 0, t < 3, 1/3, 0) \).

Define a new random variable with this distribution.

> \(Z := \text{RandomVariable}(U) : \text{PDF}(Z, t) \)

\[
\begin{align*}
0 & \quad t < 0 \\
1/3 & \quad t < 3 \\
0 & \quad \text{otherwise}
\end{align*}
\]

Calculate the mean value of the random variable.

> \(\text{Mean}(Z) \)

\[
\frac{3}{2}
\]

Statistical Computations

In addition to basic functions, like mean, median, standard deviation, and percentile, the `Statistics` package contains commands that compute, for example, the interquartile range and hazard rate.

Example 1 - Interquartile Range

Compute the average absolute range from the interquartile of the Rayleigh distribution with scale parameter 3.

> \(\text{InterquartileRange}(\text{Rayleigh}(3)) \)

\[
\sqrt{36} \sqrt{\ln(2)} - \sqrt{-18 \ln\left(\frac{3}{4}\right)}
\]

To compute the result numerically:

* Specify the 'numeric' option.

> \(\text{InterquartileRange}(\text{Rayleigh}(3), \text{'numeric'}) \)

2.71974481762339

Example 2 - Hazard Rate

Compute the hazard rate of the Cauchy distribution with location and scale parameters \(a \) and \(b \) at an arbitrary point \(t \).

> \(\text{unassign}('b'): \)
You can specify a value for the point t.

\[\text{HazardRate}(\text{Cauchy}(a, b), \frac{1}{2}) \]

For more information, refer to the Statistics/DescriptiveStatistics help page.

Plotting

You can generate statistical plots using the visualization commands in the Statistics package. Available plots include:

- Bar chart
- Frequency plot
- Histogram
- Pie chart
- Scatter plot

For example, create a scatter plot for a distribution of points that vary from $\sin\left(\frac{2\pi x}{200}\right)$ by a small value determined by a normally distributed sample.

\[> \text{restart}; \]
\[> \text{with(Statistics)}: \]
\[> N := 200; \]
\[> U := \text{Sample}(\text{Normal}(0, 1), N); \]
\[> X := \langle \text{seq}(x, x = 1..N) \rangle: \]
To fit a curve to the data points, include the optional \textbf{fit} equation parameter.

Using the \texttt{plots[display]} command, create a plot that contains:

- a scatter plot of the data points
- a quartic polynomial fitted to the data points: \(f(x) = a x^4 + b x^3 + c x^2 + d x + e \)
- the function \(\sin\left(\frac{2 \pi x}{N}\right) \)

\begin{verbatim}
> Y := \langle \text{seq}\left(\sin\left(\frac{2 \pi x}{N}\right) + \frac{U[x]}{5}, x = 1 .. N\right)\rangle :

> ScatterPlot(X, Y, title = "Scatter Plot");

> P := ScatterPlot(X, Y, fit = [a x^4 + b x^3 + c x^2 + d x + e], thickness = 2):

> Q := plot\left(\sin\left(\frac{2 \pi x}{N}\right), x = 1 .. N, thickness = 2, color = \text{red}\right):
\end{verbatim}
For more information on statistical plots, refer to the Statistics/Visualization help page.

For an overview of plotting, see Plots and Animations (page 185).

Student Statistics Package

The Student[Statistics] package helps instructors teach concepts and allows students to understand and explore concepts in an introductory statistics course. The Student[Statistics] package provides a simple interface to a limited subset of the functionality available in the Statistics package, as well as some additional resources. You can create and explore random distributions, perform hypothesis testing, and more.

The Student Statistics Example worksheet provides some starting examples.

Additional Information

For more information on the Statistics package, including regression analysis, estimation, data manipulation, and data smoothing, refer to the Statistics help page.

5.7 Teaching and Learning with Maple

Table 5.10 lists the available resources for instructors and students. For additional resources, see Available Resources (page 39).

Table 5.10: Student and Instructor Resources

<table>
<thead>
<tr>
<th>Resource</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student Packages and Tutors</td>
<td>The Student package contains computational and visualization (plotting and animation) functionality, and point-and-click interfaces for explaining and exploring concepts (Tools→Tutors). For more information, refer to the Student help page.</td>
</tr>
<tr>
<td>Resource</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Teacher Resource Center</td>
<td>The Maple Teacher Resource Center contains resources and tips for teachers using Maplesoft products to help in the classroom. Available resources include:</td>
</tr>
<tr>
<td></td>
<td>• Classroom content for subjects including Precalculus, Calculus, and Engineering</td>
</tr>
<tr>
<td></td>
<td>• Training videos</td>
</tr>
<tr>
<td></td>
<td>• E-books</td>
</tr>
<tr>
<td>Maple Portal</td>
<td>The Maple Portal includes material designed for all Maple users as well as a specific portal for students. The Maple Portal includes:</td>
</tr>
<tr>
<td></td>
<td>• How Do I... topics that give quick answers to essential questions</td>
</tr>
<tr>
<td></td>
<td>• Tutorials that provide an overview of topics from getting started to plotting and working with matrices</td>
</tr>
<tr>
<td></td>
<td>• Navigation to portals with specialized information for students and engineers</td>
</tr>
<tr>
<td></td>
<td>Access the portal the table of contents in the Maple Help System, under Getting Started.</td>
</tr>
<tr>
<td>Mathematics and Engineering Dictionary</td>
<td>The Maple Help System has an integrated dictionary of over 5000 mathematics and engineering terms. You can search the dictionary by entering a term in the Help System search field.</td>
</tr>
<tr>
<td>Maple Application Center</td>
<td>The Maple Application Center contains tutorials and applications that help instructors begin using Maple and use Maple in the classroom. Browse the many resources in the Education and Education PowerTools categories.</td>
</tr>
<tr>
<td></td>
<td>(http://www.maplesoft.com/applications)</td>
</tr>
<tr>
<td>Student Help Center</td>
<td>The Maple Student Help Center contains tutorials and applications that help students learn how to use Maple, explore mathematical concepts, and solve problems. Available resources include:</td>
</tr>
<tr>
<td></td>
<td>• Study guides - Complete lessons with examples for academic courses, including precalculus and calculus. For example, the Interactive Precalculus Study Guide contains worked problems, each solved as in a standard textbook, using Maple commands and custom Maplet graphical interfaces.</td>
</tr>
<tr>
<td></td>
<td>• Free course lessons for many subjects including precalculus to vector calculus; high school, abstract, and linear algebra; engineering; physics; differential equations; cryptography; and classical mechanics.</td>
</tr>
<tr>
<td></td>
<td>• Applications for students, written by students, providing examples in many subject areas.</td>
</tr>
<tr>
<td></td>
<td>• Student FAQs with answers from experts.</td>
</tr>
</tbody>
</table>

Student Packages and Tutors

The **Student** package is a collection of subpackages for teaching and learning mathematics and related subjects. The **Student** package contains packages for a variety of subjects, including precalculus, calculus, and linear algebra.

Instructors can:

- Teach concepts without being distracted by the mechanics of the computations.
- Create examples and quickly update them during a lesson to demonstrate different cases or show the effect of the variation of a parameter.
- Create plots and animations to visually explain concepts, for example, the geometric relationship between a mathematical function and its derivatives ([Tools→Tutors→Calculus - Single Variable→Derivatives](http://maplesoft.com/helpdesk/doc_help)). See Figure 5.10.
Students can:

• Perform step-by-step computations, for example, compute a derivative by applying differentiation rules using commands or a tutor (Tools→Tutors→Calculus - Single Variable→Differentiation Methods). See Figure 5.11.

• Perform computations.

• Visually explore concepts.
Tutors provide point-and-click interfaces to the **Student** package functionality.

To launch a tutor:
1. From the **Tools** menu, select **Tutors**.
2. Select a subject, for example, **Calculus - Multivariate**.
3. Select a tutor, for example, **Gradients**.

Maple inserts the `Student[MultivariateCalculus][GradientTutor]()` calling sequence (in Worksheet mode), and launches the **Multivariate Calculus Gradient Tutor**.

By rotating the three-dimensional plot, you can show that the gradient points in the direction of greatest increase of the surface (see Figure 5.12) and show the direction of the gradient vector in the x-y plane by rotating the plot (see Figure 5.13).
Figure 5.12: Multivariate Calculus Gradient Tutor

Figure 5.13: Multivariate Calculus Gradient Tutor Showing x-y Plane
Many *Student* package commands can return a value, mathematical expression, plot, or animation. This allows you to compute the final answer, see the general formula applied to a specific problem, or visualize the underlying concepts.

For example, the *Student[VectorCalculus][LineInt]* (line integral) command can return the following.

- Plot that visually indicates the vector field, path of integration, and tangent vectors to the path
- Unevaluated line integral
- Numeric value of the line integral

```maple
> with(Student[VectorCalculus]):
```
To evaluate the integral returned by the `output = integral` calling sequence, use the `value` command.

> `value(5.12)`

\[-2\pi\]

(5.13)

By default, the `LineInt` command returns the value of the integral.

> `LineInt(VectorField(y, -x), Circle(<0,0>, 1))`

\[-2\pi r^2\]

(5.14)

For more information on the `Student` package, refer to the `Student` help page.

Calculus Problem Solving Examples

Maple is a powerful application with many resources to guide you. The following examples provide you with scenarios to learn about using Maple resources and the Maple program.

When using Maple to solve a problem, consider the following process.

1. Formulate your problem.
2. Obtain Maple resources that allow you to solve it.
Problem

Scenario A:

Your company is designing a bottle for its new spring water product. The bottle must contain 18 ounces of water and the height is fixed. The design includes an undulating curved surface. You know the amplitude and equation of the curve, but you must find the radius. You require the Volume of Revolution.

Scenario B:

You want to teach your students the concept of a Volume of Revolution. Specifically, you want to plot and compute the volume of a solid generated by rotating \(f(x) \), \(a \leq x \leq b \), about an axis or a line parallel to an axis.

Figure 5.14: Flowchart of solving a problem

Check for Existing Tools: Tutor

Begin by examining the Tools menu for a Tutor to a Volume of Revolution problem.

To access a Tutor for the Volume of Revolution:

1. From the Tools menu, select Tutors, and then Calculus-Single Variable. Notice that a Volume of Revolution tutor exists.
2. Click the Volume of Revolution menu item. The following Maple command is entered in your document.
The **Volume of Revolution Tutor** is displayed. See **Figure 5.15**. Use this tutor to enter a function and an interval, view and manipulate the corresponding plot, and view the full Maple command associated with your entries and selections.

```maple
> Student[Calculus1][VolumeOfRevolutionTutor]()
```
Check for Existing Tools: Task Template

1. From the Tools menu, select Tasks, and then Browse. The Browse Tasks dialog opens, displaying a list of tasks in the left pane. The tasks are sorted by subject to help you quickly find the desired task.

2. Expand the Calculus - Integral→ Applications→ Solids of Revolution folder.

3. From the displayed list, select Volume. The Volume of Revolution task is displayed in the right pane of the Browse Tasks dialog.

4. Select the Insert into New Worksheet check box.

Click Insert Default Content. Before inserting a task, Maple checks whether the task variables have assigned values in your worksheet. If any task variable is assigned, the Task Variables dialog opens allowing you to modify the names. Maple uses the edited variable names for all variable instances in the inserted task. The content is inserted into your document. See Figure 5.16.
Volume of Revolution

Calculate the volume of revolution for a solid of revolution when a function is rotated about the horizontal or vertical axis.

Enter the function as an expression and specify the range:

\[
> \sin(x) \cos(x) + 1, 0 \cdots \frac{\pi}{2}
\]
\[
\sin(x) \cos(x) + 1, 0 \cdots \frac{1}{2} \pi
\]

(1.1)

Calculate the volume of revolution:

\[
> \text{Student}\left[\text{Calculus1}\right]\left[\text{VolumeOfRevolution}\right]\left(\text{I.1}\right)
\]
\[
\pi + \frac{9}{16} \pi^2
\]

(1.2)

Display the floating-point value using the evalf command:

\[
> \text{evalf}\left(\text{I.2}\right)
\]
\[
8.693245131
\]

(1.3)

Figure 5.16: Inserted Task Template

6. When a Task Template is inserted, parameters are marked as placeholders, denoted by purple font. To navigate between placeholders, press the Tab key. After updating any parameters, execute the command by pressing Enter.

Check for Instructions: Help Page and Example Worksheet

The help system provides command syntax information.

To access a help page:

1. From the Help menu, select Maple Help.
2. In the search field, enter volume of revolution and click Search. The search results include the command help page, the dictionary definition, and the associated tutor help page.
3. Review the calling sequence, parameters, and description in the Student[Calculus1][VolumeOfRevolution] help page.
4. Copy the examples into your worksheet: from the help system Edit menu, select Copy Examples.
5. Close the Help Navigator.
6. In your document, from the Edit menu, select Paste. The examples are pasted into your document.
7. Execute the examples and examine the results.

To access an example worksheet:

1. In the worksheet, enter examples/index. The Examples and Applications Index opens.
2. Expand the Calculus topic.
3. Click the examples/Calculus1IntApps link. The Calculus1: Applications of Integration worksheet opens. See Figure 5.17.
4. Expand the Volume of Revolution topic.
5. Examine and execute the examples.
Calculus 1: Applications of Integration

The *Student[Calculus1]* package contains four routines that can be used to both work with and visualize the concepts of function averages, arc lengths, and volumes and surfaces of revolution. This worksheet demonstrates this functionality.

For further information about any command in the *Calculus1* package, see the corresponding help page. For a general overview, see *Calculus1*.

Getting Started

While any command in the package can be referred to using the long form, for example, *Student[Calculus1][DerivativePlot]*, it is easier, and often clearer, to load the package, and then use the short form command names.

```maple
> restart;
> with(Student[Calculus1]);
```

The following sections show how the routine work. In some cases, examples show how to use these visualization routines in conjunction with the single-stepping *Calculus1* routines.

- **Function Average**
- **Volume of Revolution**
- **Arc Length**
- **Surface of Revolution**

Figure 5.17: Example Worksheet

Check for Other Ready-To-Use Resources: Application Center

The Maple Application Center contains free user-contributed applications related to mathematics, education, science, engineering, computer science, statistics and data analysis, finance, communications, graphics, and more.

To access a free application for volume of revolution:

2. In the menu of the main web page, click Support & Resources, and then Maple Application Center.
3. In the Application Search section, enter Volume of Revolution in the Keyword or phrase field.
4. Click Search.
5. From the search results page, under Displaying applications, click the Click here link.
6. From the list of archived applications, select any of the Maple document you want to view.
7. Click on the Download Maple Document link to download the .mw file.
8. Execute the worksheet and examine the results.

5.8 Clickable Math™

For years, Maple has led the way in making math software easy to use. With its collection of Clickable Math™ tools, including palettes, interactive assistants, context-sensitive operations, tutors, and more, Maple has set the standard for making it easy to learn, teach, and do mathematics.

Two key features of the Clickable Math tool collection are Smart Popups and Drag-to-Solve™.

Smart Popups

Smart Popups are interactive popup options that are invoked when you select certain types of equations, expressions or subexpressions.

With Smart Popups you can:

• Select operations to apply to just one part of your equation or mathematical expression, leaving the rest unchanged.
• Preview the result of the operation before going ahead.
• Explore your expression to deepen your understanding of the problem.
• Easily determine if your subexpression can be factored, what its plot looks like, what mathematical identities could be applied, and more.

Smart popups, if any, are shown at the top of the Context Panel. For more information on Smart Popups, as well as examples, see the Clickable Math: Smart Popups help page.

Drag-to-Solve

The Drag-to-Solve feature enables you to solve your equations step-by-step by dragging terms to where you want them to be.

With Drag-to-Solve you can:

• Easily take complete control over each individual step of your calculation.
• Let Maple apply the appropriate addition, subtraction, division, or multiplication operation to both sides of your equation, to avoid mechanical errors.
• Keep the full record of steps produced by Maple to document your work.

For more information on Drag-to-Solve, as well as examples, see the Clickable Math: Drag-to-Solve help page.

Examples

This chapter is designed to show several ways to solve the same problem in Maple. Throughout these examples, you will need to insert new document block regions. This is done using the Create document block icon (>CreateDocumentBlock) on the toolbar or through the Edit menu, by selecting Document Blocks>Create Document Block. Also, these examples only give
the keyboard keys needed for a Windows operating system. Refer to *Shortcut Keys by Platform (page xiii)* for the keys needed for your operating system.

Example 1 - Graph a Function and its Derivatives

On the interval \([-\pi, \pi]\), graph \(f\), \(f'\), and \(f''\) for \(f(x) = x \cos(x)\).

We solve this problem using the following methods:

- *Solution by Context-Sensitive Operations (page 158)*
- *Solution by Tutor (page 160)*
- *Access the Tutor from a Task Template (page 162)*

Solution by Context-Sensitive Operations

<table>
<thead>
<tr>
<th>Action</th>
<th>Result in Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Enter the expression (x \cos(x)).</td>
<td>(x \cos(x))</td>
</tr>
<tr>
<td>Make a copy of the expression and calculate the derivative:</td>
<td></td>
</tr>
</tbody>
</table>
| 2. Insert a new document block region by selecting from the Format menu Create Document Block. | \(x \cos(x)\) \[
| 3. Highlight the original expression. Ctrl + drag the expression to the new document block. | differentiate w.r.t. x \(\rightarrow \cos(x) - x \sin(x)\) |
| 4. Select the expression and, from the Context Panel select Differentiate \(\rightarrow\) With Respect To \(\rightarrow x\). | \(\cos(x) - x \sin(x)\) \[
| Make a copy of the derivative and calculate the second derivative: | |
| 5. Insert a new document block, and Ctrl + drag the derivative to the document block. | \(\cos(x) - x \sin(x)\) \[
<p>| 6. From the Context Panel for the derivative, select Differentiate (\rightarrow) With Respect To (\rightarrow x). | differentiate w.r.t. x (\rightarrow -2 \sin(x) - x \cos(x)) |</p>
<table>
<thead>
<tr>
<th>Action</th>
<th>Result in Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plot the original expression:</td>
<td></td>
</tr>
<tr>
<td>7. Insert a new document block, and Ctrl + drag the original expression to the new block.</td>
<td></td>
</tr>
<tr>
<td>8. From the Context Panel for the expression, select Plots → 2-D Plot.</td>
<td></td>
</tr>
<tr>
<td>9. Modify the plot through the Context Panel: select Axes → Properties.</td>
<td></td>
</tr>
<tr>
<td>10. In the Axis Properties dialog, de-select Use data extents and change the range to -3.14 to 3.14. Click OK.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Add the first and second derivatives to the plot:</td>
<td></td>
</tr>
<tr>
<td>11. Select and then Ctrl + drag the derivative of the expression onto the plot region. Do the same for the second derivative.</td>
<td></td>
</tr>
</tbody>
</table>
Enhance the plot by adding a legend:

12. From the Context Panel for the plot region, select **Legend** → **Show Legend**.

13. In the legend, double-click **Curve 1**. Notice that the **Text** icon is selected in the toolbar, **Text**. Delete the text and select the **Math** icon in the toolbar, **Math**. This allows you to enter 2-D Math in a text region. Enter the original expression, \(x \cos(x) \).

Add a title:

15. From the Context Panel, select **Title** → **Add Title**. Replace the text **New title** with the text "Plot the expression ".

16. Click the **Math** icon, and enter the expression \(x \cos(x) \). Click the **Text** icon once again and enter " and its derivatives".

Solution by Tutor

The **Student Calculus 1** package contains a tutor called **Derivatives**, which displays a plot of the expression along with its derivatives. In this example, we solve the same problem as previously, using this tutor

<table>
<thead>
<tr>
<th>Action</th>
<th>Result in Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Load the Student Calculus 1 package. From the Tools menu, select Load Package → Student Calculus 1.</td>
<td>Loading Student::Calculus1</td>
</tr>
<tr>
<td>2. Ctrl + drag the expression (x \cos(x)) to a blank document block region.</td>
<td></td>
</tr>
<tr>
<td>Action</td>
<td>Result in Document</td>
</tr>
<tr>
<td>---</td>
<td>--------------------</td>
</tr>
<tr>
<td>3. From the Context Panel for the expression, select Student Calculus 1 → Tutors → Derivatives. Note: The Student Calculus 1 menu is now available in the Context Panel because we loaded the package in step 1. In the Derivative Tutor, the color swatch shown beside the original expression is the color used for the curve in the plot region. Similarly for (f'(x)) and (f''(x)).</td>
<td></td>
</tr>
<tr>
<td>4. Change the lower endpoint to (-\pi). Select the check box to display (f''(x)) in the plot. Click Display to make these changes take effect.</td>
<td></td>
</tr>
<tr>
<td>5. You can change the expression and modify plot options from within this tutor. For each change made, click Display to view the altered plot. When complete, click Close to display the resulting plot in the document.</td>
<td></td>
</tr>
</tbody>
</table>
Access the Tutor from a Task Template

Maple also comes with a Task Template to solve this problem without using any commands.

<table>
<thead>
<tr>
<th>Action</th>
<th>Result in Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Launch the Task Template Browser by selecting Tools → Tasks → Browse.</td>
<td></td>
</tr>
<tr>
<td>2. In the table of contents of the Task Browser dialog, select Calculus-Differential → Derivatives → Graph $f(x)$ and its Derivatives.</td>
<td></td>
</tr>
<tr>
<td>3. Click Insert Minimal Content at the top of the dialog to insert the task template into the current document.</td>
<td></td>
</tr>
<tr>
<td>4. Enter the new expression $x^6 \cos(x)$ in the $f(x)$ region.</td>
<td></td>
</tr>
<tr>
<td>5. Enter the interval $[-\pi, \pi]$. To insert the symbol for pi, you can use command completion or select π from the Common Symbols palette.</td>
<td></td>
</tr>
</tbody>
</table>
6. Click **Launch Differentiation Tutor** to launch the same tutor as in the previous solution.

7. When complete, click **Close**. A plot of the expression and its derivatives displays in the plot region of the inserted task template.

Example 2 - Solve for x in a Quadratic Equation

Solve for \(x \) in the equation \((x - 7)^2 + (x - 1)^2 = 4\left((x - 1)^2 + (x - 4)^2\right) \).

We solve this problem using the following methods:

- **Solution through Equation Manipulator** (page 163)
- **Instant Solution** (page 165)
- **Step-by-step Interactive Solution** (page 165)
- **Graphical Solution** (page 166)
- **Graphical Solution Using Smart Popups** (page 169)

Solution through Equation Manipulator

Maple provides a dialog that allows you to single-step through the process of manipulating an expression. This manipulator is available from the Context Panel.
1. Enter the equation
\((x - 7)^2 + (x - 1)^2 = 4\left((x - 1)^2 + (x - 4)^2\right)\) in a new document block region.

2. From the Context Panel for this equation, select **Manipulate Equation**. The **Manipulate Equation** dialog displays.

Group all of the terms to the left:

3. In the **Addition** region, the **Group terms** row allows you to group terms on a specified side. With the **left** side already selected, click **Do**.

Expand the left side of the equation:

4. In the **Miscellaneous Operations** region, we can manipulate the equation by applying a command from the drop-down menus. Since we want to expand the left side of the equation only, click the first drop-down menu in the second row and select **expand**. Click **Do**. **Note:** This example is carried out with no assumptions. You can assume the solution to be real, positive, nonnegative or integer from the drop-down menu.
Instant Solution

To apply an instant solution to this problem, use the Context Panel.

<table>
<thead>
<tr>
<th>Action</th>
<th>Result in Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ctrl + drag the equation $$(x - 7)^2 + (x - 1)^2 = 4((x - 1)^2 + (x - 4)^2)$$ to a new document block region.</td>
<td>$$(x - 7)^2 + (x - 1)^2 = 4((x - 1)^2 + (x - 4)^2)$$</td>
</tr>
<tr>
<td>2. From the Context Panel for the expression, select Solve → Obtain Solutions for → x.</td>
<td>$$(x - 7)^2 + (x - 1)^2 = 4((x - 1)^2 + (x - 4)^2)$$ solutions for x → 1, 3</td>
</tr>
</tbody>
</table>

Step-by-step Interactive Solution

This equation can also be solved interactively in the document, by applying context-sensitive operations or commands one step at a time.

<table>
<thead>
<tr>
<th>Action</th>
<th>Result in Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ctrl + drag the equation $$(x - 7)^2 + (x - 1)^2 = 4((x - 1)^2 + (x - 4)^2)$$ to a blank document block region.</td>
<td>$$(x - 7)^2 + (x - 1)^2 = 4((x - 1)^2 + (x - 4)^2)$$</td>
</tr>
<tr>
<td>Group all terms on the right: 2. From the Context Panel for this equation, select Move to Right.</td>
<td>$$(x - 7)^2 + (x - 1)^2 = 4((x - 1)^2 + (x - 4)^2)$$ move to right $$(x - 7)^2 + (x - 1)^2 = 4((x - 1)^2 + (x - 4)^2) = 0$$ $$(x - 7)^2 - 3(x - 1)^2 - 4(x - 4)^2 = 0$$ $$6x^2 + 24x - 18 = 0$$ $$6(x - 1)(x - 3) = 0$$ solutions for x → 1, 3</td>
</tr>
</tbody>
</table>

Factor the equation:

5. From the same drop-down menu, select factor and click Do.

6. Click Return Steps to close the dialog and return all of the steps to the Maple document.

<table>
<thead>
<tr>
<th>Action</th>
<th>Result in Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. Click Return Steps to close the dialog and return all of the steps to the Maple document.</td>
<td>$$(x - 7)^2 + (x - 1)^2 = 4((x - 1)^2 + (x - 4)^2)$$ manipulate equation $$(x - 7)^2 + (x - 1)^2 = 4(x - 1)^2 + 4(x - 4)^2$$ $$(x - 7)^2 - 3(x - 1)^2 - 4(x - 4)^2 = 0$$ $$-6x^2 + 24x - 18 = 0$$ $$-6(x - 1)(x - 3) = 0$$ & solutions for x → 1, 3</td>
</tr>
</tbody>
</table>

7. Ctrl + drag the factored form of the original equation to a new document block region.

8. From the Context Panel, select Solve → Obtain Solutions for → x.

Or, alternatively, click on the output from step 6 and select Solve → Obtain Solutions for → x in the Context Panel.
<table>
<thead>
<tr>
<th>Action</th>
<th>Result in Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expand the expression on the right-hand side:</td>
<td></td>
</tr>
<tr>
<td>3. From the Context Panel for this output (or Ctrl + drag the</td>
<td>$0 = 3 \ (x - 1)^2 + 4 \ (x - 4)^2 - \ (x - 7)^2$ right hand side</td>
</tr>
<tr>
<td>equation to a blank document block region), select Right-hand side</td>
<td>expand $3 \ (x - 1)^2 + 4 \ (x - 4)^2 - \ (x - 7)^2$</td>
</tr>
<tr>
<td>4. From the Context Panel for this result, select Expand.</td>
<td>$6 \ x^2 - 24 \ x + 18$</td>
</tr>
<tr>
<td>Use Maple’s factor command on the resulting right-hand side:</td>
<td></td>
</tr>
<tr>
<td>5. From the Context Panel for the result, select Right-hand Side</td>
<td>$0 = 6 \ x^2 - 24 \ x + 18$ right hand side \Rightarrow $6 \ x^2 - 24 \ x + 18$ factor \Rightarrow $6 \ (x - 1) \ (x - 3)$</td>
</tr>
<tr>
<td>6. From the Context Panel for the result, select Factor.</td>
<td></td>
</tr>
<tr>
<td>Solve for x:</td>
<td></td>
</tr>
<tr>
<td>7. From the Context Panel for the result, select Solve → Obtain</td>
<td>$6 \ (x - 1) \ (x - 3)$ solutions for x \rightarrow $1, 3$</td>
</tr>
<tr>
<td>Solutions for x.</td>
<td></td>
</tr>
</tbody>
</table>

Graphical Solution

Now that we have seen several methods to solve this problem, we can check the answer by plotting the expression.

<table>
<thead>
<tr>
<th>Action</th>
<th>Result in Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ctrl + drag the equation $(x - 7)^2 + (x - 1)^2 = 4 \ ((x - 1)^2 + (x - 4)^2)$ to a new</td>
<td>$(x - 7)^2 + (x - 1)^2 = 4 \ ((x - 1)^2 + (x - 4)^2)$</td>
</tr>
<tr>
<td>document block region and press Enter.</td>
<td>$(x - 7)^2 + (x - 1)^2 = 4 \ (x - 1)^2 + 4 \ (x - 4)^2$</td>
</tr>
<tr>
<td>First, manipulate the equation to become an expression:</td>
<td></td>
</tr>
<tr>
<td>2. Select the output and from the Context Panel select Move to</td>
<td>$(x - 7)^2 - 3 \ (x - 1)^2 - 4 \ (x - 4)^2 = 0$</td>
</tr>
<tr>
<td>Left.</td>
<td></td>
</tr>
<tr>
<td>Note the difference in the alignment when using context-sensitive</td>
<td></td>
</tr>
<tr>
<td>operations on output rather than input. The result is centered in</td>
<td></td>
</tr>
<tr>
<td>the document with the self-documenting arrow positioned at the left.</td>
<td></td>
</tr>
<tr>
<td>Action</td>
<td>Result in Document</td>
</tr>
<tr>
<td>--</td>
<td>----------------------------</td>
</tr>
<tr>
<td>3. Select the output and from the Context Panel select Left-hand Side.</td>
<td>[(x - 7)^2 - 3 (x - 1)^2 - 4 (x - 4)^2 = 0] left hand side [\rightarrow] [(x - 7)^2 - 3 (x - 1)^2 - 4 (x - 4)^2]</td>
</tr>
<tr>
<td>4. Select the output and from the Context Panel select Expand.</td>
<td></td>
</tr>
</tbody>
</table>
\[(x - 7)^2 - 3(x - 1)^2 - 4(x - 4)^2 \equiv -6x^2 + 24x - 18\]
<table>
<thead>
<tr>
<th>Action</th>
<th>Result in Document</th>
</tr>
</thead>
</table>
| Now that the equation is in its simplest form, plot the result:
5. Ctrl + drag the output to a new document block.
6. From the Context Panel for the expression select Plots → 2-D Plot.
Or,
Right-click the output from step 4 and select Plots → 2-D Plot. | ![Graph](image) \(-6x^2 + 24x - 18\) → |

| Change the \(x\)- and \(y\)-axis ranges using the Context Panel:
7. By default, plots generated using the Context Panel have an \(x\)-axis range of -10 to 10 (or \(-2\pi\) to \(2\pi\) for trigonometric plots). To change the range, from the Context Panel, select Axes → Properties. In the Horizontal tab of the Axes Properties dialog, clear the Use data extents check box and change the Range min and Range max to 0 and 5, respectively.
Click the Vertical tab and clear the Use data extents check box. Change the Range min and Range max to -5 and 10, respectively.
8. Click OK to apply the changes and return to the plot.
The interception points of this graph with the \(x\)-axis are 1 and 3, the same solutions that we found previously. | ![Graph](image) (5.15) |

Graphical Solution Using Smart Popups

Use Smart Popup menu options to find a graphical solution.

Copy the equation \((x - 7)^2 + (x - 1)^2 = 4((x - 1)^2 + (x - 4)^2)\) to a new document block region and press Enter.
\((x - 7)^2 + (x - 1)^2 = 4((x - 1)^2 + (x - 4)^2)\)
\((x - 7)^2 + (x - 1)^2 = 4(x - 1)^2 + 4(x - 4)^2\) (5.15)
Highlight the right-hand side of the output expression. Smart popups are shown in the top of the Context Panel.

\[(x - 7)^2 + (x - 1)^2 = 4(x - 1)^2 + 4(x - 4)^2\]

Select the **Subtract** menu option.

The results of the calculation are displayed in the document.

\[(x - 7)^2 + (x - 1)^2 = 4((x - 1)^2 + (x - 4)^2)\]

\[(x - 7)^2 + (x - 1)^2 = 4(x - 1)^2 + 4(x - 4)^2\] \hspace{1cm} (5.16)

Subtract \(4(x-1)^2 + 4(x-4)^2\) from both sides

\[(x - 7)^2 - 3(x - 1)^2 - 4(x - 4)^2 = 0\] \hspace{1cm} (5.17)

Select the left side of the equation. A smart popup window is displayed.

\[(x - 7)^2 - 3(x - 1)^2 - 4(x - 4)^2\]

Select **normal**. The results of the calculation are displayed in the document.

\[(x - 7)^2 + (x - 1)^2 = 4((x - 1)^2 + (x - 4)^2)\]

\[(x - 7)^2 + (x - 1)^2 = 4(x - 1)^2 + 4(x - 4)^2\] \hspace{1cm} (5.18)

Subtract \(4(x-1)^2 + 4(x-4)^2\) from both sides

\[(x - 7)^2 - 3(x - 1)^2 - 4(x - 4)^2 = 0\] \hspace{1cm} (5.19)
Once again, select the left side of the equation. A smart popup window is displayed. Select **2D plot**. The resulting plot is displayed in the document.

\[-6x^2 + 24x - 18 = 0 \] (5.23)

\[
(x - 7)^2 + (x - 1)^2 = 4\left((x - 1)^2 + (x - 4)^2 \right) \\
(x - 7)^2 + (x - 1)^2 = 4 (x - 1)^2 + 4 (x - 4)^2 \\
\text{ subtract } 4(x-1)^2+4(x-4)^2 \text{ from both sides} \\
(x - 7)^2 - 3 (x - 1)^2 - 4 (x - 4)^2 = 0 \] (5.22)

\[
normal (x-7)^2-3*(x-1)^2-4*(x-4)^2 \rightarrow \\
-6x^2 + 24x - 18 = 0 \] (5.20)
You can also solve the equation using smart popups. Highlight the simplified equation and from the Smart Popup menu, select solve.

The solution to the equation is displayed.

\[\left[x = 1, x = 3 \right] \]

(5.24)

Example 3 - Solve a Quadratic Trig Equation

Find all of the solutions to the equation \(6 \cos^2(x) - \cos(x) - 2 = 0 \) in the interval \(\left[0, 2 \pi \right] \).

We solve this problem using the following methods:

- **Graphical Solution (page 172)**
- **Solution by Task Template (page 174)**
- **Analytic Solution (page 174)**

Graphical Solution

<table>
<thead>
<tr>
<th>Action</th>
<th>Result in Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ctrl + drag the equation (6 \cos^2(x) - \cos(x) - 2 = 0) to a blank document block.</td>
<td>(6 \cos(x)^2 - \cos(x) - 2 = 0) left hand side</td>
</tr>
<tr>
<td>2. From the Context Panel for the equation, select Left-hand Side.</td>
<td>(6 \cos(x)^2 - \cos(x) - 2)</td>
</tr>
<tr>
<td>Action</td>
<td>Result in Document</td>
</tr>
<tr>
<td>--------</td>
<td>--------------------</td>
</tr>
</tbody>
</table>
| 3. Click the output and select **Plot Builder** in the Context Panel.
In the Plot Builder panel, for plot type select **2-D plot**.
The plot appears. | ![Plot Builder options](image) |
| 4. Modify the plot range to \(x = 0 \) to \(2 \cdot \pi \). | ![Plot range](image) |
| 5. Click **Plot** to display the plot in the document.
6. From the graph, we can see all of the solutions within the interval \([0, 2 \pi]\). To approximate the values, click the plot, select the type of coordinates that you want to view from the selection menu (\(\text{coordinates}\)) in the toolbar, and then use the point probe tool to view the coordinates of the mouse pointer. | ![Plot range](image) |
Solution by Task Template

<table>
<thead>
<tr>
<th>Action</th>
<th>Result in Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. From the Tools menu, select Tasks → Browse. Expand the Algebra folder and select Solve Analytically in a Specified Interval.</td>
<td>![Image of Algebra folder with selected tasks]</td>
</tr>
<tr>
<td>2. Click Insert Minimal Content.</td>
<td>![Image of Solve Analytically in a Specified Interval]</td>
</tr>
<tr>
<td>3. Replace the current equation with the one from this example, (6 \cos^2(x) - \cos(x) - 2 = 0), and then execute the commands. Notice that equation labels are used to reference the results.</td>
<td>![Image of Solve Analytically in a Specified Interval]</td>
</tr>
</tbody>
</table>

Analytic Solution

<table>
<thead>
<tr>
<th>Action</th>
<th>Result in Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ctrl + drag the equation (6 \cos^2(x) - \cos(x) - 2 = 0) to a blank document block region.</td>
<td>(6 \cos^2(x) - \cos(x) - 2 = 0)</td>
</tr>
<tr>
<td>2. From the Context Panel, select Left-hand Side.</td>
<td>(6 \cos^2(x) - \cos(x) - 2 = 0) left hand side (6 \cos^2(x) - \cos(x) - 2)</td>
</tr>
<tr>
<td>3. From the Context Panel, select Factor.</td>
<td>(6 \cos^2(x) - \cos(x) - 2 = 6 \cos(x)^2 - \cos(x) - 2) factor (2 \cos(x) + 1) (3 \cos(x) - 2) solve (x = \frac{2 \pi}{3}), (x = \arccos\left(\frac{2}{3}\right))</td>
</tr>
<tr>
<td>4. Click the new factored output and select Solve → Solve in the Context Panel.</td>
<td>Alternatively, you can select each factor, Ctrl + drag the expressions to separate document block regions and for each one select Solve → Solve.</td>
</tr>
</tbody>
</table>
Example 4 - Find the Inverse Function

If \(f(x) = x^2 + 1, \quad x \geq 0 \), find and graph the rule for \(f^{-1}(x) \), its functional inverse.

We solve this problem using the following methods:

- Implement the Definition Graphically (page 175)
- Solution by Tutor (page 178)

Implement the Definition Graphically

The graph of the inverse function is the set of ordered pairs formed by interchanging the ordinates and abscissas.

<table>
<thead>
<tr>
<th>Action</th>
<th>Result in Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. In a blank document block, enter ([x^2 + 1, x]) and press Enter.</td>
<td>([x^2 + 1, x])</td>
</tr>
<tr>
<td>2. Click the output and select Plot Builder in the Context Panel. In the Plot Builder panel select 2-D plot (parametric) for the plot type. The plot appears.</td>
<td></td>
</tr>
<tr>
<td>3. Adjust the domain for (x) to the interval.</td>
<td></td>
</tr>
</tbody>
</table>
4. Copy and paste the expression $x^2 + 1$ onto this graph. Notice that the axis ranges alter.

5. Copy and paste the expression x onto this graph. The resulting graph shows $f(x)$, $f'(x)$, and the line $y = x$.
Adjust the x and y axis ranges:

6. Select the plot and from the Plot menu, select Axes \rightarrow Properties.

7. In the Axis Properties dialog, de-select Use data extents and change the range to 0 to 2.

8. Click the Vertical tab and repeat step 9. Click OK to apply these settings and close the dialog.
Solution by Tutor

1. Load the Student Calculus 1 package. From the Tools menu, select Load Package → Student Calculus 1.

2. Enter the expression \(x^2 + 1 \) in a blank document block.

3. From the Context Panel, select Student Calculus 1 → Tutors → Function Inverse. The Function Inverse Tutor displays.

4. Adjust the domain to .
5. When you are finished, click **Close**. The plot of the function, its inverse, and the line $y = x$ is returned to the document.

Example 5 - Methods of Integration - Trig Substitution

Evaluate the integral $\int \frac{1}{\sqrt{4 - x^2}} \, dx$ by making the substitution $x = 2 \sin(u)$.

We solve this problem using the following methods:

- **Immediate Evaluation of the Integral** (page 179)
- **Solution by Integration Methods Tutor** (page 180)
- **Solution by First Principles** (page 181)

Immediate Evaluation of the Integral

<table>
<thead>
<tr>
<th>Action</th>
<th>Result in Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Enter the integral $\int \frac{1}{\sqrt{4 - x^2}} , dx$ in a blank document block region.</td>
<td>$\int \frac{1}{\sqrt{4 - x^2}} , dx$</td>
</tr>
<tr>
<td>2. From the Context Panel for the expression and select Evaluate and Display Inline.</td>
<td>$\int \frac{1}{\sqrt{4 - x^2}} , dx = \arcsin\left(\frac{x}{2}\right)$</td>
</tr>
</tbody>
</table>
Solution by Integration Methods Tutor

<table>
<thead>
<tr>
<th>Action</th>
<th>Result in Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Load the Student Calculus 1 package. From the Tools menu, select Load Package → Student Calculus 1.</td>
<td>Loading Student-Calculus1</td>
</tr>
<tr>
<td>2. Ctrl + drag the integrand (\frac{1}{\sqrt{4 - x^2}}) to a blank document block region.</td>
<td>(\frac{1}{\sqrt{4 - x^2}})</td>
</tr>
<tr>
<td>3. From the Context Panel, select Student Calculus 1 → Tutors → Integration Methods. The Integration Methods Tutor displays.</td>
<td></td>
</tr>
<tr>
<td>4. Perform a change of variables by selecting Change and entering (x = 2\sin(u)).</td>
<td></td>
</tr>
<tr>
<td>5. Apply the constant rule by clicking Constant.</td>
<td></td>
</tr>
<tr>
<td>6. To revert back to the original variable, click Revert.</td>
<td></td>
</tr>
<tr>
<td>Action</td>
<td>Result in Document</td>
</tr>
<tr>
<td>--------</td>
<td>--------------------</td>
</tr>
<tr>
<td>7. Now that the integral has been evaluated, click Close to close the tutor and return the evaluated integral to the document.</td>
<td></td>
</tr>
</tbody>
</table>

\[
\int \frac{1}{\sqrt{4 - x^2}} \, dx
\]

\[
= \int 1 \, du \quad \text{[change, } x = 2 \sin(u), \ u]\]

\[
= u \quad \text{[constant]}\]

\[
= \arcsin\left(\frac{x}{2}\right) \quad \text{[revert]}\]

\[
\int \frac{1}{\sqrt{-x^2 + 4}} \, dx = \arcsin\left(\frac{x}{2}\right) \quad (5.25)\]

Solution by First Principles

<table>
<thead>
<tr>
<th>Action</th>
<th>Result in Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ctrl + drag the integrand (\frac{1}{\sqrt{4 - x^2}}) to a blank document block region and press Enter.</td>
<td></td>
</tr>
<tr>
<td>2. From the Context Panel for the output, select Evaluate at a point. In the dialog that displays, enter (2\sin(u)).</td>
<td></td>
</tr>
</tbody>
</table>

\[
\frac{1}{\sqrt{4 - x^2}}
\]

\[
= \frac{1}{\sqrt{-x^2 + 4}}
\]

<table>
<thead>
<tr>
<th>Perform trig substitution:</th>
<th>evaluate at point</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. From the Context Panel for the output, select Simplify → Symbolic.</td>
<td>simplify symbolic</td>
</tr>
</tbody>
</table>

\[
\frac{1}{2 \cos(u)} \quad (5.26)
\]

<table>
<thead>
<tr>
<th>Calculate (\frac{du}{dx}):</th>
<th>(x = 2 \sin(u))</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. In a blank document block, enter the substitution equation: (x = 2 \sin(u)) and press Enter.</td>
<td>implicit differentiation</td>
</tr>
<tr>
<td>5. From the Context Panel for the output, select Differentiate → Implicitly. In the dialog that displays, change the Dependent Variable to (x) and change Differentiate with respect to (u).</td>
<td>(2 \cos(u))</td>
</tr>
</tbody>
</table>

\[
(5.26) \cdot (5.27)
\]

<table>
<thead>
<tr>
<th>Calculate the integral in terms of (u):</th>
<th>(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. Referencing the results by their equation labels, multiply the original simplified expression by this derivative.</td>
<td></td>
</tr>
</tbody>
</table>
Example 6 - Initial Value Problem

Solve and plot the solution of the initial value problem

\[y''(t) + 4 y'(t) + 13 y(t) = \cos(2t) \]
\[y(0) = 2 \]
\[y'(0) = -1 \]

Solution by ODE Analyzer Assistant

The ODE Analyzer Assistant lets you solve ODEs numerically or symbolically and displays a plot of the solution.

<table>
<thead>
<tr>
<th>Action</th>
<th>Result in Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Enter the ODE in a blank document block region.</td>
<td>[y''(t) + 4 y'(t) + 13 y(t) = \cos(2t)]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Action</th>
<th>Result in Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Select the equation and from the Context Panel, select Solve DE Interactively. The ODE Analyzer Assistant displays with the ODE automatically inserted.</td>
<td></td>
</tr>
</tbody>
</table>
To insert the initial conditions:

3. In the **Conditions** region, click **Edit**. The **Edit Conditions** dialog opens.

4. In the **Add Condition** region, with \(y\) selected in the drop-down menu, enter 0 in the first text field to the right and 2 in the second text field. Click **Add**. Your entry should match the one shown to the right.

5. To enter the initial condition for \(y'\), select \(y'\) from the drop-down menu. In the text fields, enter 0 and -1. Click **Add**.

Click **Done** to close this dialog and return to the main dialog. Notice that the initial conditions are in the **Conditions** section.

6. Click **Solve Numerically**. A new dialog appears.
<table>
<thead>
<tr>
<th>Action</th>
<th>Result in Document</th>
</tr>
</thead>
</table>
| 7. Click **Solve** to solve the initial value problem. | ![Solve button](image)
Output
Show function values at t = 0.000000
\(y = 2.0 \)
\(y' = -1.0 \)
| 8. Click **Plot** to plot the solution of the DE. | ![Graph](image) |
| 9. Click the **Plot Options** button to modify the default graph, if desired. | ![Plot Options](image) |
| 10. Click **Quit** to close the ODE Analyzer and return a plot of the solution to the document. | \(y''(t) + 4y'(t) + 13y(t) = \cos(2t) \)
solve DE interactively
\(y(t) = e^{-2t}\sin(3t)C_2 + e^{-2t}\cos(3t)C_1 + \frac{9\cos(2t)}{145} + \frac{8\sin(2t)}{145} \) |
6 Plots and Animations

Maple can generate many forms of plots, allowing you to visualize a problem and further understand concepts.

• Maple accepts explicit, implicit, and parametric forms to display 2-D and 3-D plots and animations.
• Maple recognizes many coordinate systems.
• All plot regions in Maple are active; therefore, you can drag expressions to and from a plot region.
• Maple offers numerous plot options, such as axis styles, title, colors, shading options, surface styles, and axis ranges, which give you complete control to customize your plots.

For a reference to the types of plots available in Maple, see the Plotting Guide.

6.1 In This Chapter

<table>
<thead>
<tr>
<th>Section</th>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creating Plots (page 185) - Interactive and command-driven methods to display 2-D and 3-D plots</td>
<td>• Interactive Plot Builder</td>
</tr>
<tr>
<td>Customizing Plots (page 204) - Methods for applying plot options before and after a plot displays</td>
<td>• Interactive Plot Builder Options</td>
</tr>
<tr>
<td>Analyzing Plots (page 210) - Plot analyzing tools</td>
<td>• Point Probe</td>
</tr>
<tr>
<td>Representing Data (page 211) - Templates for visual representation of your data</td>
<td>• The Live Data Plots Palette</td>
</tr>
<tr>
<td>Creating Animations (page 211) - Interactive and command-driven methods to display animations</td>
<td>• Interactive Plot Builder</td>
</tr>
<tr>
<td>Playing Animations (page 215) - Tools to run animations</td>
<td>• The plots[animate] Command</td>
</tr>
<tr>
<td>Customizing Animations (page 216) - Methods for applying plot options before and after an animation displays</td>
<td>• The plot3d[viewpoint] Command</td>
</tr>
<tr>
<td>Exporting (page 217) - Methods for exporting plots</td>
<td>• Animation Context Bar</td>
</tr>
<tr>
<td>Code for Color Plates (page 218) - Information on color plates</td>
<td>• Saving Plots to File Formats</td>
</tr>
<tr>
<td>• Accessing Code for the Color Plates</td>
<td></td>
</tr>
</tbody>
</table>

6.2 Creating Plots

Maple offers several methods to easily plot an expression. These methods include:

• The Interactive Plot Builder
• The context panel
• Commands
Each method offers a unique set of advantages. The method you use depends on the type of plot to display, as well as your personal preferences.

Interactive Plot Builder

The Interactive Plot Builder is a point-and-click interface to Maple plotting functionality. The interface displays plot types based on the expression you specify. Depending on the plot type you select, you can create a:

- 2-D / 3-D plot
- 2-D polar plot
- 2-D / 3-D contour plot
- 2-D / 3-D conformal plot of a complex-valued function
- 2-D / 3-D complex plot
- 2-D / 3-D parametric plot
- 2-D density plot
- 2-D / 3-D implicit plot
- 2-D inequality plot
- 3-D spacecurve
- 2-D animated curve
Launching the PlotBuilder

Assistants Access

The Plot Builder can be accessed from the Standard Menu Bar, under Tools -> Assistants.

When launched in this way, an interactive dialog is displayed where you can enter the expression to be plotted. This is equivalent to calling the PlotBuilder command with no arguments.

Note: The Tools menu also offers tutors to easily generate plots in several academic subjects. For more information, see Teaching and Learning with Maple (page 145).

Context Panel Access

The Plot Builder can also be launched using the context panel for an expression.

Click on the expression you'd like to plot and from the context panel select Plot Builder. In this case, the Plot Builder Panel opens.
Example 1 - Display a plot of a single variable expression

Maple can display two-dimensional graphs and offers numerous plot options such as color, title, and axis styles to customize the plot.

Launch the Interactive Plot Builder:

1. Make sure that the cursor is in a Maple input region.
2. From the Tools menu, select Assistants, and then Plot Builder.

Notes: In worksheet mode, Maple inserts PlotBuilder() in the Maple document and opens the Specify Expressions window.

Entering this command at the Maple prompt also opens the Plot Builder.

Enter an expression:

3. In the Interactive Plot Builder:Specify Expressions window:
 a. Add the expression, sin(x)/x.
 b. Click Accept in the Add/Edit Expression window.
 c. Click OK in Interactive Plot Builder:Specify Expressions window.
Display the PlotBuilder panel and plot the expression:

4. The PlotBuilder inserts an empty plot component into the worksheet, just under the PlotBuilder() command. Click on this to make the PlotBuilder panel slide into view.

5. Select 2-D plot from the list of available plot types for this expression. Notice the rest of the panel is now populated with the available plotting options for a 2-D plot.

\[\text{PlotBuilder();} \]

6. Ensure that the x-axis range is from \(-2 \pi \ldots 2 \pi\).

\[\sin(x) \]

Note: You can toggle the show command option to view the Maple syntax used to generate this plot.

Example 2 - Display a plot of multiple expressions in 1 variable

Maple can display multiple expressions in the same plot region to compare and contrast. The Interactive Plot Builder accepts multiple expressions.
Launch the Interactive Plot Builder and enter the expressions:

The Plot Builder accepts expressions in 1-D Math and performs basic calculations on expressions. For example, entering \(\text{diff}(\sin(x^2), x) \) in the Specify Expression window performs the calculation and displays the expression as \(2\cos(x^2)x \) in the Expression group box.

1. In three separate steps:
 • Launch the PlotBuilder then add the expression \(\sin(x^2) \). Select 2-D Plot as the plot type. Change the x-axis range to \(-\Pi..\Pi\)
 • Launch another instance of the PlotBuilder and add the expression \(\text{diff}(\sin(x^2), x) \). Select 2-D Plot as the plot type. Change the x-axis range to \(-\Pi..\Pi\)
 • Launch a third instance of the PlotBuilder and add the expression \(\int(\sin(x^2), x) \). Select 2-D Plot as the plot type. Change the x-axis range to \(-\Pi..\Pi\)

You should have three separate plots in separate plot component windows.

Assigning the plot commands to a name
2. Click on the plot of \(\sin(x^2) \) to display the PlotBuilder panel for this plot.
3. In the assign to name text field enter "a".
4. Click the plot of \(\text{diff}(\sin(x^2), x) \)
5. In the assign to name text field enter "b".
6. Click the plot of \(\int(\sin(x^2), x) \)
7. In the assign to name text field enter "c".

Use the plots[display] command to plot the expressions on the same axis
8. In your worksheet enter plots[display](a,b,c) then run the command.

The expressions are all plotted on the same axes.

By default, Maple displays each plot in a plot region using a different color. You can also apply a line style such as solid, dashed, or dotted for each expression in the graph. For more information, refer to the plot/options help page.

To see the Maple syntax used to generate this plot, see Maple commands from Creating Plots: Interactive Plot Builder (page 194)

Example 3 - Display a plot of a multi-variate expression

Maple can display three-dimensional plots and offers numerous plot options such as light models, surface styles, and shadings to allow you to customize the plot.

Launch the Interactive Plot Builder and enter an expression:
1. Add the expression \(\frac{1+\sin(x^2)}{x^2+y^2} \).

In the Select Plot Type list:
2. Notice the available plot types for an expression with 2 variables, as well as the plot objects for each type. For this example, select 3-D plot.
3. Select Basic Options from the list of option types.
Restricting how much of the plot axes to display:

4. For the view option, select axis[3] to adjust how much of the z-axis to display. Enter the range values in the two boxes. You can repeat this for the y-axis (axis[2]) and x-axis (axis[1]) as well.

Style and color changes:

5. From the Style combo box, select surface.
6. From the shading and color list box select shading, then select z (grayscale) from the color list box.
7. Select the Axes and Text menu.
8. In the text box next to label, enter z.
9. Select the 3-D Options menu
10. In the text box beside grid size, enter 40,40.

Note: You can toggle the show command option to view the Maple syntax used to generate this plot.

Example 4 - Display a conformal plot

Maple can display a conformal plot of a complex expression mapped onto a two-dimensional grid or plotted on the Riemann sphere in 3-D.

Launch the Interactive Plot Builder and enter an expression:

1. Add the expression z^3.
2. Select 2-D conformal plot as the plot type.
3. Change the range of the z parameter to 0 .. 2+2*I.
4. From the axes style box, ensure normal is selected.
5. Select 2-D Options from the plot options list box, then enter [30,30] as the grid size.

Example 5 - Display a plot in polar coordinates

Cartesian (ordinary) coordinates is the Maple default. Maple also supports numerous other coordinate systems, including hyperbolic, inverse elliptic, logarithmic, parabolic, polar, and rose in two-dimensions, and bipolar cylindrical, bispherical, cylindrical, inverse elliptical cylindrical, logarithmic cosh cylindrical, Maxwell cylindrical, tangent sphere, and toroidal in three-dimensional plots. For a complete list of supported coordinate systems, refer to the coords help page.

Launch the Interactive Plot Builder and enter an expression:

1. Add the expression $1+4*\cos(4*\theta)$.

Select the plot type and change the x-axis range:

2. Select 2-D polar plot as the plot type.
3. Change the angle of θ to 0 .. 8*Pi.

Change the plot color:

3. From the color group box, select magenta.

Note: You can toggle the show command option to view the Maple syntax used to generate this plot.

Example 6 - Interactive plotting

Using the Interactive Plot Builder, you can plot an expression with several of its variables set to numeric values. The Interactive Parameter window allows you to interactively adjust these numeric values within specified ranges to observe their effect. To access this window, enter an expression with two or more variables and select Interactive Plot with x parameter from the Select Plot Type and Functions drop-down menu.
Launch the Interactive Plot Builder and enter an expression:

1. At the command prompt, type `plots[interactive]()` then add the expression `x+3*sin(x*t)`.

2. From the Select Plot drop-down box, select Interactive Plot with 1 parameter.

3. Change the range of the x-axis to `0 .. 2*Pi`.

4. Change the t range to `0 .. 10`.

5. Click Plot to place the interactive plot in the Maple document.

Note: To apply plot options before interactively adjusting the plot, click Options.

You can also click Preview to preview your interactive plot from the Plot Builder.

To see the Maple syntax used to generate this plot, see Maple commands from Creating Plots: Interactive Plot Builder (page 194).

For information on customizing plots using the Interactive Plot Builder, refer to Customizing Plots: Interactive Plot Builder Options (page 204).

You can also explore an interactive plot with parameters using the Exploration Assistant. For more information, see Exploration Assistant (page 29).
Context Panel

The context panel is a collection of tools and operations that are appropriate for a particular expression. The plotting options in the context panel change according to the expression, table, or region that you click on.

When you invoke the Interactive Plot Builder through the context panel, the expression automatically passes to the builder, and Maple does not display the Specify Expression window.

One advantage of using the context panel is the simplicity of creating an expression using the tools and operations in the panel. By using this method, you do not need any knowledge of plot command syntax.

1. Enter and evaluate an expression, for example, \(\frac{xy}{x^2 + y^2} \).

2. Click the expression.

3. From the context panel, select Plots \(\rightarrow \) 3-D Plot \(\rightarrow \) \(x,y \).

\[
\frac{xy}{x^2 + y^2}
\]

For information on customizing plots using the context menu, see Context Panel Options (page 205).

The plot and plot3d Commands

The final method for creating plots is entering plotting commands.

The main advantages of using plotting commands are the availability of all Maple plot structures and the greater control over the plot output. Plot options are discussed in Customizing Plots (page 204).
Table 6.1: The plot and plot3d Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>plot(plotexpression, x=a..b, ...)</td>
<td>expression to be plotted</td>
</tr>
<tr>
<td>plot3d(plotexpression, x=a..b, y=a..b, ...)</td>
<td>name and horizontal range</td>
</tr>
<tr>
<td></td>
<td>name and vertical range</td>
</tr>
</tbody>
</table>

Note: The default ranges for plot and plot3d commands are ± 10, or $\pm 2\pi$ to 2π in case of trigonometric functions.

Maple commands from Creating Plots: Interactive Plot Builder

Example 1 - Display a plot of a single variable expression

```maple
> plot(sin(x)/x, x = -2*Pi..2*Pi)
```

Example 2 - Display a plot of multiple expressions in 1 variable

To display multiple expressions in a plot, include the expressions in a list. To enter $\frac{d}{dx}\sin(x^2)$ and $\int \sin(x^2)dx$, use the Expression palette. For more information, see Palettes (page 15).
Example 3 - Display a plot of a multi-variable expression

> plot3d\left(\frac{1 + \sin(xy)}{x^2 + y^2} \right), x = -2 \pi .. 2 \pi, y = -2 \pi .. 2 \pi, \text{view} = 0 .. 0.5, \text{lightmodel} = \text{light1}, \text{shading = zgrayscale}, \text{style = patchnogrid}, \text{grid = [40, 40]} \right)
Example 4 - Display a conformal plot

A collection of specialized plotting routines is available in the `plots` package. For access to a single command in a package, use the long form of the command.

\[
> \text{plots[conformal]}(z^3, z = 0..2 + 2 \cdot I, \text{axes=normal, grid} = [20, 20])
\]

Example 5 - Display a plot in polar coordinates

\[
> \text{plots[polarplot]}(1 + 4 \cos(4 \cdot \theta), \theta = 0..\pi, \text{color = magenta})
\]
Example 6 - Interactive Plotting

```maple
> plots[animate](plot, [x + 3*sin(x*t), x = 0..5], t = 0..10)
```

To play the animation, click the plot and from the Animation Toolbar, select Play (). For information on playing the animation, see *Playing Animations (page 215)*.

For more information on the plot options used in this section, refer to the *plot/options* and *plot3d/options* help pages.

Display a Parametric Plot

Some graphs cannot be specified explicitly. In other words, you cannot write the dependent variable as a function of the independent variable, \(y = f(x) \). One solution is to make both the x-coordinate and the y-coordinate depend on a parameter.
Display a 3-D Plot

Maple can plot an expression of two variables as a surface in three-dimensional space. To customize the plot, include `plot3d` options in the calling sequence. For a list of plot options, see *The plot and plot3d Options (page 208)*.

```maple
> plot([cos(3*t), sin(5*t), t = 0..2*Pi])
```
The plots Package

The plots package contains numerous plot commands for specialized plotting. This package includes: animate, contourplot, densityplot, fieldplot, odeplot, matrixplot, spacecurve, textplot, tubeplot, and more. For details about this package, refer to the plots help page.

> with(plots):

The pointplot Command

To plot numeric data, use the pointplot command in the plots package with the data organized in a list of lists structure of the form \([\langle x_1, y_1 \rangle, \langle x_2, y_2 \rangle, \ldots, \langle x_n, y_n \rangle]\). By default, Maple does not connect the points. To draw a line through the points, use the style = line option. For further analysis of data points, use the Curve Fitting Assistant (Tools→Assistants→CurveFitting), which fits and plots a curve through the points. For more information, refer to the CurveFitting[Interactive] help page.
> pointplot([[0, 1], [1, -1], [3, 0], [4, -3], [2, 0], [4, 1], [3, -2], [4, 1]], axes = BOXED, symbolsize=25, symbol=circle)

![Plot of points](image)

The **matrixplot** Command

The **matrixplot** command plots the values of a plot object of type **Matrix**. The **matrixplot** command accepts options such as **heights** and **gap** to control the appearance of the plot. For more information on Matrices, see *Linear Algebra* (page 116).

> with(LinearAlgebra) :

```
\[ A := \text{HilbertMatrix}(6) \]

\[
\begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 \\
\frac{1}{2} & 3 & 4 & 5 & 6 & 1 \\
1 & \frac{1}{2} & 1 & 1 & 1 & 1 \\
2 & 3 & 4 & 5 & 6 & 7 \\
\frac{1}{3} & 4 & 5 & 6 & 7 & 8 \\
1 & \frac{1}{3} & 1 & 1 & 1 & 1 \\
3 & 4 & 5 & 6 & 7 & 8 \\
\frac{1}{4} & 5 & 6 & 7 & 8 & 9 \\
1 & \frac{1}{4} & 1 & 1 & 1 & 1 \\
4 & 5 & 6 & 7 & 8 & 9 \\
\frac{1}{5} & 6 & 7 & 8 & 9 & 10 \\
1 & \frac{1}{5} & 1 & 1 & 1 & 1 \\
5 & 6 & 7 & 8 & 9 & 10 \\
\frac{1}{6} & 7 & 8 & 9 & 10 & 11 \\
6 & 7 & 8 & 9 & 10 & 11
\end{bmatrix}
\]

\[ B := \text{ToeplitzMatrix}([1, 2, 3, 4, 5, 6], \text{symmetric}) \]

\[
\begin{bmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
2 & 1 & 2 & 3 & 4 & 5 \\
3 & 2 & 1 & 2 & 3 & 4 \\
4 & 3 & 2 & 1 & 2 & 3 \\
5 & 4 & 3 & 2 & 1 & 2 \\
6 & 5 & 4 & 3 & 2 & 1
\end{bmatrix}
\]

\[ \text{matrixplot}(A + B, \text{heights = histogram, axes = normal, gap = 0.25, style = patch}) \]
The `contourplot` Command

The `contourplot` command generates a topographical map for an expression or function. To create a smoother and more precise plot, increase the number of points using the `numpoints` option.

```plaintext
> contourplot(cos(x*y), x = -4 .. 4, y = -4 .. 4, filled = true, numpoints = 750)
```

Place your pointer over the graph to see the contour labels.

**Multiple Plots in the Same Plot Region**

**Dragging to a Plot Region**

To add an additional curve to an existing plot region, use the drag-and-drop method.

Advantages of the drag-and-drop method include the ease of adding and removing plots and the independence from plotting command syntax.

**Example:**

1. Enter the command `plot(sin(x), x)` in an input region.
2. Execute.
3. Enter the expression `sin(2*x)` in an input region.
4. Drag the expression onto the plot of `sin(x)`. When dragging an expression to a plot region, you can either make a copy of the expression from the input region or you can cut the expression, thereby removing it from the input region. To make a copy of the expression, select the full expression in the input region and press Ctrl (Command, Macintosh) while you drag the expression to the plot region. To cut the expression and paste it in the plot region, highlight the expression and drag it to the plot region.
4. Repeat steps 3 and 4 using the following expressions: `sin(x + 2)` and `sin(x)^2`.

202  •  6 Plots and Animations
Tip: To remove an expression from the plot region, drag-and-drop the expression plot from the plot region to a Maple input region.

List of Expressions

To display multiple expressions in the same plot region, enter the expressions in a list data structure. To distinguish the surfaces, apply different shading options, styles, or colors to each surface.

```maple
> plot3d([cos(x)+cos(y), x^2+3*y^2-4], x=-2..2, y=-1..1, shading=[zgrayscale, none], color=[default, grey], style=[patchnogrid, patch], lightmodel=light3, transparency=0.1)
```

The display Command

To display different types of plots in the same plot region, use the display command in the plots package.
This example plots a curve over a hill with the shadow of the curve projected onto the hill.

> \[ z := 10 \left( x^2 + y^5 + \frac{x}{5} \right) e^{-x^2-y^2}; \]

> \[ \text{hill} := \text{plot3d}(z, x = -2.2, y = -2.5 \ldots 2.5, \text{shading} = \text{zhue}, \text{style} = \text{patchnogrid}, \text{lightmodel} = \text{light3}, \]
> \[ \text{orientation} = \{ -125, 60 \} \); \]

> \[ \text{xt} := \cos(t) ; \]

> \[ \text{yt} := 2 \sin(t) ; \]

Maple can draw curves in three-dimensional space.

> \[ \text{curve} := \text{spacecurve}([\text{xt}, \text{yt}, 10], t = 0 \ldots 10, \text{color} = \text{red}, \text{thickness} = 2) ; \]

> \[ \text{zt} := \text{subs}\{x = \text{xt}, y = \text{yt}\}, z\}; \]

> \[ \text{shadow} := \text{spacecurve}([\text{xt}, \text{yt}, \text{zt}], t = -\pi.\pi, \text{color} = \text{black}, \text{thickness} = 2); \]

> \[ \text{display}(\text{hill, curve, shadow}) \]

### 6.3 Customizing Plots

Maple provides many plot options to display the most aesthetically pleasing, illustrative results. Plot options include line styles, colors, shadings, axis styles, and titles where applicable. Plot options are applied using the **Interactive Plot Builder**, the context menus, or as options in the command syntax.

**Interactive Plot Builder Options**

The **Interactive Plot Builder** offers most of the plot options available in Maple in an easy-to-use interface.
Example:
Launch the Interactive Plot Builder and enter the expression:
1. Add the expression $2x^5 - 10x^3 + 6x - 1$. For information on interacting with the Interactive Plot Builder, see Example 1 - Display a plot of a single variable expression (page 188).

Set the x-axis range:
2. Select 2-D Plot as the plot type.
3. Change the x-axis range to $-2..2$.

In the Plot Options window:
4. From the line style list box, select dot.
5. From the color list box, select Blue.
6. From the axes style list box, select frame.
7. Select the Axes and Text menu.
8. In the text field beside title, enter My Plot.

Context Panel Options
Using the options in the context panel, you can alter a plot by clicking the plot output. You can also access a large subset of plot options using the Plot toolbar and Plot menu options. These menus display when a plot region is selected. Regardless of the method used to insert a plot into Maple, you can use the context menu to apply different plot options. For a list of options available when plotting in two and three dimensions, see The plot and plot3d Options (page 208).

2-D Plot Options
Consider this example:

```maple
> plot((x + 2)/(x - 1)^2, x = -5..5)
```

![Graph of the function](image)
There is a singularity at \( x = 1 \). What are the \( x \) and \( y \)-intercepts? It's hard to see in the current view. If you change the range, the locations of the intercepts are easier to see.

**Alter the y-axis range:**
1. Click the plot region. From the context panel, select *Axes*, and then *Properties*.
2. In the *Axes Properties* dialog, click the *Vertical* tab.
3. Clear the *Use data extents* check box and enter \(-2\) and \(5\) in the *Range min* and *Range max* text regions, respectively.
4. Click *Apply* to view the changes, or *OK* to return to the document.

**Change the color:**
5. Click on the curve. *Note:* The curve is selected when it becomes highlighted.
6. Select *Color*, and then *Green*.

*Note:* The *Niagara* colors listed form the default color palette in Maple.

**Change the line style:**
7. Select *Line*, and then *Dash*.

The \( x \)-intercept is at \( x = -2 \), and the \( y \)-intercept is at \( y = 2 \). This can be verified using the equation \( y = \frac{x + 2}{(x - 1)^2} \).

**3-D Plot Options**
By default, Maple displays the graph as a shaded surface with a wireframe and scales the plot to fit the window. To change these options, use the context menu.
Maple has many preselected light source configurations.

**Change the style:**
1. Click the plot region. From the context panel select **Style → Surface**. The wireframe is removed.

**Apply a light scheme:**
2. Select **Lighting → Light 1**.

**Change the axes style:**
3. Select **Axes → Boxed**.
Alter the glossiness:
4. Select **Glossiness** and then select **Set**... Using the slider, adjust the level of glossiness.

### The plot and plot3d Options

If you are using commands to insert a plot, you can specify plot options as arguments at the end of the calling sequence. You can specify the options in any order. Applying plot options in the command syntax offers a few more options and greater control than what is available in the **Interactive Plot Builder** and the context panel.

#### Table 6.2: Common Plot Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>axes</td>
<td>Defines the type of axes, one of: <strong>boxed, frame, none, or normal</strong></td>
</tr>
<tr>
<td>caption</td>
<td>Defines the caption for the plot</td>
</tr>
<tr>
<td>color</td>
<td>Defines a color for the curves to be plotted</td>
</tr>
<tr>
<td>font</td>
<td>Defines the font for text objects in the plot</td>
</tr>
<tr>
<td>glossiness (3-D)</td>
<td>Controls the amount of light reflected from the surface</td>
</tr>
<tr>
<td>gridlines (2-D)</td>
<td>Defines gridlines in the plot</td>
</tr>
<tr>
<td>lightmodel (3-D)</td>
<td>Controls the light model to illuminate the plot, one of: <strong>none, light1, light2, light3, or light4</strong></td>
</tr>
<tr>
<td>linestyle</td>
<td>Defines the dash pattern used to render lines in the plot, one of: <strong>dot, dash, dashdot, longdash, solid, spacedash, and spacedot</strong></td>
</tr>
<tr>
<td>legend (2-D)</td>
<td>Defines a legend for the plot</td>
</tr>
<tr>
<td>numpoints</td>
<td>Controls the minimum total number of points generated</td>
</tr>
<tr>
<td>scaling</td>
<td>Controls the scaling of the graph, one of: <strong>constrained or unconstrained</strong></td>
</tr>
<tr>
<td>shading (3-D)</td>
<td>Defines how the surface is colored, one of: <strong>xyz, xy, z, zgrayscale, zhue, or none</strong></td>
</tr>
<tr>
<td>size (2-D)</td>
<td>Specifies the size (or ratio) of the plot window</td>
</tr>
<tr>
<td>style</td>
<td>Defines how the surface is to be drawn, one of: <strong>line, point, pointline, polygon, or polygonoutline</strong> for 2-D plots; <strong>contour, point, pointline, surface, surfacecontour, surfacewireframe, wireframe, or wireframeopaque</strong> for 3-D plots</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>symbol</td>
<td>Defines the symbol for points in the plot, one of: asterisk, box, circle, cross, diagonalcross, diamond, point, solidbox, solcirc, or solldiam for 2-D plots; asterisk, box, circle, cross, diagonalcross, diamond, point, solidsphere, or sphere for 3-D plots</td>
</tr>
<tr>
<td>title</td>
<td>Defines a title for the plot</td>
</tr>
<tr>
<td>thickness</td>
<td>Defines the thickness of lines in the plot</td>
</tr>
<tr>
<td>transparency</td>
<td>Controls the transparency of the plot surface</td>
</tr>
<tr>
<td>view</td>
<td>Defines the minimum and maximum coordinate values of the axes displayed on the screen</td>
</tr>
</tbody>
</table>

For a complete list of plot options, refer to the `plot/options` and `plot3d/options` help pages.

```maple
> plot(Si(x), x = -20..20, title = "Plot of the Sine Integral", titlefont = [HELVETICA, 12], color = "Niagara 2", style = point)
```

![Plot of the Sine Integral](image)

To create a smoother or more precise plot, calculate more points using the `numpoints` option.
6.4 Analyzing Plots

Point Probe, Rotate, Pan, and Zoom Tools

To gain further insight into a plot, Maple offers various tools to analyze plot regions. These tools are available in the Plot menu, Context Bar, and in the context menu (under Manipulator and Probe Info) when the plot region is selected.

Table 6.3: Plot Context Bar Analysis Options

<table>
<thead>
<tr>
<th>Name</th>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point probe</td>
<td>📊</td>
<td>Select a curve. For 2-D plots, select a coordinate type from the Selection Tool menu to display coordinates.</td>
</tr>
<tr>
<td>Selection Tool</td>
<td>📊</td>
<td>Use the Selection Tool to select the information displayed in the point probe tool tooltip. You can choose to display coordinates derived from converted pixel coordinates or data points derived from the original data points.</td>
</tr>
<tr>
<td>Rotate (3-D)</td>
<td>🧵</td>
<td>Rotate a three-dimensional plot to see it from a different point of view.</td>
</tr>
<tr>
<td>Pan</td>
<td>🎨</td>
<td>Pan the plot by changing the view ranges for 2-D plots; smartplots re-sample to reflect the new view. Change the position of the plot in the plot region for 3-D plots.</td>
</tr>
<tr>
<td>Zoom in</td>
<td>🧵</td>
<td>Zoom into the plot; smartplots re-sample to reflect the new view. Also, scale the plot by placing the pointer over the plot and then rotating the wheel button.</td>
</tr>
<tr>
<td>Zoom out</td>
<td>🧵</td>
<td>Zoom into a selected region by using a click-and-drag operation to select a rectangle.</td>
</tr>
<tr>
<td>Reset view</td>
<td>🧵</td>
<td>Reset the view to the default view of the plot.</td>
</tr>
</tbody>
</table>
6.5 Representing Data

The Live Data Plots palette has templates that allow you to represent your data in many different ways including:

- Area chart
- Bar chart
- Box plot
- Bubble plot
- Histogram
- Line chart
- Pie chart
- Scatter plot

After you select a type of plot, an interactive environment allows you to change a number of options to refine the look of your plot. As you refine your plot, Maple automatically updates the plot command with your options.

If the Live Data Plots palette is not displayed in the palette dock, from the main menu select View → Palettes → Show Palette, and then select Live Data Plots.

6.6 Creating Animations

Animations allow you to emphasize certain graphical behavior, such as the deformation of a bouncing ball, more clearly than in a static plot. A Maple animation is a number of plot frames displayed in sequence, similar to the action of movie frames. To create an animation, use the Interactive Plot Builder or commands.

**Interactive Plot Builder**

**Creating Animations Using the Interactive Plot Builder:**

1. Run the command `plots[interactive]`. This displays a Maplet-based version of the interactive PlotBuilder.
2. Add the expression `sin(i*sqrt(x^2+y^2)/10)`.
3. From the Select Plot Type drop-down menu, select Animation.
4. The default x Axis range is -2*Pi .. 2*Pi. Change the x Axis range to -6 .. 6.
5. The default y Axis range is -2*Pi .. 2*Pi. Change the y Axis range to -6 .. 6.
6. Change the Animation Parameter (i) range to 1 .. 30.

In the Plot Options window:

7. From the Style group box, select surface.
8. From the Color group box, in the Light Model drop-down menu, select red-turquoise.
9. From the Color group box, in the Shading drop-down menu, select z (grayscale).
10. In the View group box, select the Constrained Scaling check box.

**Plot the expression:**

11. Click Plot.

> `plots[interactive]();`
For information on playing the animation, see *Playing Animations* (page 215). To see the Maple syntax used to generate this plot, see *Maple Syntax for Creating Animations: Interactive Plot Builder Example* (page 212).

**The plots[animate] Command**

You can also use the `animate` command, in the `plots` package, to generate animations.

<table>
<thead>
<tr>
<th>Table 6.4: The animate Command</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>animate(plotcommand, plotarguments, t=a..b, ...)</code></td>
</tr>
<tr>
<td><code>animate(plotcommand, plotarguments, t=L, ...)</code></td>
</tr>
<tr>
<td>• <code>plotcommand</code> - Maple procedure that generates a 2-D or 3-D plot</td>
</tr>
<tr>
<td>• <code>plotarguments</code> - arguments to the plot command</td>
</tr>
<tr>
<td>• <code>t=a..b</code> - name and range of the animation parameter</td>
</tr>
<tr>
<td>• <code>t=L</code> - name and list of real or complex constants</td>
</tr>
</tbody>
</table>

To access the command, use the short form name after invoking the `with(plots)` command.

> `with(plots):`

**Maple Syntax for Creating Animations: Interactive Plot Builder Example**

The following example shows the plotting command returned by the example in *Interactive Plot Builder* (page 211).

> `animate(plot3d, [sin(i*sqrt(x^2 + y^2))/10], x = -6 .. 6, y = -6 .. 6, style = patchnogrid, lightmodel = light3, shading = zgrayscale, scaling = constrained, i = 1 .. 30)`

\[
i = 1.
\]
Animate a 2-D plot

> animate\left(\text{polarplot, } [5 \cos(2 \theta), \theta = 0 .. t], t = \frac{\pi}{4} .. 2 \pi, \text{ frames = 50}\right)

For more information on the animate command, refer to the plots[animate] help page.

The plot3d(...,viewpoint) Option

You can use the viewpoint option to create an animation in which the position from which you view a 3-D plot moves in all directions and in various angles around the plot surface based on coordinates and parameters you specify. This type of animation creates the effect of flying through, around, beside, towards, and away from a plot surface in three-dimensional space.

The moveable position from which you view the surface is called the camera. You can specify the orientation of the camera to view different sides of a surface, the path along which the camera moves throughout and around a surface, and the location of the camera in 3-D space in each animation frame. For example, you can specify coordinates to move the camera to specific points beside a surface; a pre-defined camera path to move the camera in a circle around the surface; and the range of view to move the camera close to or away from the surface. Refer to the viewpoint help page for more information.

To animate the following examples, click the plot object and then click the play button (▶) in the Animation context bar.

Example 1: Moving the Camera Around a 3-D Plot

In the following example, a pre-defined path circleleft moves the camera in a counter-clockwise circle around the plot surface.
Example 2: Specifying a Path to Move the Camera Towards and Around a 3-D Plot

In the following example, a camera path is specified to zoom into and view different sides of the plot surface.

```r
> plot3d(1.3^x * sin(y), x = -1 .. 2 * pi, y = 0 .. pi, coords = spherical, style = patch, viewpoint = ["circleleft"])
```

![Example 2: Specifying a Path to Move the Camera Towards and Around a 3-D Plot](image)

```r
> plot3d(sin(x + y), x = -1 .. 1, y = -1 .. 1, shading = xyz, viewpoint = [path = [[50*x, 90*cos(x), 100*sin(x)], x = -2 * pi .. pi]])
```

![Example 2: Specifying a Path to Move the Camera Towards and Around a 3-D Plot](image)
6.7 Playing Animations

Animation Context Bar

To run the animation, click the plot to display the **Animate** context bar.

**Table 6.5: Animation Options**

<table>
<thead>
<tr>
<th>Name</th>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous Frame</td>
<td></td>
<td>View the previous frame in the animation.</td>
</tr>
<tr>
<td>Stop</td>
<td></td>
<td>Stop the animation.</td>
</tr>
<tr>
<td>Play</td>
<td></td>
<td>Play the selected animation.</td>
</tr>
<tr>
<td>Next Frame</td>
<td></td>
<td>View the next frame in the animation.</td>
</tr>
<tr>
<td>Current Frame</td>
<td><img src="image1" alt="Frame Slider" /></td>
<td>Slider control for viewing individual frames of an animated plot.</td>
</tr>
<tr>
<td>Forward</td>
<td><img src="image2" alt="Forward" /></td>
<td>Forward - Play the animation forward.</td>
</tr>
<tr>
<td>Oscillate</td>
<td><img src="image3" alt="Oscillate" /></td>
<td>Oscillate - Play the animation forward and backward.</td>
</tr>
<tr>
<td>Backward</td>
<td><img src="image4" alt="Backward" /></td>
<td>Backward - Play the animation backward.</td>
</tr>
<tr>
<td>Single</td>
<td><img src="image5" alt="Single" /></td>
<td>Single - Run the animation in single cycle mode. The animation is displayed only once.</td>
</tr>
<tr>
<td>Continuous</td>
<td><img src="image6" alt="Continuous" /></td>
<td>Continuous - Run the animation in continuous mode. The animation repeats until you stop it.</td>
</tr>
<tr>
<td>Frames per second</td>
<td><img src="image7" alt="FPS" /></td>
<td>Set the animation to play at a faster or slower speed.</td>
</tr>
<tr>
<td>Point probe</td>
<td><img src="image8" alt="Point Probe" /></td>
<td>Select a curve. For 2-D plots, select a coordinate type from the Selection Tool menu to display coordinates.</td>
</tr>
<tr>
<td>Execute click and drag code (2-D)</td>
<td><img src="image9" alt="Click and Drag" /></td>
<td>In an embedded plot window, use this probe to execute the specified click and drag code, if any.</td>
</tr>
<tr>
<td>Pan</td>
<td><img src="image10" alt="Pan" /></td>
<td>Pan the plot by changing the view ranges.</td>
</tr>
<tr>
<td>Zoom in</td>
<td><img src="image11" alt="Zoom In" /></td>
<td>Zoom into the plot. Also, scale the plot by placing the pointer over the plot and then rotating the wheel button.</td>
</tr>
<tr>
<td>Zoom out</td>
<td><img src="image12" alt="Zoom Out" /></td>
<td>Zoom out of the plot. Also, scale the plot by placing the pointer over the plot and then rotating the wheel button.</td>
</tr>
<tr>
<td>Reset view</td>
<td><img src="image13" alt="Reset View" /></td>
<td>Reset the view to the default view of the 2-D plot.</td>
</tr>
<tr>
<td>Selection Tool (2-D)</td>
<td><img src="image14" alt="Selection Tool" /></td>
<td>Use the Selection Tool to select the information displayed in the point probe tool tooltip. You can choose to display coordinates derived from converted pixel coordinates or data points derived from the original data points. To copy the coordinate data into the clipboard, from the context panel select <strong>Probe Info → Copy data</strong>.</td>
</tr>
<tr>
<td>Rotate (3-D)</td>
<td><img src="image15" alt="Rotate" /></td>
<td>Rotate a three-dimensional plot to see it from a different point of view.</td>
</tr>
</tbody>
</table>

You can also run the animation using the context menu or the **Plot** menu.
6.8 Customizing Animations

The display options that are available for static plots are also available for Maple animations.

**Interactive Plot Builder Animation Options**

Using the **Interactive Plot Builder**, you can apply various plot options within the **Plot Options** window. See *Interactive Plot Builder* (page 211).

**Context Panel Options**

As with static plots, you can apply plot options to the animation by clicking the animation output.

Customize the animation using the context panel:

1. To change the line style, click the plot region. Select **Style → Point**.
2. To remove the axes, select **Axes → None**.

**The animate Command Options**

The **animate** command offers a few options that are not available for static plots. Refer to the **animate** help page for information on these additional options. By default, a two-dimensional animation consists of sixteen plots (frames) and a three-dimensional animation consists of eight plots (frames). To create a smoother animation, increase the number of frames using the **frames** option.

**Note:** Computing more frames increases time and memory requirements.

> sinewave := plot(\sin(x) \ e^{-x/5}, x = 0 .. 0.20) ;
6.9 Exporting

You can export a generated plot or animation to an image in various file formats, including DXF and X3D (for 3-D plots), EPS, GIF, JPEG/JPG, POV, and Windows BMP. Exporting an animation to GIF produces an animated image file. The exported images can be included in presentations, web pages, Microsoft Word, or other software.

> ball := proc(x, y) plots[pointplot]([[x, y]], symbol = circle, symbolsize = 20) end proc:

> plots[animate](ball, [t, sin(t) e^(-t/5), t = 0 .. 20, frames = 60, background = sinewave)

t = 0.
To export an image:

1. Click the plot region.
2. From the context panel, select Export and the file format.

Alternatively:

1. Click the plot.
2. From the Plot menu, select Export, and then the file format.

Maple has various plot drivers. By setting the plotdevice, a file can be automatically created without returning the image to the document. For more information, refer to the plot,device help page.

6.10 Code for Color Plates

Generating impressive graphics in Maple can require only a few lines of code, as shown by the examples in this chapter. However, other graphics require many lines of code. Code for the color plates is available at the Maple Application Center.

From the Help menu, select On the Web, User Resources, and then Application Center.

To access the color plate code:

1. Go to the Maple Application Center.
2. In the Keyword or phrase region, enter Color Plate.
7 Creating Mathematical Documents

Maple allows you to create powerful documents as business and education tools, technical reports, presentations, assignments, and handouts.

You can:
• Copy, cut, and paste information
• Format text for reports or course material
• Add headers and footers
• Insert images, tables, and symbols
• Generate 2-D and 3-D plots and animations
• Sketch in the document or on a plot
• Insert hyperlinks to other Maple files, web sites, or email addresses
• Place instructions and equations side by side
• Bookmark specific areas
• Easily update, revise, and distribute your documents

In this chapter, we will create a document that demonstrates many of Maple's documentation features. For further examples, note that this guide was written using Maple.

7.1 In This Chapter

<table>
<thead>
<tr>
<th>Section</th>
<th>Topics</th>
</tr>
</thead>
</table>
| Document Formatting (page 220) - Add various text formatting elements | • Copy and Paste  
• Quick Character Formatting  
• Quick Paragraph Formatting  
• Character and Paragraph Styles  
• Sections  
• Headers and Footers  
• Show or Hide Worksheet Content  
• Indentation and the Tab Key |
| Commands in Documents (page 233) - Format and display or hide commands in a document | • Document Blocks  
• Typesetting  
• Auto-Execute |
| Tables (page 237) - Create tables and modify their attributes | • Creating a table  
• Cell contents  
• Navigating table cells  
• Modifying Structural Layout  
• Modifying Physical Dimensions  
• Modifying Appearance  
• Printing Options  
• Execution Order  
• Tables in the Classic Worksheet |
### 7.2 Document Formatting

To begin, create a new Maple document. From the File menu, select **New → Document Mode**. For this example, you can copy and paste text from any file. The example text below is from a Maple help page, `plot`, but the formatting has been removed for demonstration purposes.

#### Copy and Paste

You can cut, copy, and paste content within Maple documents, and from other sources.

**To copy an expression, or part of an expression, to another location on the document:**

1. Select the expression, or part of the expression, to copy. Alternatively, right-click and select **Copy**.
2. From the **Edit** menu, select **Copy**.
3. Place the cursor at the insertion point.
4. From the **Edit** menu, select **Paste**. Alternatively, right-click and select **Paste**.

**Result:**

```plaintext
plot - create a two-dimensional plot

Calling Sequence
plot(f, x)
plot(f, x=x0..x1)
plot(v1, v2)

Parameters

- `f` - expression in independent variable `x`
- `x` - independent variable
- `x0, x1` - left and right endpoints of horizontal range
- `v1, v2` - `x`-coordinates and `y`-coordinates
```
If you paste into a math input region, Maple interprets all the pasted content as input. If you paste into a text region, Maple interprets all the pasted content as text. However, note that 2-D Math retains its format in both input and text regions.

When you copy and paste to another application, in general, Maple retains the original structure.

**Quick Character Formatting**

The **Format → Character** menu provides access to the following quick formatting features: **Bold**, **Italic**, **Underline**, **Superscript**, **Subscript**, **Font Color**, and **Highlight Color**.

To modify text:

1. In the document, select the text to modify.
2. From the **Format** menu, select **Character**, and then the appropriate feature. Alternatively, select **Format → Character** from the context panel.
3. Select the quick formatting feature you want to apply (for example, bold or italic font).

Alternatively, use the context bar icons. For example, to apply a color to the parameters "f, x=x0..x1":

- Font Color Context Bar Icon

- Highlight Color Context Icon

For font and highlight colors, you can select from Swatches, a color wheel, RGB values, or choose a color using the eye dropper tool. See **Figure 7.1**.

**Figure 7.1: Select Color Dialog**

In this example, choose a dark purple color, as in the help pages.

To format this text as bold, click the **Bold** toolbar icon. Also, select the text "Calling Sequence" and format as bold.

Result:
plot - create a two-dimensional plot

Calling Sequence

plot(f, x)
plot(f, x=x0..x1)
plot(v1, v2)

Parameters

f - expression in independent variable x
x - independent variable
x0, x1 - left and right endpoints of horizontal range
v1, v2 - x-coordinates and y-coordinates

Attributes Submenu: Setting Fonts, Character Size, and Attributes

You can also change various character attributes such as font, character size, style, and color in one dialog.

To modify text:

1. In the document, select text to modify.
2. From the Format menu, select Character, and then Attributes. The Character Style dialog opens. See Figure 7.2.

![Character Style Dialog](image)

Figure 7.2: Character Style Dialog

Quick Paragraph Formatting

The Format→Paragraph menu provides access to the following quick alignment features: Align Left, Center, and Align Right.
To modify a paragraph:
1. In the document, select the paragraph to modify.
2. From the Format menu, select Paragraph, and then the appropriate feature.

**Attributes Submenu: Spacing, Indent, Alignment, Bullets, Line Break, and Page Break**

You can change various paragraph attributes in one dialog.
- From the Format menu, select Paragraph, and then Attributes. The Paragraph Style dialog opens. See Figure 7.3.
- When changing spacing, you must indicate units (inches, centimeters, or points) in the Units drop-down list.

![Paragraph Style Dialog](image)

**Figure 7.3: Paragraph Style Dialog**

For example, in the pasted text, select all of the items under "Parameters", then open the Paragraph Style dialog. Notice that the spacing has already been set.

In the Indent section, change the Left Margin indent to 10.0 pt.

In the Bullets and Numbering section, click the Style drop-down and select Dash. Click OK to close the dialog and apply the styles.

**Result:**
plot - create a two-dimensional plot

Calling Sequence

\[ \text{plot}(f, x=a..b) \]

\[ \text{plot}(f, x=x_0..x_1) \]

\[ \text{plot}(v_1, v_2) \]

Parameters

- \( f \) - expression in independent variable \( x \)
- \( x \) - independent variable
- \( x_0, x_1 \) - left and right endpoints of horizontal range
- \( v_1, v_2 \) - \( x \)-coordinates and \( y \)-coordinates

For more information, refer to the \textbf{paragraphmenu} help page.

Character and Paragraph Styles

Maple has predefined styles for characters and paragraphs. A style is a set of formatting characteristics that you can apply to text in your document to change the appearance of that text. When you apply a style, you apply a group of formats in one action.

- A \textbf{character style} controls text font, size, color, and attributes such as bold and italic. To override the character style within a paragraph style, you must apply a character style or character formatting.
- A \textbf{paragraph style} controls all aspects of a paragraph's appearance, such as text alignment, line spacing, and indentation. In Maple, each paragraph style includes a character style.

![Figure 7.4: Style Management Dialog](image)

Applying Character Styles

By using the drop-down list in the document context bar, you can apply:

- Existing Maple character styles.
- New styles that you have created through the Style Management (Figure 7.4) and Character Style (Figure 7.5) dialogs.
To apply a character style to text in your document:

1. Select the text to modify.
2. In the styles drop-down list in the context bar of your document, select an appropriate character style. All character styles are preceded by the letter C. The selected text now reflects the attributes of the character style you have chosen.

3. (Optional) If necessary, you can remove this style. From the Edit menu, select Undo.

Creating and Modifying Character Styles

You can create custom character styles to apply to text, or change existing character styles. New styles are automatically added to the styles drop-down list in the context bar of your document.

1. From the Format menu, select Styles. The Style Management dialog opens. See Figure 7.4.

To create a character style:

- Click Create Character Style. The Character Style dialog opens. See Figure 7.5.
- In the first row of the dialog, enter a style name in the blank text region.

To modify a character style:

- From the style list, select the character style to modify. Recall that all character styles are preceded by the letter C, while paragraph styles are preceded by the letter P.
- Click Modify. The Character Style dialog opens with the current attributes displayed. See Figure 7.5.

For either action, continue:

2. Select the properties for the new character style, such as font, size, attributes, and color. In the font attributes, the Superscript and Subscript check boxes are mutually exclusive. When you select one of the two check boxes, the other is disabled. You must clear one before selecting the other.

Note: A preview of the style is displayed in the last row of the Character Style dialog.

3. To save the style, click OK or to abandon, click Cancel. If you have modified a style, all text in your document that uses the altered style is updated to reflect the changes.
For example, in the pasted text, suppose we want to create a character style for the bold, purple parameter.

- From the **Format** menu, select **Styles**, then click **Create Character Style**.
- Enter the style name, "Placeholder", and then select the character attributes. In this case, click the **Bold** check box. Then click the **Color** button and choose a dark purple. Click **OK** to create the character style.

Now you can apply the style to any text. Under **Calling Sequences**, select each list of parameters inside the command. To apply the style, from the **Styles** drop-down menu in the toolbar, select **Parameter**.

**Result:**
Calling Sequence

\texttt{plot\left(f, x\right)}
\texttt{plot\left(f, x=x_0..x_1\right)}
\texttt{plot\left(v_1, v_2\right)}

Parameters

\begin{itemize}
\item \texttt{f} - expression in independent variable \texttt{x}
\item \texttt{x} - independent variable
\item \texttt{x_0, x_1} - left and right endpoints of horizontal range
\item \texttt{v_1, v_2} - \texttt{x}-coordinates and \texttt{y}-coordinates
\end{itemize}

Applying Paragraph Styles

By using the drop-down list in the document context bar, you can apply:

- Existing Maple paragraph styles.
- New styles that you have created through the Style Management (Figure 7.4) and Defining a Paragraph Style (Figure 7.6) dialogs.

To apply a Maple paragraph style to text in your document:

1. Select the text to modify.
2. In the styles drop-down list in the context bar of your document, select an appropriate paragraph style. All Maple paragraph styles are preceded by the letter \texttt{P}. The selected text now reflects the attributes of the paragraph style you have chosen.

For example, to format the title of the pasted text as a title, first select the line: "plot - create a two-dimensional plot". In the Styles drop-down, select \texttt{Title}.

Result:
plot - create a two-dimensional plot

Calling Sequence
plot(f, x)
plot(f, x=x0..x1)
plot(v1, v2)

Parameters

\( f \) - expression in independent variable \( x \)
\( x \) - independent variable
\( x_0, x_1 \) - left and right endpoints of horizontal range
\( v1, v2 \) - \( x \)-coordinates and \( y \)-coordinates

3. (Optional) If necessary, you can remove this style. From the Edit menu, select Undo.

Creating and Modifying Paragraph Styles

You can create custom paragraph styles to apply to text, or change existing paragraph styles. New styles are automatically added to the styles drop-down list in the context bar of your document.

1. From the Format menu, select Styles. The Style Management dialog opens. See Figure 7.4.

To create a paragraph style:
• Click Create Paragraph Style. The Paragraph Style dialog opens. See Figure 7.6.
• In the first row of the dialog, enter a style name in the blank text field.

To modify a paragraph style:
• Select a paragraph style to modify. Recall that all paragraph styles are preceded by the letter \( P \).
• Click Modify. The Paragraph Style dialog opens with the current attributes displayed.

For either action, continue:
4. In the Units drop-down menu, select the units used to determine spacing and indentation. Select from inches (\texttt{in}), centimeters (\texttt{cm}), or points (\texttt{pt}).
5. Select the properties to use for this paragraph style, such as Spacing, Indent, Alignment, Bullets and Numbering, Page Break Before, and Linebreak.
6. To add or modify a font style, click Font. The Character Style dialog opens. For detailed instructions, see Creating and Modifying Character Styles (page 225).
7. To save the style, click OK, or to abandon, click Cancel. If you are modifying an existing style, all text in your document that uses the altered style is updated to reflect the changes.
Figure 7.6: Defining a Paragraph Style

**Style Set Management: Saving Styles for Future Use**

You can use the style set of a particular document as the default style for all documents.

Figure 7.7: Style Set Management Dialog

For information on creating and managing style sets, see the `worksheet/documenting/styles` help page.

**Sections**

You can organize your document into sections, either before or after the text has been entered.
Using the Insert Menu to Add Sections
1. Place the cursor in the paragraph or execution group above the location at which you want to insert a new section.
   • If the cursor is inside a section, Maple inserts the new section after the current section.
   • If the cursor is in an execution group, Maple inserts the new section after the execution group.
2. From the Insert menu, select Section. An arrow marks the start of the section.
3. Move the cursor to the text area beside the arrow. Enter the section heading.
4. Move the cursor to the body of the section. Enter the content.

Tips for Adding Sections and Subsections
• If you are in a section and select Insert → Section, a subsection is created.
• To insert a subsection immediately after the current subsection, use Edit → Split or Join → Split Section. The newly created section is at the same indentation level as the existing section.
• To outdent, use Edit → Remove Section. This decreases the indentation of a worksheet element by one level by removing one subsection that encloses the worksheet element.

Using the Indent and Outdent Toolbar Icons
You can shift sections to create or remove subsections.

<table>
<thead>
<tr>
<th></th>
<th>Enclose the selection in a section or subsection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Outdent the selection to the next section level, if possible.</td>
</tr>
</tbody>
</table>

For example, to create two sections containing the two categories of information in the pasted text:
1. Select "Parameters" and all of the items under it.
2. Click the Indent toolbar item.
3. Cut and paste "Parameters" from inside the section to its title.
4. Similarly, create a section with the title "Calling Sequence", containing the items under that heading.
plot - create a two-dimensional plot

Calling Sequence

\[
\begin{align*}
\text{plot}(f, x) \\
\text{plot}(f, x=x_0..x_1) \\
\text{plot}(x_1, y_2)
\end{align*}
\]

Parameters

- \( f \) - expression in independent variable \( x \)
- \( x \) - independent variable
- \( x_0, x_1 \) - left and right endpoints of horizontal range
- \( x_1, y_2 \) - \( x \)-coordinates and \( y \)-coordinates

Note: The section titles are automatically formatted as section titles, but you can change the formatting through the Paragraph Style dialog.

Headers and Footers

You can add headers and footers to your document that will appear at the top and bottom of each page when you print the document.

To add or edit headers and footers:

From the Insert menu, select Header Footer. The Header Footer dialog appears. See Figure 7.8.

![Figure 7.8: Header and Footer Dialog - Custom Header](image)

The available elements include the current date, page number, number of pages, an image, the filename, or any plain text. These elements can be placed in the left or right corner or the center of the page.

You can choose one of the predefined header or footer styles in the Predefined Header and Footer tab, or create your own by clicking the Custom Header or Custom Footer tab.

For more information on header and footer options, refer to the headerfooter help page.

Show or Hide Worksheet Content

You can hide document elements of a specific type so that they are not visible. This does not delete them, but hides them from view. Hidden elements are not printed or exported, but they can be copied and pasted.

In a document, use the Show Contents dialog to hide all spreadsheets, input, output, or graphics, plus markers for section boundaries, execution group boundaries, hidden table borders on mouse pointer roll over, and annotations. The dialog is accessed from the View→Show/Hide Contents menu.
Using the Show Contents Dialog

A check mark beside the item indicates that all document elements of that type are displayed for the current document. See Figure 7.9.

![Show Contents Dialog](image)

Figure 7.9: Show Contents Dialog

1. From the View menu, select Show/Hide Contents. The Show Contents dialog opens with all items selected for display.

2. Clear the check box associated with the document components or markers to hide them.

Note: By clearing the Input check box, Maple Input (1-D Math) and 2-D Math input are hidden. However, this will not hide Text input in Document mode. Clearing the Graphics check box ensures that a plot, an image, or the Canvas inserted in the document by using the Insert menu option is also hidden.

Command Output Versus Inserted Content

Output is considered an element that results from executing a command. Inserted components are not considered output. Consider the following examples.

The plot resulting from executing the \texttt{plot(sin)} command is considered output.

- To show a plot from the \texttt{plot(sin)} command, select both the Output and Graphics check boxes in the Show Contents dialog.

Inserted images and the Canvas are not considered output. As such, they are not hidden if you clear the Output check box.

- To hide an inserted image or canvas, clear the Graphics check box in the Show Contents dialog.

Indentation and the Tab Key

The Tab key has a few different uses:

- Indentation
- Navigation through a document or between table cells
• Navigation between placeholders within a math expression

Control the behavior of the Tab key using the Tab Navigation feature in the Format menu. For more information, refer to the tabkey help page.

7.3 Commands in Documents

Document Blocks

With document blocks, you can create documents that present text and math in formats similar to those found in business and education documents.

In a document block, an input prompt or execution group is not displayed.

By hiding Maple input such that only text and results are visible, you create a document with better presentation flow. Before using document blocks, it is recommended that you display Markers. A vertical bar is displayed along the left pane of the document. Icons representing document blocks are displayed in this vertical bar next to associated content.

To activate Markers:

• From the View menu, select Markers.

For further details on document blocks, see Document Blocks (page 35) in Chapter 1.

Working with Document Blocks

In document mode, each time you press Enter, a new document block appears. Documents consist of a series of document blocks.

1. Create a new document block after the last section of the pasted example, either by pressing Enter, or by selecting, from the Edit→Document Blocks menu, Create Document Block.

2. Enter text and an expression to evaluate. For example, enter "Plot the expression $\sin(x)$ and its derivative, $\frac{d}{dx} \sin(x)$". For detailed instructions on entering this phrase, see Example 6 - Enter Text and 2-D Math in the Same Line Using Toolbar Icons (page 22) in Chapter 1.

3. Select the expression to display the context panel.

4. From the context panel, click Evaluate and Display Inline. The expression is evaluated.

5. Check that the input mode is Text, then enter the rest of the sentence: ", in the same plot." See Figure 7.10.

Before

After

Figure 7.10: Working with Document Blocks
plot - create a two-dimensional plot

Calling Sequence

\[
\text{plot}(f, x) \\
\text{plot}(f, x=x_0..x_1) \\
\text{plot}(x_1, y_2)
\]

Parameters

- \( f \) - expression in independent variable \( x \)
- \( x \) - independent variable
- \( x_0, x_1 \) - left and right endpoints of horizontal range
- \( x_1, y_2 \) - \( x \)-coordinates and \( y \)-coordinates

Plot the expression \( \sin(x) \) and its derivative, \( \frac{d}{dx} \sin(x) = \cos(x) \), in the same plot.

Inline Document Output

Document blocks can display content inline, that is, text, input, and output in one line as presented in business and education documents.

To display content inline:

1. Place the cursor in the document block.
2. From the Edit→Document Blocks menu, select Inline Document Output.

View Document Code

To view the contents, that is, all code and expanded execution groups within a document block, you must expand the document block.

1. Place the cursor in the document block region.
2. From the Edit→Document Blocks menu, select Show Command.

Expand an Execution Group within a Document Block

An execution group is a grouping of Maple input with its corresponding Maple output. It is distinguished by a large square bracket at the left called a group boundary.

As document blocks can contain many execution groups, you can select to expand an execution group within a document block.

1. Place the cursor near the end of the document block region.
2. From the Edit→Document Blocks menu, select Show Execution Group.
3. To hide the group, clear the check box beside Show Execution Group.

Switch between Input and Output
1. Place the cursor in the document block region.
2. From the Edit→Document Blocks menu, select Toggle Input/Output Display.

Input from any executable math or commands is displayed in one instance, or only output is displayed.

Typesetting
You can control typesetting and 2-D Math equation parsing options in the Standard Worksheet interface. Extended typesetting uses a customizable set of rules for displaying expressions.

The rule-based typesetting functionality is available when the Typesetting level is set to Extended (the default). You can set the typesetting level under Tools→Options→Display tab. This parsing functionality applies to 2-D Math editing (Math mode) and output.

For example, you can change the display of derivatives to suit the content and audience of your document.

\[
\frac{d}{dx} f(x) \quad \text{Tools→Options→Display tab: Typesetting level = Extended.}
\]

\[
\frac{d}{dx} f(x) \quad \text{Tools→Options→Display tab: Typesetting level = Maple Standard.}
\]

To specify rules, use the Typesetting Rule Assistant.

- From the View menu, select Typesetting Rules. The Typesetting Rule Assistant dialog opens.

For more information, see the Typesetting, TypesettingRuleAssist, and OptionsDialogDisplay help pages.

Auto-Execute
The Autoexecute feature allows you to designate regions of a document for automatic execution. These regions are executed when the document opens or when the restart command is executed. This is useful when sharing documents. Important commands can be executed as soon as the user opens your document. The user is not required to execute all commands.

Setting the Auto-Execute Feature
1. Select the region to be automatically executed when the document opens.
2. From the Evaluate menu, select Set Selection to Autoexecute.

Regions set to Autoexecute are denoted by exclamation mark symbols in the Markers region (View → Markers),
For example, to display a plot in your document without saving the plot, making your document use less memory, you can set a plot command to autoexecute.

1. After the plot instruction, enter a Maple prompt (Insert → Execution Group → After Cursor).
2. Enter the plot command: \[ \text{plot}\left(\left[\sin(x), \int \sin(x) \, dx\right]\right) \] and press Enter to execute.
3. Select the plot, then select Evaluate → Remove Output from Selection.
4. Place the cursor in the plot command, then select Evaluate → Set Selection to Autoexecute.
5. Save and close the document; on reopening, the command is re-executed.

Result:

\[ \text{plot} - \text{create a two-dimensional plot} \]

\[ \text{Calling Sequence} \]

\[ \text{plot}(f, x) \]
\[ \text{plot}(f, x=x_0..x_1) \]
\[ \text{plot}(v_1, v_2) \]

\[ \text{Parameters} \]

\[ f \] - expression in independent variable \( x \)
\[ x \] - independent variable
\[ x_0, x_1 \] - left and right endpoints of horizontal range
\[ v_1, v_2 \] - \( x \)-coordinates and \( y \)-coordinates

Plot the expression \( \sin(x) \) and its derivative, \( \frac{d}{dx} \sin(x) = \cos(x) \), in the same plot.

\[ \text{plot}\left(\left[\sin(x), \frac{d}{dx}\sin(x)\right]\right) \]

Removing the Auto-Execute Setting

To remove the setting in a region:
1. Select the region.
2. From the Evaluate menu, select Clear Selection from Autoexecute.

To remove all autoexecuted regions from a document:
* From the Evaluate menu, select Clear All Autoexecute.

Repeating Auto-Execution

To execute all marked groups:
* From the Evaluate menu, select Repeat Autoexecute.

Security Levels

By default, Maple prompts the user before automatically executing the document.

To set security levels for the autoexecute feature, use the Security tab in the Options dialog. For details, refer to the OptionsDialogSecurity help page.
7.4 Tables

Tables allow you to organize content in a document.

Creating a Table

To create a table:
1. From the Insert menu, select Table.
2. Specify the number of rows and columns in the table creation dialog.
3. Click OK.

The default properties for the table include visible borders and auto-adjustment to 100% of the document width. These options, as well as the table dimensions, can be modified after table creation.

Create a table with 4 rows and 2 columns at the end of your document. In document mode, the input mode is set to Math by default; in worksheet mode, the default is Text mode.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cell Contents

Any content that can be placed into a document can also be placed into a table cell, including other sections and tables. Table cells can contain a mix of:

- Input commands
- 2-D Math
- Embedded components: buttons, sliders, check boxes, and more
- Plots
- Images

Enter a heading in both columns of the first row, in 2-D Math. You can use any text formatting features within each cell; for example, bold and center the headings.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Navigating Table Cells

Use the Tab key to move to the next cell. Ensure that Format → Tab Navigation is selected.

<table>
<thead>
<tr>
<th>Tab Navigation</th>
<th>Allows you to move between cells using the Tab key.</th>
</tr>
</thead>
<tbody>
<tr>
<td>selected</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Tab Navigation</td>
<td>Allows you to indent in the table using the Tab key.</td>
</tr>
<tr>
<td>not selected</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tab between the cells of the table and enter the following expressions in the first column. For each function, from the context panel, select Differentiate → With respect to → x. Cut and paste the resulting expression into the second column.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modifying the Structural Layout of a Table

The number of rows and columns in a table are modified using the Insert and Delete submenus in the Table menu or by using the Cut and Copy/Paste tools. The Table menu is found under the Format menu. The same table menu options are available in the Context Panel when the cursor resides in a table.

Inserting Rows and Columns

Row and column insertion is relative to the table cell that currently contains the cursor. If the document has an active selection, insertion is relative to the selection boundaries.

- Column insertion can be to the left or right of the document position marker or selection.
- Row insertion can be above or below the marker or selection.

In your table, add a third column on the right to display the plots of these expressions. Add the heading, and insert a blank plot region in each cell below it, by selecting Insert → Plot → 2-D (or 3-D for the second expression). Then Ctrl-drag (Control-drag for Macintosh) each expression in the row into its plot region to display it. For details on this procedure, see Plots and Animations (page 185).

Resize the plots and table as desired.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(x)$</td>
<td>$\frac{d}{dx} f(x)$</td>
</tr>
<tr>
<td>$1 + \frac{1}{1 + \frac{1}{x}}$</td>
<td>$- \frac{1}{\left( 1 + \frac{1}{1 + \frac{1}{x}} \right)^2 \left( 1 + \frac{1}{x} \right)^2} x^2$</td>
</tr>
<tr>
<td>$\sin(\omega x) e^{(-5x)}$</td>
<td>$\cos(\omega x) \omega e^{-5x} - 5 \sin(\omega x) e^{-5x}$</td>
</tr>
<tr>
<td>$\frac{d^2}{dx^2} \sin^2(x)$</td>
<td>$-8 \sin(x) \cos(x)$</td>
</tr>
<tr>
<td>$f(x)$</td>
<td>$\frac{d}{dx}f(x)$</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------</td>
</tr>
<tr>
<td>$\frac{1}{1 + \frac{1}{1 + \frac{1}{x}}}$</td>
<td>$\frac{1}{\left(1 + \frac{1}{1 + \frac{1}{x}}\right)^2 \left(1 + \frac{1}{x}\right)^2 x^2}$</td>
</tr>
<tr>
<td>$\sin(\omega x) e^{(-5x)}$</td>
<td>$\cos(\omega x) \omega e^{-5x} - 5 \sin(\omega x) e^{-5x}$</td>
</tr>
<tr>
<td>$\frac{d^2}{dx^2} \sin^2(x)$</td>
<td>$-8 \sin(x) \cos(x)$</td>
</tr>
</tbody>
</table>

### Deleting Rows and Columns

With deleting operations using the **Delete** key, the **Delete Table Contents** dialog opens allowing you to specify the desired behavior. For example, you can delete the selected rows, or delete the contents of the selected cells. See **Figure 7.11**.

![Delete Table Contents](image)

**Figure 7.11: Delete Table Contents Verification Dialog**

### Pasting

Pasting a table subselection into a table may result in the creation of additional rows or columns, overwriting existing cell content, or the insertion of a subtable within the active table cell. When there is a choice, the **Table Paste Mode** dialog opens, allowing you to choose. See **Figure 7.12**.
Merging Cells

To merge adjacent cells in a table, select the cells you would like to merge. From the Table menu, select Merge Cells. You can merge cells across row or column borders. See Figure 7.13. The resulting cell must be rectangular. The contents of the individual cells in the merge operation are concatenated in execution order. See Figure 7.14. For details on cell execution order, see Execution Order Dependency (page 243).

![Figure 7.12: Table Paste Mode Selection Dialog](image)

![Figure 7.13: Two Cells](image)

![Figure 7.14: Merged Cells](image)

Modifying the Physical Dimensions of a Table

The overall width of the table can be controlled in several ways.

The most direct way is to press the left mouse button (press mouse button, for Macintosh) while hovering over the left or right table boundary and dragging the mouse left or right. Upon release of the mouse button, the table boundary is updated. This approach can also be used to resize the relative width of table columns.

Alternatively, the size of the table can be controlled from the Table Properties dialog. The Table Properties dialog is found in the Context Panel or through the Format menu under Table and then Properties. Two sizing modes are supported.

1. **Fixed percentage of page width.** Using this option, the table width adjusts whenever the width of the document changes. This option is useful for ensuring that the entire content of the table fits in the screen or printed page.

2. **Scale with zoom factor.** This option is used to preserve the size and layout of the table regardless of the size of the document window or the zoom factor. If the table exceeds the width of the document window, the horizontal scroll bar can be used to view the rightmost columns. **Note:** Using this option, tables may be incomplete when printed.

Modifying the Appearance of a Table

Table Borders

The style of exterior and interior borders is set using the Table Properties dialog.

- You can set all, none, or only some of the borders to be visible in a table. Exterior borders are controlled separately.
- You can control the visibility of interior borders by using the Group submenu of the Table menu; grouping rows or columns suppresses interior borders, provided that the interior border style is set by row and column group.
For example, group the columns together, and group rows 2 to 4 together. Then in the Table Properties dialog, select Exterior Borders: Top and bottom, and Interior Borders: By row and column group.

- Hidden borders are visible when the mouse hovers over a table. Note: You can hide the visibility of lines on mouse pointer roll over by using the View→Show/Hide Contents dialog, and clearing the Hidden Table Borders check box. This setting applies to all tables in the worksheet. You can also set controls for an individual table from the Table Properties→Show hidden borders option. Using this option, borders can be hidden in a table even if they are set to visible on roll over in the Show/Hide Contents dialog.

### Alignment Options

The table alignment tools control the horizontal alignment of columns and vertical alignment of rows.

For column alignment, the current selection is expanded to encompass all rows in the selected columns. The alignment choice applies to all cells within the expanded selection. If the document does not contain a selection, the cursor position is used to identify the column.

Similarly, the selection is expanded to include all columns in the selected rows for vertical alignment options. The following table illustrates the vertical alignment options. The baseline option is useful for aligning equations across multiple cells within a row of a table.
For example, set the **Row** alignment to **Baseline** for all rows, and set the **Column** alignment to **Center** for all columns.

<table>
<thead>
<tr>
<th>Top</th>
<th>( \frac{1}{x} )</th>
<th>( \frac{1}{x} )</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center</td>
<td>( \frac{1}{y} )</td>
<td>( \frac{1}{y} )</td>
</tr>
<tr>
<td>Bottom</td>
<td>( \frac{1}{x} )</td>
<td>( \frac{1}{x} )</td>
</tr>
<tr>
<td>Baseline</td>
<td>( \frac{1}{y} )</td>
<td>( \frac{1}{y} )</td>
</tr>
</tbody>
</table>

For example, set the **Row** alignment to **Baseline** for all rows, and set the **Column** alignment to **Center** for all columns.

\[
f(x) = \frac{1}{1 + \frac{1}{1 + \frac{1}{x}}} + \left( 1 + \frac{1}{1 + \frac{1}{x}} \right)^2 \left( 1 + \frac{1}{x} \right)^2 \gamma^2
\]

\[
\text{Plot of } f(x) \text{ and } \frac{d}{dx}f(x)
\]

\[
\sin(\omega x) e^{-5x} \quad \cos(\omega x) e^{-5x} - 5 \sin(\omega x) e^{-5x}
\]

\[
\frac{d^2}{dx^2} \sin^2(x) = -8 \sin(x) \cos(x)
\]

**Cell Color**

You can set the background color of any cell or collection of cells to be any color. This coloring is independent of any highlighting or text color that may also be applied.

To change the color of a cell, place the cursor in the cell, then from the **Table** menu, select **Cell Color**. In the **Select A Color** dialog, choose a color from the swatches, the color wheel, or RGB. See the **Drawing Tools** help page for details on color selection.
For example, select the first row of the table and apply a light blue color. This sets the header off from the content below.

**Controlling the Visibility of Cell Content**

The **Table Properties** dialog includes two options to control the visibility of cell content. These options allow control over the visibility of Maple input and execution group boundaries. Thus, these elements can be hidden in a table even if they are set to visible for the document in the **View→Show/Hide Contents** dialog.

**Printing Options**

The **Table Properties** dialog contains options to control the placement of page breaks when printing. You can fit a table on a single page, allow page breaks between rows, or allow page breaks within a row.

**Execution Order Dependency**

The order in which cells are executed is set in the **Table Properties** dialog. The following tables illustrate the effect of execution order.

<table>
<thead>
<tr>
<th>Row-wise execution order</th>
</tr>
</thead>
<tbody>
<tr>
<td>( x := 1 )</td>
</tr>
<tr>
<td>( x := 3 )</td>
</tr>
</tbody>
</table>
Column-wise execution order

\[
\begin{array}{c|c}
> x := 1; & > x := x + 1; \\
\hline
x := 1 & x := 3 \\
(7.5) & (7.6)
\end{array}
\]

\[
\begin{array}{c|c}
> x := x + 1; & > x := x + 1; \\
\hline
x := 2 & x := 4 \\
(7.7) & (7.8)
\end{array}
\]

Tables and the Classic Worksheet

Tables are flattened on export to the Classic Worksheet interface. For example, the following table in the Standard Worksheet appears as one column in the Classic Worksheet interface.

<table>
<thead>
<tr>
<th>Table in Standard Worksheet</th>
<th>Table in Classic Worksheet</th>
</tr>
</thead>
<tbody>
<tr>
<td>aaa</td>
<td>aaa</td>
</tr>
<tr>
<td>ddd</td>
<td></td>
</tr>
<tr>
<td>bbb</td>
<td>bbb</td>
</tr>
<tr>
<td>eee</td>
<td></td>
</tr>
<tr>
<td>ccc</td>
<td>ccc</td>
</tr>
<tr>
<td>fff</td>
<td>ddd</td>
</tr>
<tr>
<td></td>
<td>eee</td>
</tr>
<tr>
<td></td>
<td>fff</td>
</tr>
</tbody>
</table>

Editable Tables

Tables can be marked as editable or non-editable. The editable property for tables is independent of the document editability, though if a document is marked as non-editable, tables cannot be edited. After a table has been marked as non-editable, any content stored in the table cannot be modified. It is not possible to add any new content such as embedded components or to run computations in execution groups or document blocks. Existing interactive embedded components inside of a table will continue to work.

A table can be marked as editable or non-editable in its Table Properties using either the DocumentTools:-SetProperty command or the Context Panel. To make a table editable or non-editable using the Context Panel, in the Table properties, select or clear the Editable check box.

Additional Examples

For more practice creating and manipulating tables, try creating the following tables at the end of your document.

Table of Values

This example illustrates how to set the visibility options for cell contents to display a table of values.

\[
> y := t \mapsto \frac{1}{2} t^2 ;
\]

Create a table with 2 rows and 7 columns. Enter the values as below, and then select all table cells. In the Table → Alignment menu, select Columns, and then Center.

<table>
<thead>
<tr>
<th>t seconds</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
</table>
Table settings:

In the Table Properties dialog:
1. Set Table Size Mode to Scale with zoom factor.
2. Hide Maple input and execution group boundaries: Clear the Show input and Show execution group boundaries check boxes.

<table>
<thead>
<tr>
<th>( t ) seconds</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>( y(t) ) meters</td>
<td>0</td>
<td>( \frac{1}{2} )</td>
<td>2</td>
<td>( \frac{9}{2} )</td>
<td>8</td>
<td>( \frac{25}{2} )</td>
<td>18</td>
</tr>
</tbody>
</table>

**Formatting Table Headers**

The following table uses cell merging for formatting row and column headers, and row and column grouping to control the visibility of cell boundaries.

By default, invisible cell boundaries are visible on mouse pointer roll over. You can hide the visibility of lines on mouse pointer roll over by using the View→Show/Hide Contents dialog, and clearing the Hidden Table Borders check box.

<table>
<thead>
<tr>
<th>Parameter 1</th>
<th>Low</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>13</td>
<td>24</td>
</tr>
<tr>
<td>High</td>
<td>18</td>
<td>29</td>
</tr>
</tbody>
</table>

Table settings:
1. Insert a table with 4 rows and 4 columns and enter the information shown above.

Using the Table menu:
2. Merge the following sets of (Row,Column) cells: (R1,C1) to (R2,C2), (R1,C3) to (R1,C4), and (R3,C1) to (R4,C1).
3. Group columns 1 and 2, and columns 3 and 4.

In the Properties dialog:
5. Set Exterior Borders to None.
6. (Optional) Change Table Size Mode size option to Scale with zoom factor.

Using the Table menu:
7. Set Alignment of columns 3 and 4 to Center.

**2-D Math and Plots**

The following example illustrates the use of tables to display 2-D Math and plots side by side.
Approximating $\exp(-x)$ as a rational polynomial using a 3\textsuperscript{rd} order Padé approximation.

$$
e^{-x} \approx \frac{1 - \frac{1}{2} x + \frac{1}{10} x^2 - \frac{1}{120} x^3}{1 + \frac{1}{2} x + \frac{1}{10} x^2 + \frac{1}{120} x^3}
$$

Insert a table with 1 row and 2 columns. Enter the information in text and executable 2-D Math to create the calculation and plot, as shown.

**Table Settings:**

In the **Properties** dialog:

1. Set **Exterior** and **Interior Borders** to **None**.
2. Hide Maple input and execution group boundaries: Clear the **Show input** and **Show execution group boundaries** check boxes.

Using the **Table** menu:

3. Change row **Alignment** to **Center**.

**7.5 Canvas**

Using the drawing tools, you can sketch an idea in a canvas, draw on plots, and draw on images. See **Figure 7.15**. For details about the drawing feature, refer to the **DrawingTools** help page.
**Insert a Canvas**

To insert a canvas:
1. Place the cursor where the canvas is to be inserted.
2. From the **Insert** menu, select **Canvas**. A canvas with grid lines appears in the document at the insertion point. The **Drawing** icon is available and associated context bar icons are displayed.

The tools include the following: selection tool, pencil (free style drawing), eraser, text insert, straight line, rectangle, rounded rectangle, oval, diamond, alignment, drawing outline, drawing fill, drawing linestyle, and drawing canvas properties.

**Drawing**

To draw with the pencil tool in the canvas:
1. From the **Drawing** icons, select the pencil icon.
2. Click and drag your mouse in the canvas to draw lines. Release the mouse to complete the drawing.

To adjust the color of drawing tools:
1. From the **Drawing** icons, select the **Drawing Outline** icon. See Figure 7.16.
2. Select one of the color swatches available or select the color wheel, RGB ranges, or eye dropper icon at the bottom of the dialog and customize the color to your preference.
3. After selecting a new color, draw on the canvas using the pencil icon and notice the new color.

![Color Palette with Pencil Icon]

**Figure 7.16: Drawing Outline Color Icon**

In your document, there are three plots, two of which are 2-D plots that can be drawn on. All of the information in the table you made in the previous section could be drawn onto the plot, putting the information in a more concise layout.

Consider one of the plots from the table:

\[ f(x) = \frac{1}{1 + \frac{1}{x}} \]

![Plot of f(x) and its derivative]

\[ \frac{d}{dx} f(x) = \frac{1}{\left(1 + \frac{1}{x}\right)^2 \left(1 + \frac{1}{x}\right)^2} \]

Click on the plot, and notice that the **Plot** toolbar is open. However, the **Drawing** toolbar is also available. Click on **Drawing** to see the toolbar.

Select the **Text** icon, and click on the plot. Enter the expression \( f(x) \) in one text area, and its derivative in another, as shown. You can move the text areas around on the plot so that they indicate the correct lines.

For details on the rest of the drawing features, refer to the **DrawingTools** help page.

**Canvas Style**

You can alter the **Canvas** in the following ways:

- Add a grid of horizontal and/or vertical lines. By default, the canvas opens with a grid of horizontal and vertical lines.
• Change the grid line color.
• Change the spacing between grid lines.
• Change the background color.

These options can be changed in the Drawing Properties Canvas Icon. See Figure 7.17.

Figure 7.17: Drawing Properties Canvas Icon - Change the Gridline Color

Inserting Images

You can insert images in these file formats into your document.
• Graphics Interchange Format - gif
• Joint Photographic Experts Group - jpe, jpeg, jpg
• Portable Network Graphics - png
• Bitmap Graphics - bmp
• Tagged Image File Format - tif, tiff, jfx
• Portable aNyMap - pnm
• Kodak FlashPix - fpx

To insert an image into the document at the cursor location:
1. From the Insert menu, select Image. The Load Image dialog opens.
2. Specify a path or folder name.
3. Select a filename.
4. Click Open. The image is displayed in the document.

If the source file is altered, the embedded image does not change because the original object is pasted into the document.

To resize an inserted image:
1. Click the image. Resizing anchors appear at the sides and corners of the image.
2. Move the mouse over the resize anchor. Resizing arrows appear.
3. Click and drag the image to the desired size.

Note: To constrain the proportions of the image as it is resized, press and hold the Shift key as you drag.
You can also draw on images in the same way as the drawing canvas. For more information, refer to the worksheet/documenting/drawingtools help page.

ImageTools Package

You can manipulate image data using the ImageTools package. This package is a collection of utilities for reading and writing common image file formats, and for performing basic image processing operations within Maple.

Within Maple, images are represented as dense, rectangular Arrays of 64-bit hardware floating-point numbers. Grayscale images are 2-D, whereas color images are 3-D (the third dimension representing the color channels).

In addition to the commands in the ImageTools package, many ordinary Array and Matrix operations are useful for image processing.

For details about this feature, refer to the ImageTools help page.

7.6 Hyperlinks

Use a hyperlink in your document to access any of the following.

- Web Page (URL)
- Email
- Worksheet
- Help Topic
- Task
- Dictionary Topic
- Maplet

Figure 7.18: Hyperlink Properties Dialog

Inserting a Hyperlink in a Document

To create a hyperlink from existing text in the document:

1. Highlight the text that you want to make a hyperlink.

2. From the Insert menu, select Hyperlink. Alternatively, from the Context Panel for the highlighted text, select Convert To—Hyperlink.
3. In the **Hyperlink Properties** dialog box, the **Link Text** field is dimmed since the text region you highlighted is used as the link text. This is demonstrated in **Figure 7.18**. The highlighted text region, **Diff** is dimmed.

4. Specify the hyperlink **Type** and **Target** as described in the appropriate following section.

**To insert a text or image hyperlink into the document:**

1. From the **Insert** menu, select **Hyperlink**.
2. In the **Hyperlink Properties** dialog box, enter the **Link Text**.

   Optionally, use an image as the link. Select the **Image** check box and click **Choose Image** for the file. In `.mw` files, the image appears as the link. You can resize the image as necessary. Click and drag from the corners of the image to resize.

3. Specify the hyperlink **Type** and **Target** as described in the appropriate following section.

**Linking to a Web Page**

To link to a Web page:

1. In the **Type** drop-down list, select **URL**.
2. In the **Target** field, enter the full URL, for example, `http://www.maplesoft.com`.
3. Click **OK**.

**Linking to an Email Address**

To link to an email address:

1. In the **Type** drop-down list, select **Email**.
2. In the **Target** field, enter the email address.
3. Click **OK**.

**Note:** For information about email hyperlinks in the Classic Worksheet interface, see *Worksheet Compatibility* (page 259).

**Linking to a Worksheet**

To link to a Maple worksheet or document:

1. In the **Type** drop-down list, select **Worksheet**.
2. In the **Target** field, enter the path and filename of the document or click **Browse** to locate the file. (Optional) In the **Bookmark** drop-down list, enter or select a bookmark.

**Note:** To link within a single Maple document, leave the **Target** field blank and choose the bookmark from the **Bookmark** drop-down list.

**Tip:** When linking to another document, the default is to use a relative path. When sharing documents that contain hyperlinks, ensure that target documents are in the same directory, or use a ZIP file to preserve the directory structure if you are sharing a large collection of interlinking documents.

3. Click **OK**.

**Linking to a Help Page**

To link to a help page:

1. In the **Type** drop-down list, select **Help Topic**.
2. In the **Target** field, enter the topic of the help page. (Optional) In the **Bookmark** drop-down list, enter or select a bookmark.
3. Click **OK**.

**Linking to a Task**

*To link to a task:*

1. In the **Type** drop-down list, select **Task**.
2. In the **Target** field, enter the topic name of the task template (see the status bar at the bottom of the Task Browser window).
3. Click **OK**.

**Linking to a Dictionary Topic**

*To link to a Dictionary topic:*

1. In the **Type** drop-down list, select **Dictionary Topic**.
2. In the **Target** field, enter a topic name. Dictionary topics begin with the prefix `Definition/`, for example, `Definition/dimension`.
3. Click **OK**.

**Linking to a Maplet Application**

*To link to a Maplet application:*

1. In the **Type** drop-down list, select **Maplet**.
2. In the **Target** field, enter the local path to a file with the `.maplet` extension. Optionally, click **Browse** to locate the file.

   If the Maplet application exists, clicking the link launches the Maplet application. If the Maplet application contains syntax errors, then error messages are displayed in a popup window.

   When sharing documents that contain links to Maplet applications, ensure that target Maplet applications are in the same directory, or use a ZIP file to preserve the directory structure if you are sharing a large collection.

3. Click **OK**.

**Note:** To link to a Maplet application available on a MapleNet™ web page, use the URL hyperlink type to link to the web page. For information on MapleNet, see *Embedded Components and Maplets (page 301)*.

**Linking to a Workbook Attachment**

Similar to attaching to a worksheet, you can link to workbook content by directly entering the workbook file **URI**, or by browsing to the target workbook file.

   If you want to enter the URI directly into **Target** field, you should copy the URI first.

*To copy the URI of the content you want to link to:*

1. In the Workbook Navigator palette, right-click on the file you want to link to.
2. From the context menu, select **Copy Path**.
3. The URI of the target file is now copied to the clipboard.

   To link to a workbook attachment:

4. Select **Workbook Attachment** from the **Type** drop-down list.
5. In the **Target** field, enter the URI of the worksheet, obtained in the above instructions, or click **Browse** to locate the workbook file.
6. Click OK.

**Linking to a Workbook File**

You can link to a workbook file (instead of an attachment inside the workbook) using the hyperlink properties dialog.

1. Select *Worksheet* from the *Type* drop-down list.
2. In the *Target* field, enter the path and filename of the workbook (.maple) file or click *Browse* to locate the file.
3. Click OK.

**Example**

For this example, link the text "horizontal range" to the dictionary page for domain. As indicated in the section for Linking to a Dictionary Topic, select *Dictionary Topic* in the *Type* drop-down list, and then enter *Definition/domain* in the *Target* field.

Links to dictionary topics appear underlined and in red.

**Result:**

```
plot - create a two-dimensional plot
```

---

**Calling Sequence**

```
plot(f, x)
plot(f, x=x0..x1)
plot([v1, v2])
```

---

**Parameters**

- `f` - expression in independent variable `x`
- `x` - independent variable
- `x0, x1` - left and right endpoints of *horizontal range*
- `v1, v2` - *x*-coordinates and *y*-coordinates

---

**Bookmarks**

Use a bookmark to designate a location in an active document. This bookmark can then be accessed from other regions in your document or by using hyperlinks in other documents.

To display bookmark formatting icons, activate the *Marker* feature.

- From the *View* menu, select *Markers*.

**Figure 7.19: Bookmark Indicator**

**Note:** You can display bookmark properties by holding the pointer over a bookmark indicator. See Figure 7.19.
Inserting, Renaming, and Deleting a Bookmark

To insert a bookmark:

1. Place the cursor at the location at which to place the bookmark. For example, place the cursor in the Parameters section title.
2. From the Format menu, select Bookmarks. The Bookmark dialog opens, listing existing bookmarks in the document.
3. Click New. The Create Bookmark dialog opens. See Figure 7.20. Enter a bookmark name, "parameters", and click Create.

![Create Bookmark Dialog](image)

4. The new bookmark appears in the Bookmark dialog list. Click OK.

Note: You can also rename and delete bookmarks using the Bookmark dialog.

Alternatively, right-click on a particular bookmark to rename or delete it.

Result:

`plot - create a two-dimensional plot`

**Calling Sequence**

- `plot(f, x)`
- `plot(f, x=x0..x1)`
- `plot([v1, v2])`

**Parameters**

- Expression in independent variable `x`
- `x` - independent variable
- `x0, x1` - left and right endpoints of horizontal range
- `v1, v2` - x-coordinates and y-coordinates
Go to a Bookmark

You can automatically move the cursor to the location of the bookmark in the active document.

1. From the Edit menu, select Go To Bookmark. The Go To Bookmark dialog opens with the current bookmarks listed.
2. Select the bookmark "parameters" and click OK. The cursor moves to the bookmark, at the beginning of the Parameters section.

For more information, refer to the bookmarks help page.

7.7 Embedded Components

You can embed simple graphical interface components, such as a button, in your document. These components can then be associated with actions that are to be executed. For example, the value of a slider component can be assigned to a document variable, or a text field can be used to input an equation.

Adding Graphical Interface Components

The graphical interface components can be inserted by using the Components palette (Figure 7.21) or by cutting/copying and pasting existing components to another area of the document. Although copied components have most of the same characteristics, they are distinct.

By default, palettes are displayed when you launch Maple. If palettes are not visible, use the following procedure:

1. From the View menu, select Palettes.
2. Select Expand Dock.
3. If the Components palette is not displayed, right-click (Control-click, for Macintosh) the palette dock. From the context menu, select Show Palette, and then Components.

For more information, see Palettes (page 15).

You can embed the following items:

- Button, Toggle Button
- Combo Box, Check Box, List Box, Radio Button
- Text Area, Label
- Slider, Plot, Mathematical Expression
- Dial, Meter, Rotary Gauge, Volume Gauge
- Data Table
- Video Player
- Shortcut Component
Task Template with Embedded Components

In your document, you can add components that have already been configured to work together, by using a task template. Here, we use the Interactive Application template. For details on how to create and modify components, see Creating Embedded Components (page 304).

To insert the task template, from the Tools menu, select Tasks → Browse. In the table of contents, expand Document Templates, and select Interactive Application. Click Insert Minimal Content. The following is inserted into your document.
This configuration of components plots a linear function with slope and y-intercept given respectively by the two dials \( \text{parameter}_2 \) and \( \text{parameter}_1 \), and displays the function \( \frac{\text{parameter}_2}{\text{parameter}_1} \) on a gauge. For details on how these components work together, see *Embedded Components and Maplets* (page 301).

### 7.8 Spell Checking

The **Spellcheck** utility examines all designated text regions of your document for potential spelling mistakes, including regions that are in collapsed sections. It does not check input, output, text in execution groups, or math in text regions. See Figure 7.23.

**Note:** The **Spellcheck** utility uses American spelling.
The Code Generation package is a collection of commands and subpackages that enable the translation of Maple code to other programming languages.

Figure 7.23: Spellcheck Dialog

How to Use the Spellcheck Utility


2. If the Spellcheck utility finds a word that it does not recognize, that word is displayed in the Not Found text box. You have six choices:
   • To ignore the word, click Ignore.
   • To ignore all instances of the word, click Ignore All.
   • To change the word, that is, accept the suggested spelling that is in the Change To text box, click Change.
   • To change all instances of the word, that is, accept the suggested spelling to replace all instances of the word, click Change All.
   • To add the word to your dictionary, click Add. For details, see the following User Dictionary section.
   • To close the Spellcheck dialog and stop the spelling check, click Cancel.

3. When the Spellcheck is complete, a dialog containing the message "The spelling check is complete" appears. Click OK to close this dialog.

Note: when using the Spellcheck utility, you can fix spelling errors in the dialog, but you cannot change the text in document. The Spellcheck utility does not check grammar.

Selecting a Suggestion

To select one of the suggestions as the correct spelling, click the appropriate word from the list in the Suggestions text box.

If none of the suggestions are correct, highlight the word in the Change To text box and enter the correct spelling. Click Change to accept this new spelling.

User Dictionary

You can create and maintain a custom dictionary that works with the Maple Spellcheck utility.
Properties of the Custom Dictionary File

- It must be a text file, that is, have the file extension .txt. For example, mydictionary.txt.
- It is a list of words, one word per line.
- It is case sensitive. This means that integer and Integer require individual entries in the dictionary file.
- It does not require manual maintenance. You build your dictionary file by using the Add functionality of the Spellcheck. However, you can manually edit the file.

To specify a custom dictionary to be used with the Maple Spellcheck utility:
1. Create a .txt file in a directory/folder of your choice.
2. In Maple, open the Options dialog, Tools → Options, and select the General tab.
3. In the User Dictionary field, enter the path and name of the .txt file you created, or click Browse to select the location and filename.
4. To ignore Maple words that are command and function names, clear the Use Maple words in spellchecker check box.
5. Click Apply to Session or Apply Globally to save the settings, or Cancel to discard.

Adding a Word to Your Dictionary

When running the spellcheck, if the word in the NotFound text box is correct, you can add the word to your dictionary.
1. Click the Add button. If this is the first time you are adding a word, the Select User Dictionary dialog opens.
2. Enter or select the custom dictionary (.txt file) you created. See User Dictionary (page 258).
3. Click Select. The word is automatically added to your custom dictionary file.

Note: Specifications in the Options dialog determine whether this word is recognized in your next Maple session. If you set your custom dictionary and clicked Apply to Session, then this word will not be recognized in a new Maple session. If you set your custom dictionary and clicked Apply Globally, then this new word will be recognized.

7.9 Worksheet Compatibility

Maple provides users with two worksheet interfaces: the Standard Worksheet and the Classic Worksheet. Both have access to the full mathematical engine of Maple and take advantage of the new functionality in Maple. The Classic Worksheet has the traditional Maple worksheet look and uses less memory.

If you create a document in the Standard Worksheet interface of Maple and then open it in the Classic Worksheet interface, you should note possible changes to your file. For example, a bulleted list in the Standard Worksheet will not be displayed with bullets in the Classic Worksheet. Many of the graphical features in this manual, especially those in this chapter, are not available in the Classic Worksheet interface.

If you are creating documents for distribution, refer to the Compatibility help page.
8 Maple Expressions

This chapter provides basic information on using Maple expressions, including an overview of the basic data structures. Many of the commands described in this chapter are useful for programming. For information on additional Maple programming concepts, such as looping, conditional execution, and procedures, see Basic Programming (page 285).

8.1 In This Chapter

<table>
<thead>
<tr>
<th>Section</th>
<th>Topics</th>
</tr>
</thead>
</table>
| Creating and Using Data Structures (page 261) - How to define and use basic data structures | • Expression Sequences  
• Sets  
• Lists  
• Tables  
• Arrays  
• Matrices and Vectors  
• Functional Operators  
• Strings |

| Working with Maple Expressions (page 269) - Tools for manipulating and controlling the evaluation of expressions | • Low-Level Operations  
• Manipulating Expressions  
• Evaluating Expressions |

8.2 Creating and Using Data Structures

Constants, data structures, mathematical expressions, and other objects are Maple expressions. For more information on expressions, refer to the Maple Help System.

This section describes the key data structures:

- Expression sequences
- Sets
- Lists
- Tables
- Arrays
- Matrices and Vectors
- Functional operators
- Strings

Expression Sequences

The fundamental Maple data structure is the expression sequence. It is a group of expressions separated by commas.

> S := 2, y, \sin(x^2), I:

Accessing Elements

To access one of the expressions:

- Enter the sequence name followed by the position of the expression enclosed in brackets( ).
For example:

\[ > S[2] \]
\[ \quad 5 \]

Using negative integers, you can select an expression from the end of a sequence.

\[ > S[-2] \]
\[ \quad \sin(x^2) \]

You can select multiple expressions by specifying a range using the \textbf{range operator} (..).

\[ > S[2 .. -2] \]
\[ \quad 5, \sin(x^2) \]

Note: This syntax is valid for most data structures.

**Sets**

A set is an expression sequence enclosed in curly braces ({ }).

\[ > \left\{ 4, 12 i, \sin\left(\frac{2}{3}\right) \right\} : \]

A Maple set has the basic properties of a mathematical set.
- Each element is unique. Repeated elements are stored only once.
- The order of elements is not stored.

For example:

\[ > \{c, a, a, a, b, c, a\} \]
\[ \quad \{a, b, c\} \]

**Using Sets**

To perform mathematical set operations, use the set data structure.

\[ > \{2, 6, 5, 1\} \cup \{2, 8, 6, 7\} \]
\[ \quad \{1, 2, 5, 6, 7, 8\} \]

Note: The union operator is available in 1-D Math input as \textbf{union}. For more information, refer to the \textbf{union} help page.

For more information on sets, refer to the \textbf{set} help page.

**Lists**

A list is an expression sequence enclosed in brackets ([ ]).

\[ > L := [2, 3, 3, 1, 0] \]
\[ \quad L := [2, 3, 3, 1, 0] \]

Note: Lists preserve both the \textbf{order} and \textbf{repetition} of elements.
Accessing Entries
To refer to an element in a list:
• Use square brackets.
For example:
> L[−2 ..−1]
[1, 0]
For more information, see Accessing Elements (page 261).

Using Lists
Some commands accept a list (or set) of expressions.
For example, you can solve a list (or set) of equations using the context panel or the solve command.
> solve([x − y^2 = −2, x + y = 0])
For more information, see Solving Equations and Inequations (page 80).
For more information on sets and lists, refer to the set help page.

Arrays
Conceptually, the Array data structure is a generalized list. Each element has an index that you can use to access it.
The two important differences are:
• The indices can be any integers.
• The dimension can be greater than one.

Creating and Using Arrays
To define an Array, use the Array constructor.
Standard Array constructor arguments are:
• Expression sequences of ranges - Specify the indices for each dimension
• Nested lists - Specify the contents
For example:
> a := Array(1..3, 1..3, [[1, 2, 3], [4, 5, 6], [7, 8, 9]])

> b := Array(1..2, 2..5, [[1.2, 4.9, 6.3, 7.1], [9.2, 5.5, 2.4, 1.7]])

To access entries in an Array, use either square bracket or round bracket notation.
Square bracket notation respects the actual index of an Array, even when the index does not start at 1.

> a[1, 1]

1

> a[2, 3]

6

> b[2, 3]

5.5

> b[1, 1]

Error, Array index out of range

Round bracket indexing normalizes the dimensions to begin at 1. Since this method is relative, you can access the end of the array by entering -1.

> a(-1, 2)

8

> b(1, 1)

1.2

The Array constructor supports other syntaxes. It also supports many options. For more information on the Array constructor and the Array data structure, refer to the Array help page. For more information on indexing methods, refer to the rtable_indexing help page.

**Large Arrays**

Only one- and two-dimensional Arrays (with at most 10 indices in each dimension) display in the document. Larger Arrays display as a placeholder.

> Array(0 ..100)

Array(0 ..100, ∅)

To view large Arrays:

- Double-click the placeholder.

The Matrix Browser displays the Array. For more information, see Viewing Large Matrices and Vectors (page 118).

**Tables**

Tables are conceptually an extension of the Array data structure, but the table data structure is implemented using hash tables. Tables can be indexed by any values, not only integers.

**Defining Tables and Accessing Entries**

> Greek := table([ a = α, b = β, c = γ ]):
You can also assign anything, for example, a list, to each element.

> Translation := table([ one = [ uno, uno], two = [ deux, dos], three = [ trois, tres ] ]):

> Translation[ two ]

[ deux, dos ]

For more information on tables, refer to the table help page.

**Matrices and Vectors**

Matrices and Vectors are specialized data structures used in linear algebra and vector calculus computations.

> M := Matrix([[1, 2], [3, 4]]); v := <2, 14>;

> Mv

\[
\begin{bmatrix}
486 \\
334
\end{bmatrix}
\]

> v%T . M

\[
\begin{bmatrix}
1186 & 234
\end{bmatrix}
\]

> M^(-1)

\[
\begin{bmatrix}
4 & 11 \\
865 & 865 \\
83 & 4 \\
2595 & -865
\end{bmatrix}
\]

For more information on these data structures, including how to access entries and perform linear algebra computations, see Linear Algebra (page 116).

**Functional Operators**

A functional operator is a mapping \( f: x \rightarrow y(x) \). The value of \( f(x) \) is the result of evaluating \( y(x) \).

Using functional operators, you can define mathematical functions.
Defining a Function

To define a function of one or two variables:

1. In the Expression palette, click one of the function definition items. See Figure 8.1. Maple inserts the function definition.

2. Replace the placeholders, using Tab to move to the next placeholder. Note: If pressing the Tab key indents the text, click the Tab icon in the toolbar. This allows you to move between placeholders.

3. Press Enter.

For example, define a function that adds 1 to its input.

\[
\begin{align*}
& f := a \rightarrow y \\
& f := (a, b) \rightarrow z
\end{align*}
\]

Figure 8.1: Function Definition Palette Items

For example, define a function that adds 1 to its input.

\[
> \text{add1 := } x \rightarrow x + 1:
\]

Note: To insert the right arrow, you can enter the characters ->. In 2-D Math, Maple replaces -> with the right arrow symbol →. In 1-D Math, the characters are not replaced.

You can evaluate the function add1 with symbolic or numeric arguments.

\[
> \text{add1(12); add1(x + y)}
\]

\[
\begin{align*}
& 13 \\
& x + 6
\end{align*}
\]

Distinction between Functional Operators and Other Expressions

The expression \( x + 1 \) is different from the functional operator \( x \rightarrow x + 1 \).

Assign the functional operator \( x \rightarrow x + 1 \) to \( f \).

\[
> f := x \rightarrow x + 1:
\]

Assign the expression \( x + 1 \) to \( g \).

\[
> g := x + 1:
\]

To evaluate the functional operator \( f \) at a value of \( x \):

- Specify the value as an argument to \( f \).

\[
> f(22)
\]

23

To evaluate the expression \( g \) at a value of \( x \):

- You must use the eval command.
> g(22)  
\[
x(22) + 1
\]
> eval(g, x = 22)  

23

For more information on the eval command, and on using palettes and the context panel to evaluate an expression at a point, see *Substituting a Value for a Subexpression* (page 277).

**Multivariate and Vector Functions**

To define a multivariate or vector function:

- Enclose coordinates or coordinate functions in parentheses (( )).

For example, a multivariate function:

\[
> f := (x, y) \rightarrow \frac{x^3}{y^2+1}:
\]

\[
> f(0,0); f(-2.1, 1.9)
\]

0

-2.008893709

A vector function:

\[
> g := t \rightarrow (\sin(t), \cos(t), t):
\]

\[
> g(0); g\left(\frac{\pi}{2}\right)
\]

0, 1, 0

1, 0, \frac{\pi}{2}

**Using Operators**

To perform an operation on a functional operator, specify arguments to the operator. For example, for the operator \( f \), specify \( f(x) \), which Maple evaluates as an expression. See the following examples.

**Plotting:**

Plot a three-dimensional operator as an expression using the **plot3d** command.

\[
> \text{unassign('y') :}
\]

\[
> h := (x, y) \rightarrow x^2\cos(y):
\]
For information on plotting, see *Plots and Animations (page 185)*.

**Integration:**
Integrate a function using the `int` command.

```maple
> k := x \rightarrow \sin(\cos(x)\pi):
> int(k(t), t = 0 .. \pi/2)
```

\[
\frac{\pi}{2} \text{StruveH}(0, \pi)
\]

The result uses the *Struve* function \( H_{\nu}(x) \).

For information on integration and other calculus operations, see *Calculus (page 128)*. For information on mathematical functions, including accessing detailed information on the properties of a function, see *Mathematical Functions (page 58)* and the `FunctionAdvisor` help page.

Error, (in StruveH) a constant cannot be added to a Vector; use \( +~ \) for elementwise addition instead of \(+\)

**Strings**
A string is a sequence of characters enclosed in double quotes (" ").

```maple
> S := "This is a sequence of characters."
```

**Accessing Characters**
You can access characters in a string using brackets.
Using Strings

The StringTools package is an advanced set of tools for manipulating and using strings.

> with(StringTools):

> Random(9, 'alnum')

"MJoY2Qs0F"

> Stem("impressive")

"impress"

> Split("Create a list of strings from the words in a string")

["Create", "a", "list", "of", "strings", "of", "the", "words", "in", "a", "string"]

8.3 Working with Maple Expressions

This section describes how to manipulate expressions using commands. Topics covered include testing the expression type, accessing operands of an expression, and evaluating an expression.

Low-Level Operations

Expression Types

A Maple type is a broad class of expressions that share common properties. Maple contains over 200 types, including:

- `+`
- boolean
- constant
- integer
- Matrix
- trig
- truefalse

For more information and a complete list of Maple types, refer to the type help page.

The type commands return true if the expression satisfies the type check. Otherwise, they return false.

Testing the Type of an Expression

To test whether an expression is of a specified type:

- Use the type command.
Testing the Type of Subexpressions

To test whether an expression has a subexpression of a specified type:

- Use the `hastype` command.

```
> hastype(sin(x) + cos(x), 'trig')
true
```

Testing for a Subexpression

To test whether an expression contains an instance of a specified subexpression:

- Use the `has` command.

```
> has(sin(x + y), x)
true
> has(sin(x + y), x + y)
true
> has(sin(x + y), sin(x))
false
```

The `has` command searches the structure of the expression for an exactly matching subexpression. For example, the following calling sequence returns `false`.

```
> has(x + y + z, x + z)
false
```

To return all subexpressions of a particular type, use the `indets` command. For more information, see `Indeterminates (page 272)`.
### Accessing Expression Components

#### Left and Right-Hand Side

To extract the left-hand side of an equation, inequality, or range:
- Use the `lhs` command.

To extract the right-hand side of an equation, inequality, or range:
- Use the `rhs` command.

For example:

\[
\begin{align*}
> y &= x + 1 \\
\text{\hspace{2cm}}& y = x + 1 & (8.1) \\
> \text{\texttt{lhs\((8.1)\))} \\
\text{\hspace{2cm}}& y & (8.2) \\
> \text{\texttt{rhs\((8.1)\))} \\
\text{\hspace{2cm}}& x + 1 & (8.3)
\end{align*}
\]

For the following equation, the left endpoint of the range is the left-hand side of the right-hand side of the equation.

\[
\begin{align*}
> x &= 3.5 \\
\text{\hspace{2cm}}& x = 3.5 & (8.4) \\
> \text{\texttt{lhs(rhs\((8.4)\))}} \\
\text{\hspace{2cm}}& 3 & (8.5)
\end{align*}
\]

#### Numerator and Denominator

To extract the numerator of an expression:
- Use the `numer` command.

To extract the denominator of an expression:
- Use the `denom` command.

\[
\begin{align*}
> e := \frac{1 + \sin(x)^3 - \frac{y}{x}}{y^2 - 1 + x} \\
\text{\hspace{2cm}}& e := \frac{1 + \sin(x)^3 - \frac{y}{x}}{y^2 - 1 + x}
\end{align*}
\]

If the expression is not in normal form, Maple normalizes the expression before selecting the numerator or denominator. (For more information on normal form, refer to the `normal` help page.)
The expression can be any algebraic expression. For information on the behavior for non-rational expressions, refer to the numer help page.

Components of an Expression
The components of an expression are called its operands.

To count the number of operands in an expression:
• Use the nops command.
For example, construct a list of solutions to an equation.

> solutions := [solve(6 * x^3 - x^2 + 7, x)]

solutions := [−1, 7/12 − 1/12, 7/12 + 1/12]

Using the nops command, count the number of solutions.

> nops(solutions)

3

For more information on the nops command and operands, refer to the nops help page.

Indeterminates

To find the indeterminates of an expression:
• Use the indets command.
The indets command returns the indeterminates as a set. Because the expression is expected to be rational, functions such as sin(x), f(x), and sqrt(x) are considered to be indeterminate.

> indets((3 + π) * x^2 * sin(√(1 + y)))

{x, y, √(1 + y), sin(√(1 + y))}

To return all subexpressions of a particular type, specify the type as the second argument. For information on types, see Testing the Type of an Expression (page 269).
To test whether an expression has subexpressions of a specific type (without returning them), use the \texttt{has} command. For more information, see \textit{Testing for a Subexpression} (page 270).

\section*{Manipulating Expressions}

This section introduces the most commonly used manipulation commands. For additional manipulation commands, see \textit{Iterative Commands} (page 293).

\subsection*{Simplifying}

To simplify an expression:
\begin{itemize}
  \item Use the \texttt{simplify} command.
\end{itemize}

The \texttt{simplify} command applies simplification rules to an expression. Maple has simplification rules for various types of expressions and forms, including trigonometric functions, radicals, logarithmic functions, exponential functions, powers, and various special functions. You can also specify custom simplification rules using a set of side relations.

\begin{verbatim}
> simplify(5 + 32 - 8 \frac{1}{3})
35
> simplify(\sin(x)^2 + \ln(2y) + \cos(x)^2)
1 + \ln(2) + \ln(y)
\end{verbatim}

To limit the simplification, specify the type of simplification to be performed.

\begin{verbatim}
> simplify(\sin(x)^2 + \ln(2y) + \cos(x)^2, 'trig')
1 + \ln(2y)
> simplify(\sin(x)^2 + \ln(2y) + \cos(x)^2, 'ln')
\sin(x)^2 + \ln(2) + \ln(y) + \cos(x)^2
\end{verbatim}

You can also use the \texttt{simplify} command with side relations. See \textit{Substituting a Value for a Subexpression} (page 277).

\subsection*{Factoring}

To factor a polynomial:
\begin{itemize}
  \item Use the \texttt{factor} command.
\end{itemize}
Maple can factor polynomials over the domain specified by the coefficients. You can also factor polynomials over algebraic extensions. For details, refer to the \texttt{factor} help page.

For more information on polynomials, see \textit{Polynomial Algebra (page 110)}.

\textbf{To factor an integer:}

- Use the \texttt{ifactor} command.

\begin{verbatim}
> ifactor(196911)

3^4 \cdot 11 \cdot 13 \cdot 17
\end{verbatim}

For more information on integers, see \textit{Integer Operations (page 77)}.

\textbf{Expanding}

\textbf{To expand an expression:}

- Use the \texttt{expand} command.

The \texttt{expand} command distributes products over sums and expands expressions within functions.

\begin{verbatim}
> expand((y-3) \cdot (x+1)^2 \cdot (x+y))

x^3 y + x^2 y^2 - 3 x^3 - x^2 y + 2 x y^2 - 6 x^2 - 5 x y + y^2 - 3 x - 3 y
\end{verbatim}

\begin{verbatim}
> expand(sin(x+y))

sin(x) \cos(y) + \cos(x) \sin(y)
\end{verbatim}

\textbf{Combining}

\textbf{To combine subexpressions in an expression:}

- Use the \texttt{combine} command.

The \texttt{combine} command applies transformations that combine terms in sums, products, and powers into a single term.

\begin{verbatim}
> combine(sin(x) \cos(y) + \cos(x) \sin(y))

sin(x+y)
\end{verbatim}

Recall that $a$ was previously assigned to represent a two-dimensional array (see \textit{Creating and Using Arrays (page 263)}).
The `combine` command applies only transformations that are valid for all possible values of names in the expression.

\[
> \text{combine}(\left(x^{\theta}\right)^2 x)
\]

\[
\begin{bmatrix}
x^3 & x^5 & x^7 \\
x^9 & x^{11} & x^{13} \\
x^{15} & x^{17} & x^{19}
\end{bmatrix}
\]

To perform the operation under assumptions on the names, use the `assuming` command. For more information about assumptions, see `Assumptions on Variables (page 104)`.

\[
> \text{combine}(4 \ln(x) - \ln(y)) \text{ assuming } x > 0, y > 0
\]

\[
4 \ln(x) - \ln(y)
\]

Converting

To convert an expression:

- Use the `convert` command.

The `convert` command converts expressions to a new form, type (see `Expression Types (page 269)`), or in terms of a function. For a complete list of conversions, refer to the `convert` help page.

Convert a measurement in radians to degrees:

\[
> \text{convert}(\pi, '\text{degrees}')
\]

\[
180 \text{ degrees}
\]

To convert measurements that use units, use the Unit Converter or the `convert/units` command.

\[
> \text{convert}(450.2\text{kg}, '\text{units}', \text{lb})
\]

\[
992.5211043 \text{ lb}
\]

For information on the Unit Converter and using units, see `Units (page 93)`.

Convert a list to a set:

\[
> \text{convert}([b, c, d], 'set')
\]

\[
\{c, d, \text{Array}(1..2, 2..5, \{(1, 2) = 1.2, (1, 3) = 4.9, (1, 4) = 6.3, (1, 5) = 7.1, (2, 2) = 9.2, (2, 3) = 5.5, (2, 4) = 2.4, (2, 5) = 1.7\})\}
\]

Maple has extensive support for converting mathematical expressions to a new function or function class.
Find an expression equivalent to the inverse hyperbolic cotangent function in terms of \texttt{Legendre} functions.

\[\texttt{convert(arccoth}(z), \texttt{Legendre})\]

\[\text{LegendreQ}\left(0, \frac{1}{5}\right) + \frac{\pi \sqrt{-16}}{8}\]

For more information on converting to a class of functions, refer to the \texttt{convert/to\_special\_function} help page.

**Normalizing**

To normalize an expression:

- Use the \texttt{normal} command.

The \texttt{normal} command converts expressions into \textit{factored normal form}.

\[\texttt{normal}\left(\frac{x^2 - y^2}{(x-y)^3}\right)\]

\[\frac{x+y}{(x-y)^2}\]

You can also use the \texttt{normal} command for zero recognition.

\[\texttt{normal}\left(x^3 + 1 - (x+1)^3 + 3x(1+x)\right)\]

\[0\]

To expand the numerator and denominator, use the \texttt{expanded} option.

\[\texttt{normal}\left(\frac{x^2 - y^2}{(x-y)^3}, \texttt{expanded}\right)\]

\[\frac{x+y}{x^2 - 2xy + y^2}\]

\[\texttt{normal}\left(\sin\left(1 + \frac{1}{x}\right)\right)\]

\[\sin\left(\frac{x+1}{x}\right)\]

**Sorting**

To sort the elements of an expression:

- Use the \texttt{sort} command.

The \texttt{sort} command orders a list of values or terms of a polynomial.
For information on sorting polynomials, see Sorting Terms (page 111).
For more information on sorting, refer to the sort help page.

**Evaluating Expressions**

**Substituting a Value for a Subexpression**

To evaluate an expression at a point, you must substitute a value for a variable.

**To substitute a value for a variable using the context panel:**

1. Select the expression.
2. From the context panel, select **Evaluate at a Point**. The Evaluate at a Point dialog is displayed. See **Figure 8.2**.

![Figure 8.2: Evaluate at a Point](image)

3. In the drop-down list, select the variable to substitute.
4. In the text field, enter the value to substitute for the variable. Click **OK**.

In Worksheet mode, Maple inserts the eval command calling sequence that performs the substitution. This is the most common use of the eval command.
For example, substitute $x = 3$ in the following polynomial.

$$> x^3 + 4x^2 - 7x + 2$$
$$x^3 + 4x^2 - 7x + 2$$

$$> \text{eval}(x^3 + 4x^2 - 7x + 2, [x = 3])$$
$$44$$

To substitute a value for a variable using palettes:

1. In the **Expression** palette, click the evaluation at a point item.
2. Specify the expression, variable, and value to be substituted.

For example:

$$> \sqrt{x^2 - x - 3} \bigg|_{x = 5}$$
$$\sqrt{17}$$

Substitutions performed by the **eval** function are **syntactical**, not the more powerful **algebraic** form of substitution. If the left-hand side of the substitution is a name, Maple performs the substitution.

$$> \text{unassign('a') : unassign('b')} :$$

$$> \text{eval}\left(\cos(a\ b\ c), a = \frac{\pi}{6}\right)$$
$$\cos\left(\frac{\pi\ b\ c}{6}\right)$$

If the left-hand side of the substitution is not a name, Maple performs the substitution only if the left-hand side of the substitution is an operand of the expression.

$$> \text{eval}\left(\cos(a\ b), a = \frac{\pi}{6}\right)$$
$$\frac{\sqrt{3}}{2}$$

$$> \text{eval}\left(\cos(a\ b\ c), a = \frac{\pi}{6}\right)$$
$$\cos(a\ b\ c)$$

Maple did not perform the evaluation because $a\ b$ is not an operand of $\cos(a\ b\ c)$. For information on operands, refer to the **op** help page.

For algebraic substitution, use the **algsubs** command, or the **simplify** command with side relations.
Numerical Approximation

To compute an approximate numerical value of an expression:

- Use the `evalf` command.

The `evalf` command returns a floating-point (or complex floating-point) number or expression.

\[
> \text{evalf} \left( \cos \left( \frac{\pi}{6} \right) \right) \\
0.8660254040
\]

\[
> \text{evalf} \left( \frac{17}{3} x^2 + x - e^x \right) \\
9.814954579 x^2 + x - 23.14069264
\]

\[
> \text{evalf}(\pi) \\
3.141592654
\]

By default, Maple calculates the result to ten digits of accuracy, but you can specify any number of digits as an index, that is, in brackets ([ ]).

\[
> \text{evalf}[40](\pi) \\
3.141592653589793238462643383279502884197
\]

For more information, refer to the `evalf` help page.

See also Numerically Computing a Limit (page 129) and Numeric Integration (page 136).

Evaluating Complex Expressions

To evaluate a complex expression:

- Use the `evalc` command.

If possible, the `evalc` command returns the output in the canonical form `expr1 + i expr2`.

In 2-D Math input, you can enter the imaginary unit using the following two methods.

- In the `Common Symbols` palette, click the `i` or `j` item. See `Palettes` (page 15).
- Enter `i` or `j`, and then press the symbol completion key. See `Symbol Names` (page 21).
> \texttt{evalc(}\sqrt{1+i})
\begin{align*}
\frac{2 + \sqrt{2}}{2} + i\frac{-2 + \sqrt{2}}{2}
\end{align*}

> \texttt{evalc(sin(3 + 5 i))}
\begin{align*}
sin(3) \cosh(5) + i \cos(3) \sinh(5)
\end{align*}

In 1-D Math input, enter the imaginary unit as an uppercase i (I).

> \texttt{evalc(2^(1 + I));}
\begin{align*}
2 \cos(\ln(2)) + 2 i \sin(\ln(2))
\end{align*}

**Evaluating Boolean Expressions**

To evaluate an expression involving relational operators ( \(=, \neq, >, \leq, \text{ and } \geq\)):

• Use the \texttt{evalb} command.

Note: In 1-D Math input, enter \(\neq, \leq, \text{ and } \geq\) using the \(\lt, \leq, \text{ and } \geq\) operators.

The \texttt{evalb} command uses a three-valued logic system. The return values are \texttt{true}, \texttt{false}, and \texttt{FAIL}. If evaluation is not possible, an unevaluated expression is returned.

> \texttt{evalb(x = x)}

\texttt{true}

> \texttt{evalb(x = y)}

\texttt{false}

> \texttt{evalb(3 + 2 I < 2 + 3 I)}

\texttt{FAIL}

Important: The \texttt{evalb} command does not perform arithmetic for inequalities involving \(\lt, \leq, \text{ or } \geq\), and does not simplify expressions. Ensure that you perform these operations before using the \texttt{evalb} command.

> \texttt{evalb(Re(x) < Re(x + 1))}
\begin{align*}
\Re(x) < 1 + \Re(x)
\end{align*}

> \texttt{evalb(Re(x) - Re(x + 1) < 0)}

\texttt{true}

**Applying an Operation or Function to All Elements in a List, Set, Table, Array, Matrix, or Vector**

You can use the tilde character (~) to apply an operation or function to all of the elements in a list, set, table, Array, Matrix, or Vector.

In the following example, each element in the Matrix $M$ is multiplied by 2 by adding a tilde character after the multiplication operator (~).
In the following example, the function `sin` is applied to each element in the Matrix $M$.

> $M := \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$

(8.6)

> $M \sim 2$

$\begin{bmatrix} 2 & 4 & 6 \\ 8 & 10 & 12 \\ 14 & 16 & 18 \end{bmatrix}$

(8.7)

In the following example, the function `sin` is applied to each element in the Matrix $M$.

> $\sin \sim (M)$

$\begin{bmatrix} \sin(1) & \sin(2) & \sin(3) \\ \sin(4) & \sin(5) & \sin(6) \\ \sin(7) & \sin(8) & \sin(9) \end{bmatrix}$

(8.8)

The tilde character can also be used to apply a function to multiple data sets, for example,

> `unassign`('z'):

> $\text{diff} \sim (z \cdot x^2 + x \cdot y^2, [x, x, y, y, z, z], [y, z, x, z, x, y])$;

$\begin{bmatrix} 2 \cdot y & 2 \cdot x & 2 \cdot y & 0 & 2 \cdot x & 0 \end{bmatrix}$

(8.9)

You can use values in one data structure type to compute values in another data structure type, as long as both data structures are dimensional and contain the same number of elements. In the following example, the values in an Array are compared to the values in a Matrix that contains the same number of elements.

> $[12, 88, 20] \sim (3, 100, 25)$

$\begin{bmatrix} 3 < 12 \\ 100 < 88 \\ 25 < 20 \end{bmatrix}$

(8.10)

For more information, refer to the `elementwise` help page.

**Levels of Evaluation**

In a symbolic mathematics program such as Maple, you encounter the issue of *levels of evaluation*. If you assign $y$ to $x$, $z$ to $y$, and then 5 to $z$, what is the value of $x$?

At the top-level, Maple **fully evaluates** names. That is, Maple checks if the name or symbol has an assigned value. If it has a value, Maple substitutes the value for the name. If this value has an assigned value, Maple performs a substitution, recursively, until no more substitutions are possible.
For example:

\[ x := y; \]
\[ y := z; \]
\[ z := 5; \]

Maple fully evaluates the name \( x \), and returns the value 5.

\[ x \]

\[ 5 \]

**To control the level of evaluation of an expression:**

- Use the `eval` command with an integer second argument.

If passed a single argument, the `eval` command fully evaluates that expression. If you specify an integer second argument, Maple evaluates the expression to that level.

\[ eval(x) \]

\[ 5 \]

\[ eval(x, 1) \]

\[ y \]

\[ eval(x, 2) \]

\[ z \]

\[ eval(x, 3) \]

\[ 5 \]

For more details on levels of evaluation, refer to the `lastnameevaluation`, `assigned`, and `evaln` help pages.

**Delaying Evaluation**

To prevent Maple from immediately evaluating an expression:

- Enclose the expression in right single quotes (').

Because right single quotes delay evaluation, they are referred to as *unevaluation quotes*.

\[ i := 4; \]

\[ i \]

\[ 4 \]

\[ 'i' \]

\[ i \]
Using an Assigned Name as a Variable or Keyword

If you use an assigned name as a variable, Maple evaluates the name to its value, and passes the value to the command. In this example, that causes Maple to return an error message.

\[
> \sum_{i=1}^{n} i^2
\]

Error, (in sum) summation variable previously assigned, second argument evaluates to \(4 = 1 \ldots n\)

Note: In general, it is recommended that you unassign a name to use it as a variable. See Unassigning a Name Using Unevaluation Quotes (page 284).

To use an assigned name as a variable:

• Enclose the name in unevaluation quotes. Maple passes the name to the command.

\[
> \sum_{i=1}^{n} 'i'^2
\]

\[
\frac{(n+1)^3}{3} - \frac{(n+1)^2}{2} + \frac{n}{6} + \frac{1}{6}
\]

Important: It is recommended that you enclose keywords in unevaluation quotes.

For example, if you enclose the keyword \texttt{left} in unevaluation quotes, Maple uses the name, not its assigned value. We can also unassign the definition of \(x\) with unevaluation quotes.

\[
> x := 'x';
\]

\[
> left := 3;
\]

\[
> \text{limit}\left(\frac{1}{x}, x = 0, 'left'\right)
\]

\[= -\infty\]

Full Evaluation of an Expression in Quotes

Full evaluation of a quoted expression removes one set of right single quotes.

\[
> i := 4;
\]

\[
> '\' i' + 1'
\]

\[='i' + 1\] (8.11)

\[
> (8.11)
\]

\[
> i + 1
\]

\[= 8.12\]

\[
> (8.12)
\]

\[= 5\] (8.13)

For information on equation labels and equation label references, see Equation Labels (page 68).
Enclosing an expression in unevaluation quotes delays evaluation, but does not prevent automatic simplification.

\[ 4q - i \]  

(8.14)

**Unassigning a Name Using Unevaluation Quotes**

To unassign a name:

- Assign the name enclosed in unevaluation quotes to itself.

\[ i := 'i'; \]

\[ i \]

You can also unassign a name using the `unassign` command. For more information, see *Unassigning Names* (page 67).
9 Basic Programming

You have used Maple interactively in the previous chapters, sequentially performing operations such as executing a single command. Because Maple has a complete programming language, you can also use sophisticated programming constructs.

In Maple, you can write programs called procedures, and save them in modules. These modules can be used and distributed in the same way as Maple packages.

**Important:** It is strongly recommended that you use the Worksheet mode and 1-D Math input when programming or using programming commands. Hence, all input in this chapter is entered as 1-D Math.

### 9.1 In This Chapter

<table>
<thead>
<tr>
<th>Section</th>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow Control (page 285) - Basic programming constructs</td>
<td>• Conditional Execution (if Statement)</td>
</tr>
<tr>
<td></td>
<td>• Repetition (for Statement)</td>
</tr>
<tr>
<td>Iterative Commands (page 293) - Specialized, efficient iterative commands</td>
<td>• Creating a sequence</td>
</tr>
<tr>
<td></td>
<td>• Adding and Multiplying Expressions</td>
</tr>
<tr>
<td></td>
<td>• Selecting Expression Operands</td>
</tr>
<tr>
<td></td>
<td>• Mapping a Command over a Set or List</td>
</tr>
<tr>
<td></td>
<td>• Mapping a Binary Command over Two Lists or Vectors</td>
</tr>
<tr>
<td>Procedures (page 296) - Maple programs</td>
<td>• Defining and Running Simple Procedures</td>
</tr>
<tr>
<td></td>
<td>• Procedures with Inputs</td>
</tr>
<tr>
<td></td>
<td>• Procedure Return Values</td>
</tr>
<tr>
<td></td>
<td>• Displaying Procedure Definitions</td>
</tr>
<tr>
<td></td>
<td>• Displaying Maple Library Procedure Definitions</td>
</tr>
<tr>
<td></td>
<td>• Modules</td>
</tr>
<tr>
<td>Programming in Documents (page 298) - Display methods for Maple code</td>
<td>• Code Edit Region</td>
</tr>
<tr>
<td></td>
<td>• Startup Code</td>
</tr>
<tr>
<td></td>
<td>• Document Blocks</td>
</tr>
</tbody>
</table>

### 9.2 Flow Control

Two basic programming constructs in Maple are the if statement, which controls the conditional execution of statement sequences, and the for statement, which controls the repeated execution of a statement sequence.

**Conditional Execution (if Statement)**

You can specify that Maple perform an action only if a condition holds. You can also perform an action, from a set of many, depending on which conditions hold.

Using the if statement, you can execute one statement from a series of statements based on a boolean (true, false, or FAIL) condition. Maple tests each condition in order. When a condition is satisfied, Maple executes the corresponding statement, and then exits the if statement.

**Syntax**

The if statement has the following syntax.
The conditional expressions \(\text{conditional_expression1}, \text{conditional_expression2}, \ldots\) can be any boolean expression. You can construct boolean expressions using:

- Relational operators - \(<\), \(<=\), \(=\), \(>=\), \(>\), \(<>\)
- Logical operators - \(\text{and}\), \(\text{or}\), \(\text{xor}\), \(\text{implies}\), \(\text{not}\)
- Logical names - \(\text{true}\), \(\text{false}\), \(\text{FAIL}\)

The statement sequences \(\text{statement_sequence1}, \text{statement_sequence2}, \ldots, \text{statement_sequenceN}\) can be any sequence of Maple statements, including if statements.

The elif clauses are optional. You can specify any number of elif clauses.

The else clause is optional.

**Simple if Statements**

The simplest if statement has only one conditional expression.

\[
> \text{if } \text{conditional_expression} \text{ then} \\
> \quad \text{statement_sequence} \\
> \text{end if;}
\]

If the conditional expression evaluates to \text{true}, the sequence of statements is executed. Otherwise, Maple immediately exits the if statement.

For example:

\[
> x := 1173: \\
> \text{if not isprime}(x) \text{ then} \\
> \quad \text{ifactor}(x); \\
> \quad \text{end if;}
\]

\(3\) \(17\) \(23\)

**else Clause**

In a simple if statement with an else clause, if the evaluation of the conditional expressions returns \text{false} or \text{FAIL}, Maple executes the statement sequence in the else clause.

For example:

\[
> \text{if false then} \\
> \quad \text{"if statement";} \\
> \text{else} \\
> \quad \text{"else statement";} \\
> \text{end if;}
\]
elif Clauses

In an if statement with elseif clauses, Maple evaluates the conditional expressions in order until one returns true. Maple executes the corresponding statement sequence, and then exits the if statement. If no evaluation returns true, Maple exits the if statement.

```maple
> x := 11:
> if not type(x, integer) then
 printf("%a is not an integer.", x);
 elif x >= 10 then
 printf("%a is an integer with more than one digit.", x);
 elif x >= 0 then
 printf("%a is an integer with one digit.", x);
 end if;
11 is an integer with more than one digit.
```

Order of elseif Clauses: An elseif clause's statement sequence is executed only if the evaluation of all previous conditional expressions returns false or FAIL, and the evaluation of its conditional expression returns true. This means that changing the order of elseif clauses may change the behavior of the if statement.

In the following if statement, the elseif clauses are in the wrong order.

```maple
> if not(type(x, integer)) then
 printf("%a is not an integer.", x);
 elif x >= 10 then
 printf("%a is an integer with more than one digit.", x);
 elif x >= 0 then
 printf("%a is an integer with one digit.", x);
 else
 printf("%a is a negative integer.", x);
 end if;
11 is an integer with one digit.
```

elif and else Clauses

In an if statement with elseif and else clauses, Maple evaluates the conditional expressions in order until one returns true. Maple executes the corresponding statement sequence, and then exits the if statement. If no evaluation returns true, Maple executes the statement sequence in the else clause.

```maple
> x := -12:
> if not(type(x, integer)) then
 printf("%a is not an integer.", x);
 elif x >= 10 then
 printf("%a is an integer with more than one digit.", x);
 elif x >= 0 then
 printf("%a is an integer with one digit.", x);
 else
 printf("%a is a negative integer.", x);
 end if;
-12 is a negative integer.
```

For more information on the if statement, refer to the if help page.
Repetition (for Statement)

Using repetition statements, you can repeatedly execute a statement sequence. You can repeat the statements in three ways.

- Until a counter variable value exceeds a limit (for/from loop)
- For each operand of an expression (for/in loop)
- Until a boolean condition does not hold (while loop or until loop)

**for/from Loop**

The for/from loop statement repeats a statement sequence until a counter variable value exceeds a limit.

**Syntax**

The for/from loop has the following syntax.

```maple
> for counter from initial by increment to final do
 statement_sequence
 end do;
```

The behavior of the for/from loop is:

1. Assign the initial value to the name counter.
2. Compare the value of counter to the value of final. If the counter value exceeds the final value, exit the loop. (This is the loop bound test.)
3. Execute the statement_sequence.
4. Increment the counter value by the value of increment.
5. Repeat steps 2 to 4, until Maple exits the loop.

The from, by, and to clauses are optional and can be in any order between the for clause and the do keyword. Table 9.1 lists the default clause values.

**Table 9.1: Default Clause Values**

<table>
<thead>
<tr>
<th>Clause</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>from initial</td>
<td>1</td>
</tr>
<tr>
<td>by increment</td>
<td>1</td>
</tr>
<tr>
<td>to final</td>
<td>infinity (∞)</td>
</tr>
</tbody>
</table>

**Examples**

The following loop returns the square root of the integers 1 to 5 (inclusive).
for n to 5 do
    evalf(sqrt(n));
end do;

1.
   1.414213562
   1.732050808
2.
   2.236067977

When the value of the counter variable \( n \) is strictly greater than 5, Maple exits the loop.

\[ > \text{n} ; \]
\[ 6 \]

The previous loop is equivalent to the following \texttt{for/from} statement.

\[ > \text{for n from 1 by 1 to 5 do} \]
\[ \text{evalf(sqrt(n));} \]
\[ \text{end do;} \]

1.
   1.414213562
   1.732050808
2.
   2.236067977

The \texttt{by} value can be negative. The loop repeats until the value of the counter variable is strictly less than the final value.

\[ > \text{for n from 10 by -1 to 3 do} \]
\[ \text{if isprime(n) then} \]
\[ \text{print(n);} \]
\[ \text{end if;} \]
\[ \text{end do;} \]

7
5
3

\[ > \text{n} ; \]
\[ 2 \]

\texttt{for/in} Loop

The \texttt{for/in} loop statement repeats a statement sequence for each component (\textit{operand}) of an expression, for example, the elements of a list.
Syntax

The \texttt{for/in} loop has the following syntax.

\begin{verbatim}
> for variable in expression do
    statement_sequence
end do;
\end{verbatim}

The \texttt{for} clause must appear first.

The behavior of the \texttt{for/in} loop is:
1. Assign the first operand of \texttt{expression} to the name \texttt{variable}.
2. Execute the \texttt{statement_sequence}.
3. Assign the next operand of \texttt{expression} to \texttt{variable}.
4. Repeat steps 2 and 3 for each operand in \texttt{expression}. If there are no more operands, exit the loop. (This is the \textit{loop bound test}.)

Example

The following loop returns a floating-point approximation to the \texttt{sin} function at the angles (measured in degree) in the list \texttt{L}.

\begin{verbatim}
> L := [23.4, 87.2, 43.0, 99.7]:
> for i in L do
    evalf(sin(i*Pi/180));
    end do;
\end{verbatim}

\begin{verbatim}
0.3971478907
0.9988061374
0.6819983602
0.9857034690
\end{verbatim}

while Loop and until Loop

The \texttt{while} loop repeats a statement sequence until a boolean expression does not hold.

The \texttt{until} loop also repeats a statement sequence until a boolean expression does not hold, but it tests the terminating condition \textit{at the end of each iteration} of the loop, instead of the beginning.

Syntax

The \texttt{while} loop has the following syntax.

\begin{verbatim}
> while conditional_expression do
    statement_sequence
end do;
\end{verbatim}

A \texttt{while} loops repeats until its \textit{boolean expression} \texttt{conditional_expression} evaluates to \texttt{false} or \texttt{FAIL}. For more information on boolean expressions, see \textit{Conditional Execution (if Statement)} (page 285).

The \texttt{until} loop has the following syntax.

\begin{verbatim}
> do
    statement_sequence
until conditional_expression;
\end{verbatim}
Note the difference in syntax: the until clause appears in place of end do

Example

Compare the following loops. In the first one, the terminating condition is met the first time it is tested, and the loop terminates immediately. In the second one, which uses the until clause, the body of the loop is performed before the condition is tested, and the loop is used.

\[ a := 1; \]
\[ \text{while } a \mod 7 \neq 1 \text{ do} \]
\[ \quad a := a + 1; \]
\[ \text{end do;} \]
\[ a; \]

(9.1)

\[ a := 1; \]
\[ \text{do} \]
\[ \quad a := a + 1; \]
\[ \text{until } a \mod 7 = 1; \]
\[ \text{end do;} \]
\[ a; \]

(9.2)

(9.3)

(9.4)

The following loop computes the digits of 872,349 in base 7 (in order of increasing significance).

\[ x := 872349; \]
\[ \text{while } x > 0 \text{ do} \]
\[ \quad \text{irem}(x, 7); \]
\[ \quad x := \text{iquo}(x, 7); \]
\[ \text{end do;} \]
To perform such conversions efficiently, use the `convert/base` command.

```plaintext
> convert(872349, base, 7);
[2, 0, 2, 2, 6, 2, 0, 1]
```

For information on non-base 10 numbers, see *Non-Base 10 Numbers* (page 78).

**General Loop Statements**

You can include a `while` statement in a `for/from` or `for/in` loop.

The general `for/from` loop has the following syntax.

```plaintext
> for counter from initial by increment to final
 while conditional_expression do
 statement_sequence
 end do;
```

The general `for/in` loop has the following syntax.

```plaintext
> for variable in expression
 while conditional_expression do
 statement_sequence
 end do;
```
After testing the loop bound condition at the beginning of each iteration of the `for` loop, Maple evaluates `conditional_expression`.

- If `conditional_expression` evaluates to `false` or `FAIL`, Maple exits the loop.
- If `conditional_expression` evaluates to `true`, Maple executes `statement_sequence`.

The equivalent general `until` loops have the same form but with `end do` replaced with `until conditional_expression`.

**Infinite Loops**

You can construct a loop for which there is no exit condition, for example, a `while` loop in which the `conditional_expression` always evaluates to `true`. This is called an infinite loop. Maple indefinitely executes an infinite loop unless it executes a `break`, `quit`, or `return` statement or you interrupt the computation using the interrupt icon (ı) in the toolbar (in worksheet versions). For more information, refer to the `break`, `quit`, `return`, and `interrupt` help pages.

**Additional Information**

For more information on the `for` statement and looping, refer to the `do` help page and the Loops section of the `Maple Statements` chapter of the `Maple Programming Guide`.

### 9.3 Iterative Commands

Maple has commands that perform common selection and repetition operations. These commands are more efficient than similar algorithms implemented using library commands. Table 9.2 lists the iterative commands.

#### Table 9.2: Iterative Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>seq</code></td>
<td>Create sequence</td>
</tr>
<tr>
<td><code>add</code></td>
<td>Compute numeric sum</td>
</tr>
<tr>
<td><code>mul</code></td>
<td>Compute numeric product</td>
</tr>
<tr>
<td><code>select</code></td>
<td>Return operands that satisfy a condition</td>
</tr>
<tr>
<td><code>remove</code></td>
<td>Return operands that do not satisfy a condition</td>
</tr>
<tr>
<td><code>selectremove</code></td>
<td>Return operands that satisfy a condition and separately return operands that do not satisfy a condition</td>
</tr>
<tr>
<td><code>map</code></td>
<td>Apply command to the operands of an expression</td>
</tr>
<tr>
<td><code>zip</code></td>
<td>Apply binary command to the operands of two lists or vectors</td>
</tr>
</tbody>
</table>

#### Creating a Sequence

The `seq` command creates a sequence of values by evaluating a specified expression over a range of index values or the operands of an expression. See Table 9.3.

#### Table 9.3: The `seq` Command

<table>
<thead>
<tr>
<th>Calling Sequence Syntax</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>seq(expression, name = initial .. final);</code></td>
<td><code>&gt; seq(exp(x), x=-2..0);</code></td>
</tr>
<tr>
<td></td>
<td>[ e^{-2}, e^{-1}, 1 ]</td>
</tr>
<tr>
<td><code>seq(expression, name in expression);</code></td>
<td><code>&gt; seq(u, u in [Pi/4, Pi^2/2, 1/Pi]);</code></td>
</tr>
<tr>
<td></td>
<td>[ \pi, \pi^2, \frac{1}{4}, \frac{\pi^2}{2}, \pi ]</td>
</tr>
</tbody>
</table>
Adding and Multiplying Expressions

The `add` and `mul` commands add and multiply sequences of expressions over a range of index values or the operands of an expression. See Table 9.4.

Table 9.4: The `add` and `mul` Commands

<table>
<thead>
<tr>
<th>Calling Sequence Syntax</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>add(expression, name = initial .. final);</code></td>
<td>( e^2 + e^3 + e^4 )</td>
</tr>
<tr>
<td><code>mul(expression, name = initial .. final);</code></td>
<td>( 3715891200 )</td>
</tr>
<tr>
<td><code>add(expression, name in expression);</code></td>
<td>( \frac{7}{4} \pi )</td>
</tr>
<tr>
<td><code>mul(expression, name in expression);</code></td>
<td>( \frac{1}{8} \pi^3 )</td>
</tr>
</tbody>
</table>

The endpoints of the index range (initial and final) in the `add` and `mul` calling sequence must evaluate to numeric constants. For information on symbolic sums and products, refer to the `sum` and `product` help pages.

Selecting Expression Operands

The `select`, `remove`, and `selectremove` commands apply a boolean-valued procedure or command to the operands of an expression. For information on operands, refer to the `op` help page.

- The `select` command returns the operands for which the procedure or command returns `true`.
- The `remove` command returns the operands for which the procedure or command returns `false` or `FAIL`.
- The `selectremove` command returns two expressions of the same type as the input expression.
  - The first consists of the operands for which the procedure or command returns `true`.
  - The second consists of the operands for which the procedure or command returns `false` or `FAIL`.

The structure of the output is the same as the structure of the input. See Table 9.5.

For information on Maple procedures, see Procedures (page 296).

Table 9.5: The `select`, `remove`, and `selectremove` Commands

<table>
<thead>
<tr>
<th>Calling Sequence Syntax</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>select(proc_cmd, expression);</code></td>
<td>( {198331, 889249, 11751184, 9857934} )</td>
</tr>
<tr>
<td><code>remove(proc_cmd, expression);</code></td>
<td>( 2 \times x^3 y - y^3 x + z )</td>
</tr>
</tbody>
</table>
Calling Sequence Syntax | Examples
--- | ---
selectremove(proc_cmd, expression); | > selectremove(x -> evalb(x > round(x)), [sin(0.), sin(1.), sin(3.)]);
| | [0.1411200081], [0., 0.8414709848]

For information on optional arguments to the selection commands, refer to the select help page.

### Mapping a Command over a Set or List

The **map** command applies a name, procedure, or command to each element in a set or list. See **Table 9.6**.

**Table 9.6: The map Command**

<table>
<thead>
<tr>
<th>Calling Sequence Syntax</th>
<th>Examples</th>
</tr>
</thead>
</table>
| map(name_proc_cmd, expression); | > map(f, {a, b, c});
| | \{f(a), f(b), f(c)\} |
| | > map(u -> int(cos(x), x = 0 .. u), [Pi/4, Pi/7, Pi/3.0]); |
| | \[\frac{\sqrt{2}}{2} \cdot \cos \left( \frac{5\pi}{14} \right), 0.8660254037\] |

An alternative to the map command is to apply a function elementwise, using ~. For more information ~, see *Applying an Operation or Function to All Elements in a List, Set, Table, Array, Matrix, or Vector* (page 280). For information on mapping over the operands of other expressions, optional arguments to the **map** command, and other mapping commands, refer to the **map** help page.

### Mapping a Binary Command over Two Lists or Vectors

The **zip** command applies a name or binary procedure or command component-wise to two lists or vectors.

By default, the length of the returned object is that of the shorter list or vector. If you specify a value as the (optional) fourth argument, it is used as the value of the missing elements of the shorter list or vector. In this case, the length of the return value is that of the longer list or vector. See **Table 9.7**.

**Table 9.7: The zip Command**

<table>
<thead>
<tr>
<th>Calling Sequence Syntax</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>zip(proc_cmd, a, b);</td>
<td>&gt; zip(f, [i, j], [k, l]);</td>
</tr>
<tr>
<td>zip(proc_cmd, a, b, fill);</td>
<td></td>
</tr>
<tr>
<td></td>
<td>&gt; zip(AiryAi, [1, 2], [0], 1);</td>
</tr>
<tr>
<td></td>
<td>[\frac{1}{2} \cdot \text{Ai}^\ast(1), \text{Ai}^\ast(1)]</td>
</tr>
</tbody>
</table>

This is equivalent to \{AiryAi(1, 0), AiryAi(2, 1)\}.

For more information on the **zip** command, refer to the **zip** help page.

### Additional Information

For more information on looping commands, refer to the corresponding command help page.
9.4 Procedures

A Maple procedure is a program consisting of Maple statements. Using procedures, you can quickly execute the contained sequence of statements.

Defining and Running Simple Procedures

To define a procedure, enclose a sequence of statements between `proc(...)` and `end proc` statements. In general, you assign a procedure definition to a name.

The following procedure returns the square root of 2.

```maple
p := proc() sqrt(2); end proc;
```

Note: Maple returns the procedure definition.

To improve readability of procedures, it is recommended that you define a procedure using multiple lines, and indent the lines using space characters. To begin a new line (without evaluating the incomplete procedure definition), press `Shift+Enter`. When you have finished entering the procedure, press `Enter` to create the procedure.

For example:

```maple
p := proc()
 sqrt(2);
end proc:
```

To run the procedure `p`, enter its name followed by parentheses (`()`).

```maple
p();
```

Procedures with Inputs

You can define a procedure that accepts user input. In the parentheses of the `proc` statement, specify the parameter names. For multiple parameters, separate the names with commas.

```maple
geometric_mean := proc(x, y)
 sqrt(x*y);
end proc:
```

When the user runs the procedure, the parameter names are replaced by the argument values.

```maple
geometric_mean(13, 17);
```

```maple
geometric_mean(13.5, 17.1);
```

For more information on writing procedures, including options and local and global variables, refer to the `procedure` help page.

Procedure Return Values

When you run a procedure, Maple returns only the last statement result value computed. Maple does not return the output for each statement in the procedure. It is irrelevant whether you use semicolons or colons as statement separators.
Displaying Procedure Definitions

Unlike simple Maple objects, you cannot display the value of a procedure by entering its name.

```maple
> geometric_mean;

 geometric_mean
```

You must evaluate the name of the procedure using the `print` (or `eval`) command.

```maple
> print(geometric_mean);

 proc(x, y) sqrt(y*x) end proc
```

Displaying Maple Library Procedure Definitions

Maple procedure definitions are a valuable learning tool. To learn how to program in Maple, it is recommended that you examine the procedures available in the Maple library.

By default, the `print` command returns only the `proc` and `endproc` statements and (if present) the description fields of a Maple procedure.

```maple
> print(lcm);

 proc(a, b) ... end proc
```

To display a Maple library procedure definition, first set the value of the `interface verboseproc` option to 2. Then re-execute the `print` calling sequence.

```maple
> interface('verboseproc' = 2):
```
> print(lcm);

```
proc(a, b)
 option remember, Copyright (c) 1990 by the University of Waterloo. All rights reserved;
 local q, t;
 if nargs = 0 then
 1
 elif nargs = 1 then
 t := expand(a); sign(t)*t
 elif 2 < nargs then
 foldl(procname, args)
 elif type(a, 'integer') and type(b, 'integer') then
 ilcm(a, b)
 else
 gcd(a, b, 'q'); q*b
 end if
end proc
```

### Modules

Maple procedures associate a sequence of commands with a single command. The module, a more complex programming structure, allows you to associate related procedures and data.

A key feature of modules is that they export variables. This means that the variables are available outside the module in which they are created. Most Maple packages are implemented as modules. The package commands are exports of the module.

For more information on modules, refer to the **module** help page.

### Objects

Objects take the idea of associating data and procedures beyond what modules provide. With objects, multiple instances of a class of objects can be created. Each individual object can have its own data, yet share other values and procedures with the entire class objects. A well implemented class of objects can be used in Maple as naturally as a built-in Maple type.

For more information on objects, refer to the **object** help page.

### 9.5 Programming in Documents

To write Maple code, you could simply open a Maple worksheet and start typing. However, if you want to create a readable document with the code interspersed or hidden, there are several options available: code edit regions and start up code. Both these features use a code editor which has features such as syntax highlighting and line numbers.

#### Code Edit Region

The code edit region allows you to program in one contained region, in a natural way. Features include the ability to press Enter for line breaking and indentation preservation. Figure 9.1 shows the expanded code edit region.

**To insert a new code edit region into your worksheet:**

- From the **Insert** menu, select **Code Edit Region**.
To execute the code within this region, click anywhere in this region, then click the **Execute Selection** icon ( ![ ] ) on the toolbar. (Alternatively, from the **Evaluate** menu, select **Execute Code**.)

You can hide the code in a code edit region by minimizing the region. To minimize, select **View → Collapse Code Edit Region**. When the region is minimized, an icon appears with the first line of the code written next to it. It is recommended that you make the first line a comment describing the program or programs contained in the region. See **Figure 9.2**.

**Figure 9.2: Collapsed Code Edit Region**

To re-execute the code in the region while it is collapsed, click this icon.

For more information, refer to the **CodeEditRegion** help page.

**Startup Code**

Startup code allows you to define commands and procedures that are executed each time the document is opened and after restart is called. This code is completely hidden to others reading the document. For example, use this region to define procedures that will be used throughout the document code but that would take up space and distract readers from the message of the document.

**To enter startup code for a document:**

1. From the **Edit** menu, select **Startup Code**. Alternatively, click the startup code icon in the toolbar, ![ ] .
2. Enter commands to be run each time the worksheet is opened or **restart** is called.
3. To check the syntax of the entered code while entering your Maple commands or before closing the editor, from the **Edit** menu, select **Check Syntax Now**.

**Note:** You can also check the **Check Syntax Automatically** option to enable continuous syntax checking. It is recommended that you check the syntax before saving so that your startup code does not prevent Maple from opening successfully.

4. To save the contents, from the **File** menu, select **Save Code**. Alternatively, click the save icon, ![ ] .
5. Close **Startup Code**.
9.6 Additional Information

The *Maple Programming Guide* provides an in-depth reference for programming in Maple. Topics include statements, data structures, procedures, packages, and debugging your code.

- Access via the help system. From the Table of Contents, select Manuals > Programming Guide.

The Programming Guide is also available as a PDF on the Maplesoft web site.

[http://www.maplesoft.com/documentation_center](http://www.maplesoft.com/documentation_center)
10 Embedded Components and Maplets

These graphical components help you to create documents to use and share with colleagues or students, that interact with Maple code within the document without needing the reader to understand that Maple code. Other methods of interaction with Maple are described throughout this guide.

10.1 In This Chapter

<table>
<thead>
<tr>
<th>Section</th>
<th>Topics</th>
</tr>
</thead>
</table>
| Using Embedded Components (page 301) - Basic interacting with Maple documents containing embedded components | • Interacting with Components  
• Printing and Exporting |
| Creating Embedded Components (page 304) - Methods for creating embedded components that work together and with your document | • Inserting Components  
• Editing Components  
• Removing Components  
• Integrating into a Document |
| Using Maplets (page 310) - Methods for launching a Maplet | • Maplet File  
• Maple Document |
| Authoring Maplets (page 311) - Methods for authoring and saving a Maplet | • Simple Maplet  
• Maplet Builder  
• Maplets Package  
• Saving |

10.2 Using Embedded Components

Interacting

Embedded components allow readers to interact with Maple code through graphical components, rather than commands. They can be used alone, as with a button that you click to execute code, or together, such as a drop-down menu where you select an item, and a change takes place in a plot component.

Component Descriptions

Table 10.1: Embedded Component Descriptions

<table>
<thead>
<tr>
<th>Component Name and Description</th>
<th>Inserted Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>Button - Click to perform an action; that is, execute code.</td>
<td><img src="button.png" alt="Button" /></td>
</tr>
<tr>
<td>Check Box - Select or de-select. Change the caption, and enter code to execute when the value changes.</td>
<td><img src="checkbox.png" alt="Checkbox" /></td>
</tr>
<tr>
<td>Combo Box - Select one of the listed options from the drop-down menu. Change the items listed, and enter code to execute when the value changes.</td>
<td><img src="comboBox.png" alt="ComboBox" /></td>
</tr>
<tr>
<td>Data Table - Link this embedded component to a Matrix, Vector, or Array in your worksheet.</td>
<td><img src="dataTable.png" alt="DataTable" /></td>
</tr>
<tr>
<td>Component Name and Description</td>
<td>Inserted Image</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td><strong>Dial</strong> - Select or display an integer or floating-point value. Change the display, and enter code to execute when the value changes.</td>
<td></td>
</tr>
<tr>
<td><img src="dial.png" alt="Dial Image" /></td>
<td></td>
</tr>
<tr>
<td><strong>Label</strong> - Display a label. The value can be updated based on code in the document or another embedded component.</td>
<td></td>
</tr>
<tr>
<td><img src="label.png" alt="Label Image" /></td>
<td></td>
</tr>
<tr>
<td><strong>ListBox</strong> - Display a list of items. Change the items listed, and enter code to execute when an item is selected.</td>
<td></td>
</tr>
<tr>
<td><img src="listbox.png" alt="ListBox Image" /></td>
<td></td>
</tr>
<tr>
<td><strong>Math Expression</strong> - Enter or display a mathematical expression. The value can be updated based on code in the document or another embedded component.</td>
<td></td>
</tr>
<tr>
<td><img src="math_expression.png" alt="Math Expression Image" /></td>
<td></td>
</tr>
<tr>
<td><strong>Meter</strong> - Select or display an integer or floating-point value. Change the display, and enter code to execute when the value changes.</td>
<td></td>
</tr>
<tr>
<td><img src="meter.png" alt="Meter Image" /></td>
<td></td>
</tr>
<tr>
<td><strong>Microphone Component</strong> - Capture sound from a recording device. Change setting options from properties, and enter code for start and stop recording actions.</td>
<td></td>
</tr>
<tr>
<td><img src="microphone.png" alt="Microphone Image" /></td>
<td></td>
</tr>
<tr>
<td><strong>Plot</strong> - Display a 2-D or 3-D plot or animation. This plot or animation can be interacted with in the same way as other plots (see Plots and Animations (page 185)). The value can be updated based on code in the document or another embedded component. You can also enter code to be executed when the <strong>Click and Drag</strong> pointer is used to click or drag in the plot region.</td>
<td></td>
</tr>
<tr>
<td><img src="plot.png" alt="Plot Image" /></td>
<td></td>
</tr>
<tr>
<td><strong>RadioButton</strong> - Use with other radio buttons to select one in a group. Enter code to execute when the value changes.</td>
<td></td>
</tr>
<tr>
<td><img src="radio_button.png" alt="RadioButton Image" /></td>
<td></td>
</tr>
<tr>
<td><strong>Rotary Gauge</strong> - Select or display an integer or floating-point value. Change the display, and enter code to execute when the value changes.</td>
<td></td>
</tr>
<tr>
<td><img src="rotary_gauge.png" alt="Rotary Gauge Image" /></td>
<td></td>
</tr>
<tr>
<td><strong>Slider</strong> - Select or display an integer or floating-point value. Change the display, and enter code to execute when the value changes.</td>
<td></td>
</tr>
<tr>
<td><img src="slider.png" alt="Slider Image" /></td>
<td></td>
</tr>
<tr>
<td><strong>TextArea</strong> - Enter or display plain text. The value can be updated based on code in the document or another embedded component, and you can enter code to execute when the value changes.</td>
<td></td>
</tr>
<tr>
<td><img src="text_area.png" alt="TextArea Image" /></td>
<td></td>
</tr>
<tr>
<td><strong>Toggle Button</strong> - Select or display one of two options. Change the images displayed, and enter code to execute when the value changes.</td>
<td></td>
</tr>
<tr>
<td><img src="toggle_button.png" alt="Toggle Button Image" /></td>
<td></td>
</tr>
</tbody>
</table>
### Component Name and Description

**Video Player** - Play a video. Enter code that specifies an action to perform when the video player reaches a marker during playback.

**Volume Gauge** - Select or display an integer or floating-point value. Change the display, and enter code to execute when the value changes.

**Shortcut Component** - Use to hyperlink various types of content, including help pages, MapleCloud documents, and URLs.

**Speaker Component** - Play a sound. Customize component by modifying setting options under properties.

### Example 1 - Using Embedded Components

This example demonstrates several components working together to perform a task. The user inputs an expression, which is plotted when the button is clicked. Plot options are controlled by text areas, a combo box, a math expression, and radio buttons.
Printing and Exporting a Document with Embedded Components

**Printing:** When printing a document, embedded components are rendered as they appear on screen.

**Exporting:** Exporting a document with embedded components to other formats produces the following results.

- HTML format - components are exported as `.gif` files.
- RTF format - components are rendered as bitmap images in the `.rtf` document.
- LaTeX - components are exported as `.eps` files.
- PDF - components are rendered as static images.

### 10.3 Creating Embedded Components

Embedded Components are graphical components that you can add to your document. They provide interactive access to Maple code without requiring the user to know Maple commands, and include buttons, sliders, math and text input areas, plot display, and shortcut components.

**Inserting Components**

The graphical interface components can be inserted by using the Components palette (Figure 10.1) or by cutting/copying and pasting existing components to another area of the document. Although copied components have most of the same characteristics, they are distinct.

If the Components palette is not visible, see Palettes (page 15) for instructions on viewing palettes.
Editing Component Properties: General Process

To edit properties of components embedded in the document:

1. Click the component to display the context panel.
2. In the context panel, enter values and contents in the fields as necessary.
3. To define an action, such as an action to perform when the slider is moved, click the component, and then select Edit Value Changed Code... from the Context Panel. A Code Edit Region opens allowing you to enter Maple code that is executed when the event occurs. For details, refer to the DocumentTools help page.

Note: You can also edit embedded component properties and actions that are performed when a value changes by using Maple worksheet Edit menu options, Edit > Component Properties, and Edit > Component Code, respectively. For more information on options available in the Edit menu, see Edit menu options.

Removing Graphical Interface Components

You can remove an embedded component by:

- Using the Delete key
- Using the Backspace key
- Placing the cursor at the component and selecting from the document menu, Edit→Delete Element

Integrating Components into a Document

Use embedded components to display information from calculations, obtain input from a reader, or perform calculations at the click of a button, all without your readers having an understanding of Maple commands. They can be entered in any part of a Maple document, including a document block or table. For details on each component, see its help page.
This simple example inserts a slider with a label that indicates the current value of the slider.

1. Place the cursor in the location where the embedded component is to be inserted.
2. In the **Components** palette, click the **Slider** item. A slider is inserted into the document.
3. In the **Components** palette, click the **Label** item. A label is inserted next to the slider.

4. Click the label component. The **Label** context panel opens. See **Figure 10.2**.

![Label Properties Dialog](image1)

Figure 10.2: Label Properties Dialog

5. Name the component **SliderLabel** and click **OK**.
6. Click the slider component. The **Slider** context panel opens. See **Figure 10.3**.

![Slider Properties Dialog](image2)

Figure 10.3: Slider Properties Dialog
7. Name the component Slider1.

8. Enter the value at the lowest position as 0 and the highest as 100.

9. Enter major tick marks at 20 and minor tick marks at 10.

10. Make sure that the Continuous Update On Drag check box is selected.

11. Click OK.

12. To define an action, click the slider component, and then select Edit Value Changed Code... from the context panel. This launches a dialog that allows you to program the action of displaying the slider value in the label component. The dialog includes information on how to program actions between embedded components. The use...in/end use; statement allows you to specify routines using the short form of accessing a package command without invoking the package. For details on this command, refer to the use help page.

13. Before the end use; statement at the bottom of the dialog, enter the following command.

   \[ \text{Do}(%\text{SliderLabel}(\text{caption})=%\text{Slider0}(\text{value})); \]

14. Save the code, and exit the code editor.

As you move the arrow indicator, the value from the slider populates the Label caption field.

For details on this command, refer to the DocumentTools[Do] help page.

**Example 2 - Creating Embedded Components**

In chapter 7 (see Embedded Components (page 255)), you created a document that included embedded components, imported from a task template. Here, we re-create that configuration of components. This example takes two parameters, \( a \) and \( b \), as inputs, then plots the function \( y = bx + a \) and calculates \( \frac{a}{b} \).

1. Create the components.

The table layout is best done after the components are finished, in case the configuration of the components changes as you are working.

Create two DialComponents to set the parameters, \( a \) and \( b \), one RotaryGaugeComponent to display the result, \( \frac{a}{b} \), one PlotComponent to display the plot, and one MathContainerComponent to display the function. Note that you do not have to use the dial and rotary gauge components here, you can also use the slider instead.
2. Edit the display of the components.

Open the context panel for the first DialComponent, and notice that it already has a name. This name is used to reference the component from other components, and is unique. Change the display of each of the components as follows:

- **Dial0**: no changes.
- **Dial1**: change the Value at Lowest Position to 1, the Value at Highest Position to 10, the Spacing of Major Tick Marks to 1, and the Spacing of Minor Tick Marks to 1.
- **RotaryGauge0**: change the Value at Highest Position to 40, the Spacing of Major Tick Marks to 5, and the Spacing of Minor Tick Marks to 1.
- **Plot0**: no changes.
- **MathContainer0**: change the Width in Pixels to 200, and the Height in Pixels to 45.

Note the names of all of the components, and close each dialog before moving on.

3. Create actions for the components.

Components can perform actions when their values are changed, so the code to execute needs to be in the dials. That way, whenever one of them is changed, the other components are updated to reflect that change.

The following Maple commands retrieve the values of the parameters and display them in the other three components:

```maple
> parameter1:=Do(%Dial0):
> parameter2:=Do(%Dial1):
```
> Do(%RotaryGauge0=parameter1/parameter2);
> Do(%Plot0=plot((parameter2*x+parameter1), x=-50..50, y=-50..50));
> Do(%MathContainer0=(y=parameter2*x+parameter1));

4. **Test the actions.**

To test these commands, first load the `DocumentTools` package with the following command.

> with(DocumentTools):

After loading the package, execute the commands in the document, and verify that the components you inserted are updated: the gauge should change to the computed value, a plot should appear in the plot component, and the function should display in the math container.

5. **Troubleshooting.**

The first `Do` command gives an error, because the second parameter is 0. One way to avoid this problem is to change the range of the second dial. In the `Component Properties` dialog for the second `DialComponent`, change the `Value at Lowest Position` from 0 to 1. Alternatively, you could change the code to compensate, with an `if` statement.

6. **Copy the actions to the components.**

After the commands work as expected, you can copy them into the components.

- Click the first `DialComponent` and select `Edit Value Changed Code` from the context panel. Copy and paste the commands into the space between the `use` statements.

![Figure 10.5: DialComponent Action Code Editor](image)

- Save the code, and exit the code editor.
- Do the same for the second `DialComponent`. Now, moving either dial will update the rotary gauge, plot, and formula displayed in the math component.
7. Create the layout for the components.

Create a table, and then cut and paste the components into it, along with explanatory text. **Important:** you must cut, not copy, the components, or their names will be changed to avoid duplication. For information on creating and modifying tables, refer to *Tables (page 237)*.

<table>
<thead>
<tr>
<th>Parameters: $a$ and $b$</th>
<th>Plot Window</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Use the Dials to set parameters</strong></td>
<td></td>
</tr>
<tr>
<td><img src="image1" alt="Dials" /></td>
<td><img src="image2" alt="Graph" /></td>
</tr>
<tr>
<td>Parameter 1: $a$</td>
<td>Parameter 2: $b$</td>
</tr>
<tr>
<td><img src="image3" alt="Dial" /></td>
<td></td>
</tr>
<tr>
<td>Result: $\frac{a}{b}$</td>
<td></td>
</tr>
<tr>
<td>Plot of $y = 7x + 89$</td>
<td></td>
</tr>
</tbody>
</table>

### 10.4 Using Maplets

A Maplet is a popup graphical user interface that provides interactive access to the Maple engine through buttons, text regions, slider bars, and other visual interfaces. You can create your own Maplets, and you can take advantage of the built-in Maplets that cover numerous academic and specialized topics. Built-in Maplets include some assistants and tutors, such as the ODE Analyzer. For more information on this assistant, see *Ordinary Differential Equations (ODEs) (page 87)*.

Maplet applications are launched by executing Maplet code. Maplet code can be saved in a Maplet (.maplet) file or Maple document (.mw).

**Maplet File**

**To launch a Maplet application saved as a Maplet file:**

- In Windows, double-click the file from a Windows file browser.
- In UNIX and on Macintosh, use the command-line interface. At the command-line, enter `maple -q <maplet_filename>`.

**To view and edit the Maplet code contained within the .maplet file:**

1. Start Maple.
2. From the **File** menu, select **Open**. Maple displays the **Open** dialog.
3. In the **Files of Type** drop-down list, select **.maplet**.
4. Navigate to the location of the .maplet file and select the file.
5. Click **Open**.

### Maple Document

To launch a Maplet application for which the Maple code is contained in a Maple document, you need to execute the Maple code. To display the Maplet application, you must use the `Maplets[Display]` command. **Note:** The Maplet code may be quite large if the Maplet application is complex. In this case, execute the document to ensure user-defined procedures that are referenced in the Maplet application are also defined.

**Typical procedure:**
1. If present, evaluate user-defined procedures.

\[
\text{Myproc} := \text{proc} \ldots
\]


\[
\text{with( Maplets[Elements] );}
\]

3. Evaluate the Maplet definition.

\[
\text{Maplet_name} := \text{Maplet( Maplet_definition );}
\]

4. Display the Maplet application.

\[
\text{Maplets[Display]}( \text{Maplet_name } );
\]

**Important:** When a Maplet application is running, you cannot interact with the Maple document.

### 10.5 Authoring Maplets

To author Maplets, you can use the **Maplet Builder** (GUI-based) or the **Maplets** package (syntax-based). The **Maplet Builder** allows you to drag and drop buttons, sliders, text regions, and other elements to define the Maplet application and set the element properties to perform an action on selection or update of the element. The **Maplet Builder** is designed to create simple Maplets. The **Maplets** package offers more capabilities, control, and options when designing complicated Maplet applications.

Designing a Maplet application is similar to constructing a house. When building a house, you first construct the skeletal structure (that is, foundation, floors, and walls) and then proceed to add the windows and doors. Constructing a Maplet is no different. First define the rows and columns of the Maplet application and then proceed to add the body elements (such as buttons, text fields, and plot regions).

### Simple Maplet

A Maplet application can be defined using the commands in the `Maplets[Elements]` package and then launched using the `Maplets[Display]` command. The following commands define and run a very simple Maplet application that contains the text string "Hello World".

\[
> \text{with(Maplets[Elements]);}
\]

\[
> \text{MySimpleMaplet} := \text{Maplet}(["Hello World"]) ;
\]

\[
> \text{Maplets[Display]}(\text{MySimpleMaplet}) ;
\]

![Maplet](Hello World)

**Figure 10.6: A Simple Maplet**
Maplet Builder

To start the Maplet Builder:

- From the Tools menu, select Assistants → Maplet Builder.

![MapletBuilder Interface](image)

**Figure 10.7: Maplet Builder Interface**

The Maplet Builder is divided into four different panes.

- The Palette pane displays palettes, which contain Maplet elements, organized by category. For a description of the elements, see the MapletBuilder/Palette help page. The Body palette contains the most popular elements.
- The Layout pane displays the visual elements of the Maplet.
- The Command pane displays the commands and corresponding actions defined in the Maplet.
- The Properties pane displays the properties of an instance of a defined element in the Maplet.

**Example 3 - Design a Maplet Using the Maplet Builder**

In this example, shown in Figure 10.8, the Maplet user enters a function and plots the result.
**Figure 10.8: Image of the Maplet**

![Maplet Image](image)

**Button element**

**Label element**

**Plot element**

**TextField element**

**Figure 10.9: Body Elements Used to Define This Maplet**

<table>
<thead>
<tr>
<th>Action</th>
<th>Result in MapletBuilder</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Define the number of rows in the Maplet:</strong></td>
<td><img src="image" alt="MapletBuilder Screen" /></td>
</tr>
<tr>
<td>1. In the Properties pane:</td>
<td><img src="image" alt="MapletBuilder Screen" /></td>
</tr>
<tr>
<td>a. In the drop-down list, select <strong>BoxColumn1</strong>.</td>
<td><img src="image" alt="MapletBuilder Screen" /></td>
</tr>
<tr>
<td>b. Change the <strong>numrows</strong> field to 2.</td>
<td><img src="image" alt="MapletBuilder Screen" /></td>
</tr>
<tr>
<td><strong>Add a plot region to row 1:</strong></td>
<td><img src="image" alt="MapletBuilder Screen" /></td>
</tr>
<tr>
<td>2. From the <strong>Body</strong> palette, drag the <strong>Plotter</strong> element to the first row in the <strong>Layout</strong> pane.</td>
<td><img src="image" alt="MapletBuilder Screen" /></td>
</tr>
<tr>
<td>Action</td>
<td>Result in MapletBuilder</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------------</td>
</tr>
</tbody>
</table>

### Add columns to row 2:
3. In the **Properties** pane:
   - In the drop-down list, select **BoxRow2**.
   - Change the **numcolumns** field to **3**.

### Add a label to row 2:
4. From the **Body** palette, drag the **Label** element to the left column in the **Layout** pane.
5. In the **Properties** pane:
   - In the drop-down list, select **Label1**.
   - Change the caption field to **Enter a function of x**.

### Add a text region to row 2:
6. From the **Body** palette, drag the **TextField** element to the middle column. The **TextField** element allows the Maplet user to enter input that can be retrieved in an action.
7. If necessary, resize the Maplet Builder to display the entire **Layout** pane.

### Add a button to row 2:
8. From the **Body** palette, drag the **Button** element to the right column in the **Layout** pane.
9. In the **Properties** pane:
   - In the drop-down list, select **Button1**.
   - Change the **caption** field to **Plot**.
   - In the **onclick** property drop-down list, select `<Evaluate>`.

---

**314 • 10 Embedded Components and Maplets**
10. In the Evaluate Expression dialog that displays, the Target drop-down list contains the defined elements to which you can send information, in this case, Plotter1 and TextField1. The List group box, located below the Expression group box, displays the defined elements to which you can retrieve information, in this case, TextField1.

a. In the Target drop-down list, select Plotter1.

b. In the Command Form tab, enter plot(TextField1, x=-10..10) in the Expression group box. (Note: Do not include a semicolon (;) at the end of the plot command.) You can also double-click TextField1 in the List group box to insert this element in the command syntax.

c. Click Ok.

Run the Maplet:
11. From the File menu, select Run. You are prompted to save the Maplet. Maplets created with the Maplet Builder are saved as .maplet files.
12. Click Yes and navigate to a location to save this Maplet.

For further information on the Maplet Builder, see the MapletBuilder help page. For more examples of designing Maplets using the Maplet Builder, see examples/MapletBuilder.

Maplets Package

When designing a complicated Maplet, the Maplets package offers greater control. The Maplets[Elements] subpackage contains the elements available when designing a Maplet application. After you define the Maplet, use the Maplets[Display] command to launch the Maplet.

For more information on the Maplets package, refer to the MapletsPackage help page. For more examples of designing Maplets using the Maplets package, see the Maplets/Roadmap help page.

Example 4 - Design a Maplet Using the Maplets Package

To introduce the structure of designing Maplets using the Maplets package, this example illustrates the equivalent syntax for the Example 3 - Design a Maplet Using the Maplet Builder (page 312).

Load the Maplets[Elements] package.

> with(Maplets[Elements]):

Define the Maplet application. To suppress the display of the data structure associated with the Maplet application, end the definition with a colon.

> PlottingMaplet:=Maplet(
    BoxLayout(
        BoxColumn(
            # First Box Row
            BoxRow(
                # Define a Plot region
                Plotter('reference' = Plotter1)
            )
        )
    )
)
Launch the Maplet.

> Maplets[Display](PlottingMaplet);

For further examples using both the MapletBuilder and Maplets package commands, see the Maplets example worksheets. For a listing, refer to the examples/index help page.

**Saving**

When saving a Maplet, you can save the document as an .mw file or you can export the document as a .maplet file.

**Maple Document**

To save the Maplet code as an .mw file:

1. From the File menu, select Save.
2. Navigate to the save location.
3. Enter a filename.
4. Click Save.

If the document contains only Maplet code, it is recommended that you export the document as a .maplet file.

**Maplet File**

To export the Maplet code as a .maplet file:

1. From the File menu, select Export As.
2. In the Files of Type drop-down list, select Maplet.
3. Navigate to the export location.
4. Enter the filename.
5. Click Save.
11 Input, Output, and Interacting with Other Products

11.1 In This Chapter

<table>
<thead>
<tr>
<th>Section</th>
<th>Topics</th>
</tr>
</thead>
</table>
| Writing to Files (page 317) - Saving to Maple file formats | • Saving Data to a File  
• Saving Expressions to a File |
| Reading from Files (page 319) - Opening Maple files | • Reading Data from a File  
• Reading Expressions from a File |
| Exporting to Other Formats (page 321) - Exporting documents in file formats supported by other software | • Exporting Documents  
• MapleNet |
| Connectivity (page 323) - Using Maple with other programming languages and software | • Translating Maple Code to Other Programming Languages  
• Accessing External Products from Maple  
• Accessing Maple from External Products  
• Sharing and Storing Maple Worksheet Content with the MapleCloud™ |

11.2 Writing to Files

Maple supports file formats in addition to the standard .mw file format.

After using Maple to perform a computation, you can save the results to a file for later processing with Maple or another program.

**Note:** Make sure you have right access to the directory in order to execute the example in the following subsections.

**Saving Data to a File**

If the result of a Maple calculation is a long list or a large array of numbers, you can convert it to Matrix form and write the numbers to a file using the ExportMatrix command. This command writes columns of numerical data to a file, allowing you to import the numbers into another program. To convert a list or a list of lists to a Matrix, use the Matrix constructor. For more information, refer to the Matrix help page.

```maple
> L := [[-81, -98, -76, -4, 29], [-38, -77, -72, 27, 44], [-18, 57, -2, 8, 92], [87, 27, -32, 69, -31], [33, -93, -74, 99, 67]];

> ExportMatrix("matrixdata.txt", L):
```

If the data is a Vector or any object that can be converted to type Vector, use the ExportVector command. To convert lists to Vectors, use the Vector constructor. For more information, refer to the Vector help page.
You can extend these routines to write more complicated data, such as complex numbers or symbolic expressions. For more information, refer to the `ExportMatrix` and `ExportVector` help pages.

For more information on matrices and vectors, see *Linear Algebra (page 116)*.

### Saving Expressions to a File

If you construct a complicated expression or procedure, you can save them for future use in Maple. If you save the expression or procedure in the Maple internal format, Maple can retrieve it more efficiently than from a document. Use the `save` command to write the expression to a `.m` file. For more information on Maple internal file formats, refer to the `file` help page.

In this example, small expressions are used. In practice, Maple supports expressions with thousands of terms.

\[ qbinomial := (n, k) \rightarrow \prod_{i=n-k+1}^{n} \frac{(1 - q^i)}{\prod_{i=1}^{k} (1 - q^i)} \]

In this example, small expressions are used. In practice, Maple supports expressions with thousands of terms.

> `qbinomial` := (n, k) \rightarrow \prod_{i=n-k+1}^{n} \frac{(1 - q^i)}{\prod_{i=1}^{k} (1 - q^i)}

In this example, small expressions are used. In practice, Maple supports expressions with thousands of terms.

\[ expr := qbinomial(10, 4) \]

\[ expr := \frac{(1 - q^7)(1 - q^8)(1 - q^9)(1 - q^{10})}{(1 - q)(1 - q^2)(1 - q^3)(1 - q^4)} \]

> `expr` := `qbinomial`(10, 4)

\[ expr := \frac{(1 - q^7)(1 - q^8)(1 - q^9)(1 - q^{10})}{(1 - q)(1 - q^2)(1 - q^3)(1 - q^4)} \]

You can save these expressions to the file `qbinom.m`.

> `save qbinomial, expr, nexpr, "qbinom.m"`

Clear the memory using the `restart` command and retrieve the expressions using the `read` command.

> `restart`

> `read "qbinom.m"`
For more information on writing to files, refer to the save help page.

### Saving Data as Part of a Workbook

You can save all files related to a common Maple project as a workbook (.maple) file. Saving your data files and worksheets (or documents) as a workbook allows you to use this saved data across all .mw file inside your workbook.

### 11.3 Reading from Files

The most common reason for reading files is to load data, for example, data generated in an experiment. You can store data in a text file, and then read it into Maple.

#### Reading Data from a File

**Import Data Assistant**

If you generate data outside Maple, you can read it into Maple for further manipulation. This data can be an image, a sound file, or columns of numbers in a text file. You can easily import this external data into Maple using the Import Data Assistant, where the supported file formats include files of type Excel®, MATLAB®, Image, Audio, Matrix Market, and Delimited.

**To launch the Import Data Assistant:**

1. From the Tools menu, select Assistants, and then Import Data.
2. A dialog window appears where you can navigate to your data file. Select the file that you want to import data from, and then select the file type before clicking Next.
3. From the main window, you can preview the selected file and choose from the applicable options based on the format of the file read in before importing the data into Maple. See Figure 11.1 for an example.

$$\frac{(1 - q^7) (1 - q^8) (1 - q^9) (1 - q^{10})}{(1 - q) (1 - q^2) (1 - q^3) (1 - q^4)} \quad (11.5)$$

For more information on writing to files, refer to the save help page.
**ImportMatrix Command**

The **Import Data Assistant** provides a graphical interface to the **ImportMatrix** command. For more information, including options not available in the assistant, refer to the **ImportMatrix** help page.

**Reading Expressions from a File**

You can write Maple programs in a text file using a text editor, and then import the file into Maple. You can paste the commands from the text file into your document or you can use the **read** command.

When you read a file with the **read** command, Maple treats each line in the file as a command. Maple executes the commands and displays the results in your document but it does not, by default, insert the commands from the file in your document.

For example, the file **ks.txt** contains the following Maple commands.

\[
S := n \rightarrow \sum_{\beta = 1}^{n} \binom{n}{\beta} \left( \frac{(2\beta)!}{2^\beta} - \beta! \beta \right)
\]

\[S(19);
\]

Note that the file should not contain prompts (\textgreater) at the start of lines.

When you read the file, Maple displays the results but not the commands.

\[
1024937361666644598071114328769317982974
\]

If you set the **interface echo** option to 2, Maple inserts the commands from the file into your document.

\[
> \text{filename} := \text{cat(kernelopts(datadir), kernelopts(dirsep), "ks", kernelopts(dirsep), "ks.txt")}:
\]

\[
> \text{read filename}
\]

\[
S := n \rightarrow \sum_{\beta = 1}^{n} \binom{n}{\beta} \left( \frac{(2\beta)!}{2^\beta} - \beta! \beta \right)
\]

\[1024937361666644598071114328769317982974
\]

For more information, refer to the **read** and **interface** help pages.
Reading Data From Workbook Attachments

Data stored in a workbook in the form of an attachment, can be accessed easily using the workbook URI. For information on workbook attachments, see worksheet,workbook,attachFiles. For information on the workbook URI format, see worksheet,workbook,uri.

11.4 Exporting to Other Formats

Exporting Documents

You can save your documents by selecting Save or Save As from the File menu. By selecting Export As from the File menu, you can also export a document in the following formats: HTML, LaTeX, Maple input, Maplet application, Maple text, plain text, PDF, and Rich Text Format. This allows you to access your work outside Maple.

HTML

The .html file that Maple generates can be loaded into any HTML browser. Exported mathematical content can be displayed in one of the following formats: GIF, MathML 2.0 Presentation, MathML 2.0 Content, or Maple Viewer, and is saved in a separate folder. MathML is the Internet standard, sanctioned by the World Wide Web Consortium (W3C), for the communication of structured mathematical formulae between applications. For more information about MathML, refer to the MathML help page.

Maple documents that are exported to HTML translate into multiple documents when using frames. If the frames feature is not selected, Maple creates only one page that contains the document contents.

LaTeX

The .tex file generated by Maple is ready for processing by LaTeX. All distributions of Maple include the necessary style files. By default, the LaTeX style files are set for printing the .tex file using the dvips printer driver. You can change this behavior by specifying an option to the \usepackage LaTeX command in the preamble of your .tex file. For more information, refer to the exporttoLaTeX help page.

Maple Input

You can export a Maple document as Maple input so that it can be loaded using the Maple Command-line version.

Important: When exporting a document as Maple input for use in Command-line Maple, your document must contain explicit semicolons in 1-D Math input. If not, the exported .mpl file does not contain semicolons, and Command-line Maple generates errors.

Maplet Application

The Export as Maplet facility saves a Maple document as a .maplet file, so that you can run it using the command-line interface or the MapletViewer. The MapletViewer is an executable program that can launch saved Maplet applications. It displays and runs Maplet applications independently of the Maple Worksheet interface.

Important: When exporting a document as a Maplet Application for use in Command-line Maple or the MapletViewer, your document must contain explicit semicolons. If not, the exported .maplet file does not contain semicolons, and Command-line Maple and the MapletViewer generates errors.

Maple Text

Maple text is marked text that retains the distinction between text, Maple input, and Maple output. Thus, you can export a document as Maple text, send the text file by email, and the recipient can import the Maple text into a Maple session and regenerate the computations in the original document.
PDF

Export a Maple document to a Portable Document Format (PDF) file so that you can open the file in a reader such as Adobe® Acrobat®. The PDF document is formatted as it would appear when the Maple worksheet is printed using the active printer settings.

Note: Images, plots, and embedded components may be resized in the PDF file.

Plain Text

Export a Maple document as plain text so that you can open the text file in a word processor.

Rich Text Format (RTF)

Export a Maple document to a rich text format file so that you can open and edit the file in a word processor.

Note: The generated .rtf format is compatible with Microsoft Word and Microsoft WordPad only.

Summary of Translation

Table 11.1: Summary of Content Translation When Exporting to Different Formats

<table>
<thead>
<tr>
<th>Content</th>
<th>HTML</th>
<th>LaTeX</th>
<th>Maple Input</th>
<th>Maple Application</th>
<th>Maple Text</th>
<th>Plain Text</th>
<th>Rich Text Format</th>
<th>PDF Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text</td>
<td>Maintained</td>
<td>Maintained</td>
<td>Preceded by #</td>
<td>Preceded by #</td>
<td>Maintained</td>
<td>Maintained</td>
<td>Maintained</td>
<td>Maintained</td>
</tr>
<tr>
<td>1-D Math</td>
<td>Maintained</td>
<td>Maintained</td>
<td>Maintained</td>
<td>Maintained</td>
<td>Preceded by #</td>
<td>Preceded by &gt;</td>
<td>Static image</td>
<td>Static image</td>
</tr>
<tr>
<td>2-D Math</td>
<td>GIF or MathML</td>
<td>1-D Math or LaTeX 2e</td>
<td>1-D Math (if possible)</td>
<td>1-D Math (if possible)</td>
<td>1-D Math or character-based typesetting</td>
<td>1-D Math or character-based typesetting</td>
<td>Static image</td>
<td>Either text or shapes depending on option selected</td>
</tr>
<tr>
<td>Plot</td>
<td>GIF</td>
<td>Postscript file</td>
<td>Not exported</td>
<td>Not exported</td>
<td>Not exported</td>
<td>Not exported</td>
<td>Static image</td>
<td>Static image</td>
</tr>
<tr>
<td>Animation</td>
<td>Animated GIF</td>
<td>Not exported</td>
<td>Not exported</td>
<td>Not exported</td>
<td>Not exported</td>
<td>Not exported</td>
<td>Not exported</td>
<td>Static image</td>
</tr>
<tr>
<td>Hidden content</td>
<td>Not exported</td>
</tr>
<tr>
<td>Manually inserted page break</td>
<td>Not supported</td>
<td>Not supported</td>
<td>Not supported</td>
<td>Not supported</td>
<td>Not supported</td>
<td>Not supported</td>
<td>RTF page break object</td>
<td>Maintained</td>
</tr>
<tr>
<td>Hyperlink</td>
<td>Links to help pages become plain text. Links to documents are renamed and converted to HTML links</td>
<td>Plain text</td>
</tr>
<tr>
<td>Embedded image or sketch output</td>
<td>GIF</td>
<td>Not exported</td>
<td>Not exported</td>
<td>Not exported</td>
<td>Not exported</td>
<td>Not exported</td>
<td>Static image</td>
<td>Static image</td>
</tr>
<tr>
<td>Spreadsheet</td>
<td>HTML table</td>
<td>LaTeX tables</td>
<td>Not exported</td>
<td>Not exported</td>
<td>Not exported</td>
<td>Not exported</td>
<td>RTF table</td>
<td>Static image</td>
</tr>
</tbody>
</table>


MapleNet

Overview of MapleNet

Using MapleNet, you can deploy Maple content on the web. Powered by the Maple computation engine, MapleNet allows you to embed dynamic formulas, models, and diagrams as live content in web pages. The MapleNet software is not included with the Maple software. For more information on MapleNet, visit http://www.maplesoft.com/maplenet.

MapleNet Documents and Maplets

After you upload your Maple document to the MapleNet server, it can be accessed by anyone in the world using a web browser. Even if viewers do not have a copy of Maple installed, they can view documents and Maplets, manipulate 3-D plots, and execute code at the click of a button.

Custom Java Applets and JavaServer Pages™ Technology

MapleNet provides a programming interface to the Maple math engine so commands can be executed from a Java applet or using JavaServer Pages™ technology. Embed MapleNet into your web application, and let Maple handle the math and visualization.

11.5 Connectivity

Translating Maple Code To Other Programming Languages

Code Generation

The CodeGeneration package is a collection of commands and subpackages that enable the translation of Maple code to other programming languages. Languages currently supported include: C, C#, Fortran 77, Java, MATLAB®, Visual Basic, Perl, and Python.

For details on Code Generation, refer to the CodeGeneration help page.

Accessing External Products from Maple

External Calling

External calling allows you to use compiled C, C#, Fortran 77, or Java code in Maple. Functions written in these languages can be linked and used as if they were Maple procedures. With external calling you can use pre-written optimized algorithms without the need to translate them into Maple commands. Access to the NAG library routines and other numerical algorithms is built into Maple using the external calling mechanism.

External calling can also be applied to functions other than numerical algorithms. Routines exist that accomplish a variety of non-mathematical tasks. You can use these routines in Maple to extend its functionality. For example, you can link to controlled hardware via a serial port or interface with another program. The Database package uses external calling to allow you to query, create, and update databases in Maple. For more information, refer to the Database help page.

For more information on using external calling, refer to the ExternalCalling help page.
Mathematica Translator

The MmaTranslator package provides translation tools for converting Mathematica® expressions, command operations, and notebooks to Maple. The package can translate Mathematica input to Maple input and Mathematica notebooks to Maple documents. The Mma subpackage contains commands that provide translation for Mathematica commands when no equivalent Maple command exists. In most cases, the command achieves the translation through minor manipulations of the input and output of similar Maple commands.

Note: The MmaTranslator package does not convert Mathematica programs.

There is a Maplet interface to the MmaTranslator package. For more information, refer to the MmaToMaple help page.

Matlab Package

The Matlab package enables you to translate MATLAB® code to Maple, as well as call selected MATLAB® functions from a Maple session, provided you have MATLAB® installed on your system.

For more information, refer to the Matlab help page.

Accessing Maple from External Products

Microsoft Excel Add-In

Maple is available as an add-in to Microsoft Excel. This add-in is supported for Excel 2016, Excel 2013, and Excel 2010 for Windows, and provides the following features.

• Access to Maple commands from Excel
• Ability to copy and paste between Maple and Excel
• Access to a subset of the Maple help pages
• Maple Function Wizard to step you through the creation of a Maple function call

To enable the Maple Excel Add-in in Excel 2010, Excel 2013, and Excel 2016:

1. In Excel, click the File menu and select Options.
2. Click Add-ins.
3. In the Manage box select Excel Add-ins, and then Go.
4. Navigate to the Excel subdirectory of your Maple installation and select the appropriate file:
   - For 32-bit Windows, select WMIMPLEX.xla (that is, select $MAPLE/Excel/WMIMPLEX.xla), and click OK.
   - For 64-bit Windows, select WMIMPLEX64.xla (that is, select $MAPLE/Excel/WMIMPLEX64.xla), and click OK.
5. Select the Maple Excel Add-in check box.
6. Click OK.

For further details on enabling the Maple Excel Add-in, refer to the Excel help page.

For information on using this add-in, refer to the Using Maple in Excel help file within Excel.

To view this help file:

1. Enable the add-in.
2. From the View menu, select Toolbars, and then Maple.
3. On the Maple toolbar, click the Maple help icon.

**OpenMaple**

OpenMaple is a suite of functions that allows you to access Maple algorithms and data structures in your compiled C, C#, Java, or Visual Basic programs. (This is the reverse of external calling, which allows access to compiled C, C#, Fortran 77, and Java code from Maple.)

To run your application, Maple must be installed. You can distribute your application to any licensed Maple user. For additional terms and conditions on the use of OpenMaple, refer to the `extern/OpenMapleLicensing.txt` file in your Maple installation.

For more details on using OpenMaple functions, refer to the OpenMaple help page.

**MapleSim**

MapleSim™ is a complete environment for modeling and simulating multidomain engineering systems. During a simulation, MapleSim uses the symbolic Maple computation engine to generate the mathematical models that represent the system behavior.

Because both products are tightly integrated, you can use Maple commands and technical document features to edit, manipulate, and analyze a MapleSim model. For example, you can use Maple commands and tools to manipulate your model equations, develop custom components based on a mathematical model, and visualize simulation results.

MapleSim software is not included with the Maple software. For more information on MapleSim, visit [http://www.maplesoft.com/maplesim](http://www.maplesoft.com/maplesim).

**MaplePlayer for iPad**

The Maple Player is a free application for the iPad that uses the Maple computation engine to enable you to view and interact with documents created in desktop Maple.

For more information on the Maple Player for iPad, visit [http://www.maplesoft.com/products/MaplePlayer](http://www.maplesoft.com/products/MaplePlayer).

**Sharing and Storing Maple Content**

**The MapleCloud**

You can use the MapleCloud to share or store your Maple documents and workbooks. Upload Maple documents or workbooks. Package workbooks offer a way to share a Maple packages with other users, including source code, documentation and examples.

The MapleCloud has private and public sharing. You can share with all Maple users, share with a private group, or upload and store content in a user-specific area that only you can access.

Users need an internet connection to use the MapleCloud. Anyone can access publicly shared documents. To share content, create, manage and join user groups; and view group-specific content, you must log in to the MapleCloud using a Maplesoft.com, Gmail™, or Google Mail™ account name and password.

A Maplesoft.com membership account gives you access to thousands of free Maple resources and MaplePrimes, which is an active web community for sharing techniques and experiences with Maple and related products. To sign up for a free Maplesoft.com membership account, visit [http://www.maplesoft.com/members/sign_up_form.aspx](http://www.maplesoft.com/members/sign_up_form.aspx). The MapleCloud is integrated with several of these online features, so it is strongly recommended that you use a Maplesoft.com membership account.

For more information on the MapleCloud, refer to the MapleCloud help page.
Index

Symbols
! toolbar icon, 47
!!! toolbar icon, 47
"", 268
$, 131
%H, 124
%T, 124
&x, 125
', 67, 282
(), 296
->, 67
., 123
1-D Math, 56
2-D Math, 56
    converting to 1-D, 57
    entering, 4
    shortcuts, 6
    switching to 1-D, 57
;:, 56, 57
;::, 104
:=, 66
;:, 56, 57
<>e, 116, 118
>, 56
?
[ ], 122, 261, 262
^, 5, 79
    entering, 79
_{, 68
{Z}_N{~, 83
\, 68
{, 262
|, 118
~, 83, 105
    element-wise operations, 280
A
about command, 105
abs command, 77
absolute value, 77
add
    word to your dictionary, 259
add command, 294
additionally command, 105
algebra, 115
    linear, 127
    polynomial, 110
algsubs command, 278
alignment format, 223
American spelling
    spellcheck, 257
and operator, 286
angle brackets, 116, 118, 152
angles, 275
animations
    creating, 213
    customizing, 216
Application Center, 40
applications
    sample documents, 39
apply
    character styles, 224
    paragraph styles, 227
approximation, 75
    least-squares, 127
    numeric, 279
arguments, 296
arithmetic, 46
    finite-precision, 74
    interval, 101
    matrix and vector, 123
    modular, 78, 79
    polynomial, 110
Arrays, 263
    indexing, 263
    large, 264
arrow operator, 67
assign command, 86
assigned command, 282
assignment operator (:=), 66
Assistants
    CAD Link, 24
    Code Generation, 24
    Curve Fitting, 115
    Data Set Search, 24
    eBook Publisher, 24
    Import Data, 24, 319
    Installer Builder, 24
    Library Browser, 24
    Maplet Builder, 24
    ODE Analyzer, 87
    Optimization, 138
    overview, 24
    Plot Builder, 24, 186
    Scientific Constants, 24
    Special Functions, 25
    Student Practice Sheets, 26
    Thermophysical Properties Calculator, 25
    Tools menu, 24
    Unit Converter, 275
    Units Converter, 25, 94
    Worksheet Migration, 25
327
assume command, 104
   adding assumptions, 105
   and procedure variables, 106
   imposing multiple assumptions, 105
   removing assumptions, 105
   setting relationships between variables, 104
   setting variable properties, 104
   testing property, 105
   using with assuming command, 106
   viewing assumptions, 105
assuming command, 104, 106, 135, 275
   additionally option, 106
   and procedure variables, 106
   applying to all names, 106
   using with assume command, 106
Attributes submenu
   character, 222
   paragraph, 223
auto-execute, 235
   repeating, 236
   security levels, 236
Avogadro constant, 98
B
   bar chart, 143
   basis
      vector space, 127
   binary numbers, 78
   Bohr radius, 98
   bold format, 221
   bookmarks
      using, 253
   boolean expressions, 280, 286, 290
   brackets
      angle, 116, 118
   break statement, 293
   browser
      Matrix, 118, 264
      Task, 64
   bullets
      format, 223
   button
      embedding, 255
   Button component, 301
   by clause, 288
   excluding, 288
   negative, 289
C
   CAD Link Assistant, 24
   calculus, 135
      clickable problem solving, 183
      multivariate, 136
   Student package, 137
      of variations, 137
      packages, 136
      study guides, 146
      teaching, 137, 146
      vector, 136
   of variations, 137
   Student package, 137
   calling sequence, 58
   canvas
      inserting, 247
   canvas style
      sketch pad, 248
   caret
      entering, 79
   central tendency, 101
   character styles
      creating, 225
      description, 224
   Check Box component, 301
   Cholesky decomposition, 125
   Classic Worksheet
      tables, 244
   Classic Worksheet Interface, xiii
   clickable math
      expressions, 27
   Clickable Math, 183
      Drag-to-Solve, 157
      Smart Popups, 157
   Code Edit Region, 298
   Code Generation, 24
   CodeGeneration
      package description, 60
   coeff command, 114
   coefficients
      polynomials, 114
   coeffs command, 114
   collect command, 114
   colon, 56, 57
   color
      of plots, 208
   combine command, 274
      errors option, 103
   Combo Box component, 301
   command completion, 6, 33
   Command-line Interface, xiii
   commands, 59
      and task templates, 64
      displaying procedures, 297
      entering, 32
      help, 36
      hiding, 298, 299
      iterative, 295
      mapping over set or list, 295
      package, 59
top, 59
top-level, 58
compatibility
    worksheet, 259
complex expressions, 279
complex numbers, 21
compoly command, 115
components
    adding GUI elements, 255
    palette, 255
computations
    assistants, 64
    commands, 59
    context panel, 63
    errors, 76
        avoiding, 76
    integers, 79
    interrupting, 293
    linear algebra, 123
    mathematics, 109
numeric, 75
palettes, 61
performing, 73, 109
Real number system, 103
symbolic, 75
syntax-free, 53
task templates, 64
tutors, 64
under assumptions, 104
    single evaluation, 106
updating, 47
with uncertainty, 102
with units, 96
conditional execution, 285
constants, 44
content command, 115
context
    of unit, 94
context panel, 63, 125
    access tutors, 52
    computing with, 48
    customizing animations, 216
    integer, 63, 88
    overview, 27
    Plot Builder access, 187
    using, 27
context-sensitive operation, 27
    customize text on arrow, 50
    equation, 81
    integer, 77
    using, 10
convert command, 275
    base option, 78, 292
    degrees option, 275
mathematical functions, 275
    polynom option, 133
    set option, 275
    temperature option, 95
    units option, 94, 275
copy, 220
    and drag, 10
    examples, 39
copy expressions, 10
correlation, 102
coulditbe command, 105
covariance, 102
cross product, 125
Curl command, 136
Curve Fitting
    package
        PolynomialInterpolation command, 115
Curve Fitting Assistant, 115
cut and paste
    in tables, 239

D
D operator, 131
data structures, 44, 261
    creating, 267
Data Table component, 301
Database Integration, 323
datatype option, 120
degree
    command, 114
    polynomials, 114
denom command, 271
derivatives, 129
    directional, 132
    partial, 45, 130
    prime notation, 235
    Tutor, 146
Dial component, 302
dictionary, 39, 146
dictionary topic
    adding hyperlink to, 252
diff command, 88, 130
differential equations
    ordinary, 87
    partial, 91
differentiation, 129
    with uncertainty, 102
    with units, 96
Differentiation Methods Tutor, 147
Digits environment variable, 76
dimension, 93, 125
    base, 93
    Directional Derivative Tutor, 132
discrim command, 115
display
  bookmark, 253
distribution
  probability, 141
divide command, 111
divisors, 78
document blocks, 35, 233
Document mode, 43
documents
  running, 8
DocumentTools, 308
double colon operator, 104
dsolve command, 90

e
e-notation, 75
eBook Publisher Assistant, 24
Edit menu
  in help system, 39
eigenvalues, 125
eigenvectors, 125
element-wise operators, 280
elementary charge, 98
elements, 97
  definition, 99
  isotopes, 99
    definition, 99
    properties, 99
list, 99
properties
  list, 99
  uncertainty, 100
  units, 100
  using, 98
  value, 100
  value and units, 100
elif clauses, 287
  order, 287
else clause, 286
email
  adding hyperlink to, 251
embedded components, 255, 301
  example, 305, 307
  inserting, 304
  properties, 305
end do keywords, 288, 290
end if keywords, 285
end proc keywords, 296
engineers
  portal for, 39
environment variables
  Digits, 76
  Order, 133
  equation
    solving step-by-step, 163
  equation labels, 71
    displaying, 69
    features, 71
    formatting, 34
    inserting, 34
    numbering schemes, 70
    overview, 34
    references to, 69
    versus names, 71
    with multiple outputs, 70
  Equation Manipulator, 163
  equations
    solving, 80
      for real solutions, 103
      numerically, 84
      symbolically, 82
      transcendental, 83
errors
  quantities with, 101
Euclidean algorithm, 115
eval command, 277, 297
evalb command, 280
evalc command, 279
evalf command, 75, 84, 100, 102, 279
  with Int command, 136
  with Limit command, 129
evaln command, 282
evaluation
  boolean expressions, 280
  complex expressions, 279
  delaying, 282
  levels of, 281
  Maple expressions, 277
  of expression at a point, 277
  output below, 46
  output inline, 46, 49
  updated computations, 47
exact
  computation, 74
  numbers, 74
  quantities
    converting to floating-point, 75
example worksheets
  copy, 39
execution group, 56
execution groups, 13
expand
  command, 274
document block, 234
execution group, 234
series, 133
Exploration Assistant, 29
exponents
entering, 5
export, 298
to HTML, 321
to LaTeX, 321
to Maple input, 321
to Maple text, 321
to Maplet application, 321
to other formats, 321
to PDF, 322
to plain text, 322
to Rich Text Format, 322
worksheets, 321
exporting
embedded components, 304
expression sequences, 82, 261
creating, 293
expressions, 44, 261
adding, 294
clickable math, 27
evaluating, 277
manipulating, 273
multiplying, 294
versus functional operators, 266

F
factor
integers, 77
polynomials, 114
QR factorization, 127
factor command, 114, 273
factored normal form, 276
factorial command, 77
FAIL, 286, 290
false, 286, 290
Faraday constant, 98
Favorites palette, 15, 20
files
image formats, 249
reading from, 319
writing to, 317
fill option, 120
finite fields, 79
solving equations, 92
finite rings, 79
floating-point
computation, 75
accuracy, 76
hardware, 76
significant digits, 75
numbers, 74
rational approximation, 63
Flux command, 137
font color, 221
foot-pound-second (FPS) system, 94
footers, 231
for/from loops, 288
for/in loops, 289
formal power series solutions, 91
format labels, 34
Format menu
bookmarks, 254
quick formatting, 221
frac command, 106
fractions
approximating, 50
entering, 4
frequency plot, 143
Frobenius form
matrix, 127
from clause, 288
excluding, 288
fsolve command, 84
full evaluation, 281, 283
FunctionAdvisor command, 58
functional operators, 265
differentiating, 131
plotting, 267
versus expressions, 266
functions
converting between, 275
defining as functional operators, 266

G
Gaussian elimination, 127
Gaussian integers, 80
GaussInt package, 80
gcd command, 115
gcdex command, 115
Global Optimization Toolbox, 137
global variables, 296
glossiness
do 3-D plots, 208
go to
bookmark, 255
gradient, 148
Gradient Tutor, 148
greatest common divisor, 77, 115

H
has command, 270
hastype command, 270
HazardRate command, 142
headers, 231
Help Navigator
Using, 38
help page
  adding hyperlink to, 251
help system
  accessing, 36
  description, 39
  Edit menu, 39
  Help Navigator, 37
  manuals, 38
  search, 38
  table of contents, 38
  tasks, 38
  View menu, 38
Hermitian transpose
  matrix and vector, 124
Hessenberg form, 127
hexadecimal numbers, 78
hide
  worksheet content, 231
highlight color, 221
Hilbert Matrix, 127
histogram, 143
Homework practice sheet assistant, 26
How Do I ... topics, 39
hyperlinks
  in worksheet, 250
i
  entering, 21, 80
icons
  open as example worksheet, 38
if statement, 285
ifactor command, 77, 274
igcd command, 77
images
  adding hyperlink to, 251
  file format, 249
  inserting, 249
imaginary unit
  entering, 21, 80
implied multiplication, 5
implies operator, 286
Import Data Assistant, 24, 319
indent
  format, 223
indeterminates, 272
indets command, 272
indices, 58, 122
inequalities
  solving, 80
  for real solutions, 103
  symbolically, 82
infinite loops, 293
infolevel command, 91
input
  2-D Math, 56
  2-D math notation, 56
  Maple notation, 56
  prompt, 56
  separating, 57
  setting default mode, 57
insert
  bookmark, 254
  hyperlink, 250
  images, 249
  section, 230
  sketch pad, 247
  table, 237
Installer Builder Assistant, 24
instructor resources, 155
int command, 135
Int command, 136
integers
  commands, 77
  computations, 79
  context panel, 63, 88
  factoring, 77
  Gaussian, 80
  modulo m, 79
  solving equations, 91
  solving modular equations, 92
integration, 48, 62, 134
  definite, 135
  functional operators, 268
  indefinite, 134
  iterated, 135
  line, 135, 150
  numeric, 136
  surface, 135
  with units, 96
interactive commands
  Student, 26
interactive document
  building, 301
Interactive Linear System Solving tutor, 52
Interactive Plot Builder Assistant
  creating animations, 211
  creating plots, 186
  customizing animations, 216
  customizing plots, 204
interface command
  rtablesize option, 120
  verboseproc option, 297
international system (SI), 94
InterquartileRange command, 142
interval arithmetic, 101
iquo command, 77
iroot command, 78
is command, 105
isprime command, 78
isqrt command, 78
italic format, 221
j
j
Jordan form, 125
K
keyboard keys
  Command Completion, xiii
  keystrokes, 5
L
Label component, 302
labels, 71
last name evaluation, 282
lcm command, 115
lcoeff command, 114
ldegree command, 114
least-squares, 127
left single quotes, 68
left-hand side, 271
levels of evaluation, 281
lexicographic order, 112
lhs command, 271
Library Browser
  description, 24
  limit command, 128
  Limit command, 129
  limits, 128
    multidimensional, 129
  line break, 223
  line integrals, 150
  linear algebra, 127
    computations, 123
      efficiency, 120, 128
    LinearAlgebra package, 126
      teaching, 128, 146
  Linear System Solving tutor, 52
  linear systems
    solving, 92, 127
      interactive, 52
  LinearAlgebra
    package description, 60
  LinearAlgebra package, 125
    commands, 126
      numeric computations, 128
  LinearSolve command, 92
Linux
  command complete, 6
List Box component, 302
lists, 122, 262
  returning solutions as, 82
local variables, 296
logical operators, 286
loops, 288
  general, 292
  infinite, 293
M
Mac
  command complete, 6
manipulate
  equation, 163
map command, 295
Maple Application Center, 146
Maple library, 31
Maple Portal, 39, 146
Maple Student Help Center, 146
Maple Workbook, 4
MapleCloud, 325
MaplePrimes, 41
Maplet Builder
  description, 24
  launching, 312
Maplet authoring, 312
Maplets
  adding hyperlink to, 252
  authoring, 315
    Maplet Builder, 312
    Maplets package, 315
launching
  Maple worksheet, 311
  Maplet file type, 310
Maplets package
  Display command, 315
  Elements subpackage, 315
  Maplet authoring, 315
saving
  Maple worksheet, 316
  maplet file, 316
using, 310
markers
  bookmarks, 253
  displaying, 35
    for document blocks, 233
Math Apps, 26
  in help system, 38
math dictionary
  description, 39
Math Expression component, 302
Math mode, 14
shortcuts, 6
mathematical functions
list, 58
mathematics
computations, 109
teaching and learning, 155
matrices, 265
arithmetic, 123
context panel, 125
data type, 120, 121
defining, 116
efficiency, 120
filling, 121
Hermitian transpose, 124
image, 120
large, 119
multiplication, 123
operations, 125
random, 118
scalar multiplication, 124
selecting submatrices, 122
shape, 120, 121
transpose, 124
type, 120
Matrix
Browser, 118, 264
constructor, 121
data structure, 116
palette, 92, 116, 120
Matrix command, 116
max command, 78
maximize, 137
maximum, 78
Mean command, 142
Meter component, 302
Microphone component, 302
min command, 78
minimize, 137
minimum, 78
mod command, 78
mod operator, 79
modes
Document, 43
Worksheet, 43
modify
table, 238
modp command, 79
mods command, 79
modular arithmetic, 78, 79
modules, 298
MPS(X) files, 140
msolve command, 92
mul command, 294
multiplication
implied, 5
N
names, 44, 67
adding assumptions, 104
and symbols, 21
assigned, 282
assigning values to, 66
logical, 286
previously assigned, 283
protected, 67
removing assumptions, 105
reserved, 67
unassigning, 67, 105, 284
valid, 68
versus equation labels, 71
with assumptions, 105
nops command, 272
norm command, 115, 126
normal command, 276
normal form, 276
not operator, 286
numbers, 44
exact, 74
floating-point, 74
non-base 10, 78
NumberTheory[Divisors] command, 78
numer command, 271
numeric
approximation, 279
computation, 74
O
objects, 298
ODE Analyzer Assistant, 87
online help, 41
operands, 272
selecting, 294
operators, 44
functional, 265
logical, 286
relational, 286
Optimization
package description, 61
optimization, 139
efficiency, 139
plotting, 138
point-and-click interface, 138
Optimization Assistant, 138
Plotter, 138
Options dialog, 15
or operator, 286
Order environment variable, 133
ordinary differential equations
  plotting solution, 90
  solving, 87
orthogonal matrix, 127
output
  suppressing, 56

P
packages, 58
  accessing commands, 32
  definition, 31
  help, 36
  loading, 59
  top, 61
  unloading, 60
page break, 223
page headers and footers, 231
palettes, 45, 47, 61, 278
  categories, 18
  Components, 304
  favorites, 15
  Favorites, 20
  managing, 18
  Matrix, 116, 120
  overview, 15
  saving expressions for ease of reuse, 20
  Units, 51, 95
paragraph styles
  creating, 228
  description, 224
parameters, 296
parametric solutions, 84
partial derivative
  entering, 45
partial differential equations
  solving, 91
paste, 220
  examples, 39
PDEs, 91
pdsolve command, 91
pencil
  sketch pad, 247
Physics
  package description, 61
  pie chart, 143
  piecewise command, 142
  Planck constant, 98
Plot Builder
  description, 24
  Plot component, 302
  plot3d command, 267
  plots
  analyzing, 210
  pan, 210
  point probe, 210
  rotate, 210
  scale, 210
  code for color plates, 218
creating, 203
  context panel, 193
  displaying multiple plots, 202
  Interactive Plot Builder, 186
  plot command, 193
  plot3d command, 193
  plots package, 199
creating animations
  animate command, 212
  Interactive Plot Builder, 211
  plot3d{viewpoint} command, 213
customizing, 209
  context panel, 205
  Interactive Plot Builder, 204
  plot options, 208
  plot3d options, 208
customizing animations, 216
  command-line options, 216
  context panel, 216
  Interactive Plot Builder, 216
data, 211
dragging expression to add to a plot, 202
exporting, 217
functional operators, 267
gradient, 150
interactive plot with parameters, 191
line integral, 150
Live Data Plots palette, 211
ODEs
  symbolic solution, 89
optimization problem, 138
playing animations, 215
plots package
  animate command, 212
  contourplot command, 202
  display command, 203
  matrixplot command, 200
  pointplot command, 199
statistics, 143
viewing animations
  animate context bar, 215
plotting
  using the context panel, 27
point-and-click, 24
polynomial equations
  solving, 83
  numerically, 84
polynomials
algebra, 110
arithmetic, 110
coefficients, 114
collecting terms, 114
degree, 114
division, 110, 111
expanding, 111
factoring, 114
implied multiplication, 111
numeric
algebraic manipulation, 115
operations, 115
sorting, 111
pure lexicographic, 112
total degree, 112
PolynomialTools package, 115
IsSelfReciprocal command, 115
powers
entering, 5
precalculus
teaching, 146
precision, 75
prem command, 115
previously assigned, 283
primality testing, 78
primpart command, 115
print
command, 297
table, 243
printing
embedded components, 304
probability distribution, 141
proc key word, 296
procedures, 297
and assumptions, 106
calling, 296
defining, 296
displaying, 297
inputs, 296
multiple lines, 296
output, 296
using, 296
product command, 294
products
entering, 5
implied, 5
programming, 285
access to the Maple Programming Guide, 40
programs, 285
modules, 298
objects, 298
procedures, 297
prompt
input, 56
properties
testing, 105
protected names, 67
Q
QPSolve command, 140
QR factorization, 127
quadratic programs, 140
quantities with uncertainty, 101
accessing error, 102
accessing value, 102
computing with, 102
constructing, 101
element properties, 102
rounding the error, 102
scientific constants, 102
with units, 102
quick
character formatting, 221
paragraph formatting, 222
quit statement, 293
quo command, 110
quotes
double, 268
left single, 68
right single, 67, 282
unevaluation, 282
quotient
integer, 77
R
Radio Button component, 302
random
matrices, 118
variables, 141
randpoly command, 115
range
in plots, 206
operator, 122
rank, 125
rational expressions
entering, 4
read
from files, 319
RealDomain
package description, 61
recurrence relation
solving, 92
reference
equation labels, 71
names, 67
relational operators, 286
rem command, 110
remainder
  integer, 78
remove command, 294
repetition statements, 288
reserved names, 67
resources
  in help system, 38
restart command, 60, 68
resultant command, 115
return
  statement, 293
  values, 296
rhs command, 271
right single quotes, 67, 282
right-hand side, 271
RootOf structure, 83
roots
  command, 115
  of equations, 84
Rotary Gauge component, 302
row vector
  creating, 121
resolve command, 92
running
  documents, 8
  worksheets, 8
S
saving a Maple Document, 13
  as a Workbook, 13
scatter plot, 143
scientific constants, 97
  list, 98
  name, 98
  symbol, 98
  uncertainty, 100
  units, 100
  using, 98
  value, 100
  value and units, 100
Scientific Constants Assistant, 24
ScientificConstants
  package description, 61
ScientificConstants package, 98
  extensibility, 101
  objects, 99
ScientificErrorAnalysis
  package description, 61
ScientificErrorAnalysis package, 101
  extensibility, 103
  objects, 101
search
  help system, 38
sections
  in worksheet, 229
security levels
  auto-execute, 236
security tab
  options dialog, 236
select command, 294
selection
  execute, 8
selectremove command, 294
semicolon, 56, 57
seq command, 293
series, 133
  command, 133
  Taylor, 133
  type, 133
Set Search Assistant, 24
sets, 262
shape option, 120
Shortcut component, 303
show
  worksheet content, 231
show contents dialog
  using, 232
significant digits, 75
simplify command, 273, 278
slider
  embedding, 255
Slider component, 302
solutions
  assigning as expression, 86
  assigning as function, 86
  details, 91
  formal, 91
  formal power series, 91
  integers, 91
  real, 103
  series, 91
  verifying, 85
solve
  equations, 80
  for real solutions, 103
  numerically, 84
  symbolically, 82
inequations, 80
  for real solutions, 103
  symbolically, 82
integer equations, 91
linear system, 92, 127
modular integer equations, 92
ODEs, 87
PDEs, 91
recurrence relation, 92
transcendental equations, 83
solve command, 82, 263
  finding all solutions, 83
  finding parametric solutions, 84
  real solutions, 103
  solving procedures, 84
sort
  lists, 276
  polynomials, 111, 276
sort command, 111, 276
  plex option, 112
source code
  displaying, 297
spacing format, 223
Speaker component, 303
Special Functions Assistant, 25
spellcheck, 257
  American spelling, 257
  dictionary, 259
sqrfree command, 115
Standard Document Interface, xiii
  starting, 2
Standard Worksheet Interface, xiii
startup code, 8
Startup Code, 299
statements
  multiple lines, 296
Statistics
  Student package, 145
Statistics package, 143
  continuous distributions, 141
  description, 61
  discrete distributions, 141
  plots, 143
strings, 268
StringTools package, 269
Student
  package description, 61
Student Help Center, 40
Student package, 132, 145, 146
  calculus subpackages, 137
  LinearAlgebra subpackage, 128
Maplets, 145
statistics, 145
Tutors, 145
Student Practice Sheets
  Assistant, 26
student resources, 155
students
  portal for, 146
  study guides, 146
style set management, 229
subscripts
  entering, 5
  format, 221
substitute, 277
sum command, 294
superscript format, 221
Sylvester matrix, 127
symbol completion, 6
symbolic
  computation, 74
  objects, 74
symbols
  entering, 21
  names, 21
system of units, 94
  controlling, 97
systeme international (SI), 94
T
  Tab
    inserting, 62
  key, 62
Tab key, 232
table of contents
  help system, 38
tables, 264
  alignment, 241
  and Classic worksheet, 244
  appearance, 240
  borders, 240
  contents, 237
  editable, 244
  execution order, 243
  physical dimensions, 240
  printing, 243
  using, 237
  visibility of cell content, 243
Task Browser, 64
task template, 27
task templates, 64, 77, 93, 116, 128
taylor command, 133
Taylor series, 133
tcoeff command, 114
Teacher Resource Center, 40
teaching with Maple, 155
Technical Support
  access, 41
temperature conversion, 94
Text Area component, 302
  text field
    embedding, 255
Text mode, 14
text regions, 65
Thermophysical Properties Calculator Assistant, 25
tilde, 83, 105, 280
to clause, 288
excluding, 288
Toggle Button component, 302
Tolerances package, 101
Toolboxes
   Global Optimization, 137
Tools menu
   assistants, 24
   Assistants and Tutors, 64
   Tasks, 64
Torsion command, 137
total degree, 112
transparency
   of 3-D plots, 209
transpose
   matrices and vectors, 124
true, 286
Tutorials, 39
Tutors, 145, 146
   Derivatives, 146
   Differentiation Methods, 147
   Directional Derivative, 132
   Gradient, 148
   Linear System Solving, 52
   using, 25
tutors
   accessing, 25
type command, 269
types, 104, 269
   converting, 275
   series, 133
   testing, 269
   subexpressions, 270

U
unapply command, 86
unassign command, 67
unassigning names, 67, 284
uncertainty, 101
   quantities with, 101
underline format, 221
unevaluation quotes, 68, 282
union
   of sets, 262
Unit Converter Assistant, 275
units, 51, 93, 275
   adding to expressions, 51
   applying to expression, 95
   computing with, 96
   context, 94
   converting between, 94
   environment, 96
   evaluating with, 52
   in 1-D Math, 96
   inserting, 95
   overview, 93
   prefixes, 96
   system of controlling, 97
   systems of, 94
Units
   package description, 61
   Units Converter, 94
   Units Converter Assistant, 25
   Units package, 93
   environments, 96
   extensibility, 97
   UseSystem command, 97
   UsingSystem command, 97
   Units palette, 51, 95
   universal gravitational constant, 98
   until loop, 290
   until loops, 290
   unwith command, 60
URL
   adding hyperlink to, 251

V
variables, 44
variance, 102
VariationalCalculus package, 137
Vector
   constructor
      vectorfield attribute, 136
      data structure, 116
   vector fields, 136
   vector spaces
      basis, 127
   VectorCalculus
      package description, 61
   VectorCalculus package, 136
      Student version, 137
   vectors, 265
      arithmetic, 123
      column, 118
      context panel, 125
      cross product, 125
      data type, 120
      defining, 118
      efficiency, 120
      filling, 120
      large, 119
      multiplication, 123
      row, 118, 121
      scalar multiplication, 124
      selecting entries, 121
      shape, 120
transpose, 124
Video Player component, 303
View menu
  in help system, 38
  markers, 35
Volume Gauge component, 303

W
Web page
  adding hyperlink to, 251
Web site
  access to Maple help pages, 41
    Application Center, 40, 146
    MaplePrimes, 41
    Student Center, 146
    Student Help Center, 40
    Teacher Resource Center, 40
    Technical Support, 41
    Training, 40
while loops, 290
Windows
  command complete, 6
  with command, 59
Workbook Attachment
  adding hyperlink to, 252
Workbook File
  adding hyperlink to, 253
worksheet
  adding hyperlink to, 251
Worksheet Environment, 1
Worksheet Migration Assistant, 25
Worksheet mode, 43, 55
worksheets
  running, 8
write
  to files, 317

X
xor operator, 286

Z
zero recognition, 276
zip command, 295