Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 MapleNet</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Docker Container for MapleNet</td>
<td>1</td>
</tr>
<tr>
<td>2 Basics of Running MapleNet</td>
<td>3</td>
</tr>
<tr>
<td>2.1 Glossary of Variables Used in This Chapter</td>
<td>3</td>
</tr>
<tr>
<td>2.2 Loading the MapleNet Docker Image</td>
<td>3</td>
</tr>
<tr>
<td>2.3 Starting MapleNet</td>
<td>3</td>
</tr>
<tr>
<td>Starting MapleNet Using the docker run Command</td>
<td>3</td>
</tr>
<tr>
<td>Starting MapleNet Using a docker compose File</td>
<td>4</td>
</tr>
<tr>
<td>2.4 Stopping MapleNet</td>
<td>4</td>
</tr>
<tr>
<td>2.5 Removing a Docker Image</td>
<td>5</td>
</tr>
<tr>
<td>2.6 Adding Content to MapleNet</td>
<td>5</td>
</tr>
<tr>
<td>2.7 MapleNet Logging</td>
<td>5</td>
</tr>
<tr>
<td>docker log</td>
<td>5</td>
</tr>
<tr>
<td>MapleNet options</td>
<td>5</td>
</tr>
<tr>
<td>3 Environment Variable Configuration</td>
<td>7</td>
</tr>
<tr>
<td>3.1 Licensing</td>
<td>7</td>
</tr>
<tr>
<td>3.2 Directory Setup</td>
<td>7</td>
</tr>
<tr>
<td>3.3 Managing Connections</td>
<td>7</td>
</tr>
<tr>
<td>3.4 Directory Listings</td>
<td>8</td>
</tr>
<tr>
<td>3.5 Sendfile Usage</td>
<td>8</td>
</tr>
<tr>
<td>3.6 Content Delivery Network</td>
<td>8</td>
</tr>
<tr>
<td>3.7 Worksheet Template Location</td>
<td>8</td>
</tr>
<tr>
<td>3.8 Web Server Endpoints</td>
<td>9</td>
</tr>
<tr>
<td>Health Check Endpoints</td>
<td>9</td>
</tr>
<tr>
<td>3.9 CORS</td>
<td>9</td>
</tr>
<tr>
<td>3.10 SSL</td>
<td>10</td>
</tr>
<tr>
<td>3.11 Client Configuration</td>
<td>10</td>
</tr>
<tr>
<td>3.12 Managing Maple Engines</td>
<td>11</td>
</tr>
<tr>
<td>3.13 Maple Configuration</td>
<td>12</td>
</tr>
<tr>
<td>3.14 Configuring Logging</td>
<td>12</td>
</tr>
<tr>
<td>3.15 Data Limit</td>
<td>13</td>
</tr>
<tr>
<td>3.16 Compute Engine</td>
<td>13</td>
</tr>
<tr>
<td>3.17 Document Engine</td>
<td>14</td>
</tr>
<tr>
<td>4 Security Issues</td>
<td>15</td>
</tr>
<tr>
<td>4.1 Untrusted Users</td>
<td>15</td>
</tr>
<tr>
<td>4.2 Trusted Users</td>
<td>15</td>
</tr>
<tr>
<td>5 MapleNet Metrics and Monitoring</td>
<td>17</td>
</tr>
<tr>
<td>5.1 Metrics and Monitoring Tools</td>
<td>17</td>
</tr>
<tr>
<td>Health Check</td>
<td>17</td>
</tr>
<tr>
<td>Monitoring</td>
<td>18</td>
</tr>
<tr>
<td>Metrics over Prometheus</td>
<td>19</td>
</tr>
<tr>
<td>6 Example Configurations</td>
<td>23</td>
</tr>
<tr>
<td>6.1 Basic Document Hosting</td>
<td>23</td>
</tr>
<tr>
<td>Mounting as a subdirectory of /webroot</td>
<td>23</td>
</tr>
<tr>
<td>Mounting on top of /webroot</td>
<td>24</td>
</tr>
<tr>
<td>Using a Content Delivery Network for JavaScript libraries</td>
<td>24</td>
</tr>
<tr>
<td>Logging Configuration</td>
<td>25</td>
</tr>
<tr>
<td>6.2 Basic Compute Hosting</td>
<td>25</td>
</tr>
</tbody>
</table>
Overview

About MapleNet

Use MapleNet™ to share your Maple documents, calculators, and technical applications.

Maple provides the most intuitive interface available for creating web applications that rely on mathematical computations. You simply drag buttons, sliders, math input regions, and other interactive components into your Maple document to create the interface, and add the functionality behind those components using Maple's high-level, mathematically sophisticated programming language. Once completed, you simply save the Maple document on the MapleNet server to make your application available online.

MapleNet Resources

<table>
<thead>
<tr>
<th>Resource</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MapleNet Installation Guide</td>
<td>System requirements and installation instructions for MapleNet. The MapleNet Installation Guide is available in the Install.html file located either on your MapleNet installation DVD or the folder where you installed MapleNet.</td>
</tr>
<tr>
<td>MapleNet Administrator Guide</td>
<td>Instructions for using environment variables to configure the MapleNet server. Security issues are also discussed.</td>
</tr>
<tr>
<td>MapleNet Services Guide</td>
<td>Outline of MapleNet services. Information on limitations of services provided as well as a summary of MapleNet API endpoints.</td>
</tr>
<tr>
<td>MapleNet API Programming Guide</td>
<td>A detailed description of the MapleNet API with examples.</td>
</tr>
</tbody>
</table>

For additional resources, visit http://www.maplesoft.com/site_resources.

Getting Help

To request customer support or technical support, visit http://www.maplesoft.com/support.

Customer Feedback

Maplesoft welcomes your feedback. For comments related to the MapleNet product documentation, contact doc@maplesoft.com.
1 Introduction

1.1 MapleNet

MapleNet provides online viewing and execution of Maple documents and access to a Maple compute programming interface. Maple worksheets and workbooks can be viewed in web browsers and embedded components in those documents are interactive. In addition, Maple help databases can be hosted to allow web-based navigation of Maple help content. The compute endpoint allows programmatic access to the Maple computation engine. Third party applications that require complex mathematical computations can send compute requests to MapleNet via a standard HTTP POST request.

MapleNet 2020 and later versions provide a new implementation of the MapleNet feature set. It is designed to be easier to maintain and deploy, more scalable and require less resources. It uses more current web and server technologies to provide a better experience both for users and administrators. However, as this is a completely new code base, you are encouraged to contact Maplesoft with any issues that are not covered by the documentation.

1.2 Docker Container for MapleNet

The MapleNet server is intended to be deployed in the Docker container generated by the MapleNet installer. Running it requires the Docker container engine. We recommend using the latest stable release of Docker. The Docker container contains all the dependencies of the MapleNet binary. The Docker container can also be deployed to various cloud hosting environments.

For more information on where to obtain the Docker engine for your platform, installing MapleNet and running the MapleNet container see the MapleNet Installation Guide.

Note: Attempting to run MapleNet outside of the Docker container is not supported.
2 Basics of Running MapleNet

2.1 Glossary of Variables Used in This Chapter

The following variables are used in this chapter, and should be replaced with the correct values:

LICENSEFILE: The location of the MapleNet license file (on the Docker host)

HOSTPORT: The port on the host machine on which MapleNet should accept connections

IMAGETAG: The tag of the Docker image created by the installer

CONTENTDIR: The directory containing content for hosting by MapleNet (on the Docker host)

MAPLEONLINECDNURL: The URL of a Content Delivery Network hosting the MapleNet JavaScript libraries

MATHJAXCDNURL: The URL of a Content Delivery Network hosting the MathJax JavaScript package

HOSTADDRESS: Is either the ip address or machine address of the machine running the MapleNet Docker container

CONTAINERID: The container id obtained from running `docker container ls`

Additional documentation for the configuration variables used in these examples is available in Environment Variable Configuration (page 7).

2.2 Loading the MapleNet Docker Image

After you have installed MapleNet, you must load the MapleNet image into Docker.

To load the MapleNet image:

1. Open a command prompt and navigate to the MapleNet installation folder before running this command.
2. Run the following command:

 `docker load --input MapleNet-2021.1.tar`

 Note: This process could take several minutes.

Next, find the MapleNet container image tag using the command:

```
docker images.
```

You are now ready to start MapleNet.

2.3 Starting MapleNet

Starting MapleNet Using the docker run Command

To start MapleNet, run the following Docker command:

```
docker run --mount type=bind,source=$LICENSEFILE,target=/maple/license/license.dat,readonly --publish $HOSTPORT:8080 maplesoft/maplenet:$IMAGETAG
```

Note: If `$LICENSEFILE` contains spaces, then you must enclose the path in quotation marks. For example, source="C:\Program Files\MapleNet\2021\license.dat".
To test if MapleNet is running properly navigate to http://$HOSTADDRESS:8080 in your browser.

You should see a page displayed with a link to a Maple demo worksheet.

For more information on using the `docker run` command, see https://docs.docker.com/engine/reference/command-line/run/.

Starting MapleNet Using a docker compose File

Alternatively, you can specify MapleNet options using a docker compose (YAML) file:

```yaml
version: 3.7

services:
  maplenet:
    image: maplesoft/maplenet:$IMAGETAG
    ports:
    - "$HOSTPORT:8080"
    volumes:
    - type: "bind"
      source: "$LICENSEFILE"
      target: "/maple/license/license.dat"
      read_only: true
```

The command used to deploy MapleNet is

docker stack deploy maplenet --compose-file <path to above file>

To test if MapleNet is running properly navigate to http://$HOSTADDRESS:8080 in your browser.

You should see a page displayed with a link to a Maple demo worksheet.

For more information on the `docker stack` command, see https://docs.docker.com/engine/reference/command-line/stack/.

For more information on docker compose files, see https://docs.docker.com/compose/gettingstarted/.

Replacing the Landing Page

The MapleNet container, by default, includes a landing page, `index.html`. Located at the bottom of the MapleNet file directory. To replace this page, mount a directory from your host machine, with the replacement landing page (called `index.html`) onto your MapleNet Docker container, mapping it to the directory containing your current `index.html` file. For more information on mounting host machine directories into the MapleNet Docker container, see Basic Document Hosting (page 23).

2.4 Stopping MapleNet

To stop MapleNet:

1. At the prompt, to list your running containers, enter:

 `docker container ls`
Find the running MapleNet container ID in the list.

2. Next, you must stop the MapleNet Docker container. To do this, enter:

```bash
docker container stop $CONTAINERID
```

Where `$CONTAINERID` is the container id obtained from step 1.

For more information on the docker stop command see https://docs.docker.com/engine/reference/commandline/stop/

2.5 Removing a Docker Image

At some point, you may want to remove some docker images from your machine.

To remove a Docker image, enter:

```bash
docker image rm $IMAGETAG
```

For more information on the `docker image` command, see:

https://docs.docker.com/engine/reference/commandline/image/

2.6 Adding Content to MapleNet

MapleNet is capable of rendering both classic and standard Maple worksheets, and Maple workbooks, as well as MapleSim models, for display in a web browser. This is the easiest way to create web content for use with MapleNet. Placing content in the correct location on MapleNet makes the content available to users. Without an installed copy of Maple, users can interact with a posted worksheet using their web browser, and even perform new computations.

For instructions and examples on how to configure MapleNet to host Maple documents, see the Basic Document Hosting (page 23).

2.7 MapleNet Logging

MapleNet is a server process and as such it generates informative logs by default. It is important to understand how MapleNet logging working so its logs can be properly maintained and used.

```bash
docker log
```

MapleNet is deployed as a Docker container therefore its logs are captured by docker. You can access these logs by using the `docker logs` command. Docker has extensive logging configuration options for how it maintains its logs and for sending docker logs to other logging systems. You can also add command line arguments to the `docker run` command to configure how docker maintains MapleNet's logs. See Logging Configuration (page 25) for a basic log configuration example. For more information about docker's logging options, see

docker log: https://docs.docker.com/engine/reference/commandline/logs/
docker log driver configuration: https://docs.docker.com/config/containers/logging/configure/

MapleNet options

MapleNet has various options for configuring the generated logs. All these options are documented in the Configuration section. The most important option is the `MAPLENET_LOGGING_LEVEL` option which controls how verbose MapleNet's logging is. This option accepts the following values (from most verbose to quietest): `trace`, `debug`, `info`, `warning`, `error`, and `fatal`. The default logging level is `info`. This level is chosen to provide a balance of informative logging without being excessive. Increase the logging to `debug` or `trace` will provide additional logging,
however these additional log are intended for developers more than users. Decreasing the logging levels will reduce
the amount of information which may seem desirable, however should something go wrong, the reduced logging means
less information for determining what happened. The default level (info) is the suggested level for a normal MapleNet
deployment. If log storage is a concern, it is better to configure the docker log driver with log rotation than to decrease
the logging level of MapleNet.
3 Environment Variable Configuration

As MapleNet is deployed as a Docker container, configuration is handled by setting environment variables within the Docker container. On the Docker command line (`docker run`) you can set an environment variable by using the `-e` command line argument. They can also be specified in a Docker stack YAML file. Any variables that are used to specify files or directories are for locations are **within** the container. See the *Adding Maple Documents to MapleNet* section of this guide for information on adding content to the Docker container.

The environment variables all start with the `MAPLENET_` prefix.

3.1 Licensing

<table>
<thead>
<tr>
<th>Environment Variable</th>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAPLENET_LICENSE</td>
<td>file</td>
<td>This variable specifies which license file MapleNet uses. The license file must exist within the container at the time that MapleNet starts.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>It must be added to the container or mounted into the container.</td>
</tr>
</tbody>
</table>

3.2 Directory Setup

<table>
<thead>
<tr>
<th>Environment Variable</th>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAPLENET_WEBSERVER_DOCUMENTROOT</td>
<td>directory</td>
<td>This variable specifies which directory MapleNet uses as its document root, the base directory of the content hosted by MapleNet. The default value of document root is <code>/webroot</code>. To make content available to users, mount a directory containing the content under the container's <code>/webroot</code> directory.</td>
</tr>
<tr>
<td>MAPLENET_WEBSERVER_CACHEDIR</td>
<td>directory</td>
<td>This variable specifies the directory where MapleNet stores cache files. The default value of this variable is <code>/webroot/maplenet/cache</code>. Cache directories contain temporary files required for rendering documents. As the remote clients need access to files in the cache directories, the cache directories must be located under document root.</td>
</tr>
</tbody>
</table>

3.3 Managing Connections

<table>
<thead>
<tr>
<th>Environment Variable</th>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAPLENET_WEBSERVER_REQUESTTIMEOUTMS</td>
<td>timeout in milliseconds</td>
<td>This variable specifies how long, in milliseconds, MapleNet waits before timing out connections. The default value of this variable is 30000 (30 seconds). Documents that are opened by users will periodically connect to MapleNet to make sure those connections are kept open. This timeout is mostly for cases where clients disconnect without properly closing their connection.</td>
</tr>
<tr>
<td>MAPLENET_WEBSERVER_NUMTHREADS</td>
<td>integer</td>
<td>This variable specifies the maximum number of threads MapleNet can use for accepting connections. The default value is 1024. These threads are used to handle user connections. If all of these threads are used, MapleNet will not be able to accept new connections.</td>
</tr>
<tr>
<td>MAPLENET_WEBSERVER_NOTFOUNDFILE</td>
<td>file</td>
<td>This variable specifies a file to be sent to the user when a requested file cannot be found. The default is the empty string, which causes MapleNet to reply with a very simple 404 message.</td>
</tr>
<tr>
<td>MAPLENET_WEBSERVER_PORT</td>
<td>port number</td>
<td>This variable specifies the port MapleNet listens on for new connections. The default value of</td>
</tr>
</tbody>
</table>

7
3.4 Directory Listings

<table>
<thead>
<tr>
<th>Environment Variable</th>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAPLENET_WEBSERVER_ENABLEDIRECTORYLISTING</td>
<td>boolean</td>
<td>This variable specifies whether MapleNet permits directory listings. The default value of this variable is false. Directory listings allow the user to navigate document root like a file system.</td>
</tr>
</tbody>
</table>

3.5 Sendfile Usage

<table>
<thead>
<tr>
<th>Environment Variable</th>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAPLENET_WEBSERVER_ENABLESENDFILE</td>
<td>boolean</td>
<td>This variable specifies whether MapleNet uses the sendfile command to optimize file transfers. By default this option is enabled. In some host configurations (certain networked or virtualized file systems) using sendfile can lead to data corruption in the transferred file.</td>
</tr>
</tbody>
</table>

3.6 Content Delivery Network

<table>
<thead>
<tr>
<th>Environment Variable</th>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAPLENET_WEBSERVER_MAPLECLOUDCDN</td>
<td>URL</td>
<td>This variable specifies the base URL to use for fetching the MapleNet JavaScript library. The default value for this variable is "/mapleonline", meaning the library will be loaded from the mapleonline subdirectory of MapleNet's document root. This can be used to place the library (mapleonline.nocache.js) on to a Content Delivery Network (CDN). mapleonline.nocache.js will be appended to the given URL.</td>
</tr>
</tbody>
</table>

3.7 Worksheet Template Location

<table>
<thead>
<tr>
<th>Environment Variable</th>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAPLENET_WEBSERVER_MAPLEWORKSHEET</td>
<td>filename</td>
<td>This variable specifies the file to use as the Worksheet HTML template page. By default, this file is /maple/data/MapleWorksheet.html. Some users may want to use a custom version of this file.</td>
</tr>
</tbody>
</table>

3.8 Web Server Endpoints

<table>
<thead>
<tr>
<th>Environment Variable</th>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAPLENET_WEBSERVER_ENDPOINTS_COMPUTE</td>
<td>boolean</td>
<td>This variable specifies whether MapleNet enables its compute endpoint. The default value of this variable is true. The compute endpoint allows for a user to submit a Maple computation request to the server and receive the result as a reply.</td>
</tr>
<tr>
<td>MAPLENET_WEBSERVER_ENDPOINTS_DOCUMENT</td>
<td>boolean</td>
<td>This variable specifies whether MapleNet enables its document endpoint. The default value of this variable is true. The document endpoint allows</td>
</tr>
</tbody>
</table>
This variable specifies whether MapleNet permits users to download the Maple documents hosted by MapleNet. The default value of this variable is false. If set to true, adding the download URL parameter to the URL of a Maple document causes it to be downloaded instead of displayed.

This variable specifies whether MapleNet enables its help endpoints. The default value of this variable is true. The help endpoints allow users to display worksheets taken from a Maple help database.

This variable specifies whether MapleNet enables the upload endpoint. The default value is false. Enabling the upload endpoint allow users to upload content to MapleNet using the upload.html page.

<table>
<thead>
<tr>
<th>Health Check Endpoints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command Line Parameter</td>
</tr>
<tr>
<td>MAPLENET_WEBSERVER_ENDPOINTS_HEALTHCHECK_LICENSECHECK</td>
</tr>
<tr>
<td>MAPLENET_WEBSERVER_ENDPOINTS_HEALTHCHECK_POOLDOCUMENT</td>
</tr>
<tr>
<td>MAPLENET_WEBSERVER_ENDPOINTS_HEALTHCHECK_POOLCOMPUTE</td>
</tr>
<tr>
<td>MAPLENET_WEBSERVER_ENDPOINTS_HEALTHCHECK_POOLFALLBACK</td>
</tr>
<tr>
<td>MAPLENET_WEBSERVER_ENDPOINTS_HEALTHCHECKKERNELTIMEOUT</td>
</tr>
<tr>
<td>MAPLENET_WEBSERVER_ENDPOINTS_HEALTHCHECKQUEUETIMEOUT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3.9 CORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environment Variable</td>
</tr>
<tr>
<td>MAPLENET_WEBSERVER_CORS_ALLOWORIGIN</td>
</tr>
<tr>
<td>MAPLENET_WEBSERVER_CORS_ALLOWMETHODS</td>
</tr>
<tr>
<td>Environment Variable</td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td>MAPLENET_WEBSERVER_CORS_ALLOWHEADERS</td>
</tr>
</tbody>
</table>

3.10 SSL

<table>
<thead>
<tr>
<th>Environment Variable</th>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAPLENET_WEBSERVER_SSL_VERIFYPEER</td>
<td>boolean</td>
<td>This variable specifies that MapleNet will require that connecting clients have a valid certificate. The default value of this variable is false. This allows the server to verify that any connecting client has a certificate that is signed by certificate authority from the server's trusted certificate authorities.</td>
</tr>
<tr>
<td>MAPLENET_WEBSERVER_SSL_CAPATH</td>
<td>directory</td>
<td>This variable specifies a directory MapleNet will use as its certificate authority (CA) path. The default value of this variable is the empty string, meaning no CA path will be added. This directory will be searched for CA certificates in PEM format.</td>
</tr>
<tr>
<td>MAPLENET_WEBSERVER_SSL_CAFILE</td>
<td>file</td>
<td>This variable specifies a file MapleNet will use as its certificate authority (CA) file. The default value for this variable is the empty string, meaning no CA file will be added. A CA file is a file containing CA certificates in PEM format.</td>
</tr>
<tr>
<td>MAPLENET_WEBSERVER_SSL_VERIFYDEPTH</td>
<td>integer</td>
<td>This variable specifies the maximum depth of a certificate authority chain that MapleNet will accept. The default value for this variable is 9.</td>
</tr>
<tr>
<td>MAPLENET_WEBSERVER_SSL_DEFAULTVERIFYPATHS</td>
<td>boolean</td>
<td>This variable specifies whether MapleNet uses default values for CAFILE and CAPATH. The default is true. With this set MapleNet server will use default, OS supplied, certificates.</td>
</tr>
<tr>
<td>MAPLENET_WEBSERVER_SSL_CIPHERLIST</td>
<td>comma separated list or ALL</td>
<td>This variable specifies which ciphers MapleNet should present to clients for use with SSL. The default value for this variable is ALL, meaning all available ciphers should be presented.</td>
</tr>
<tr>
<td>MAPLENET_WEBSERVER_SSL_PROTOCOLVERSION</td>
<td>integer</td>
<td>This variable specifies the minimal version of SSL/TLS MapleNet will accept for connections. The default value for this variable is 0.</td>
</tr>
<tr>
<td>MAPLENET_WEBSERVER_SSL_SHORTTRUST</td>
<td>boolean</td>
<td>This variable specifies whether MapleNet checks for new certificates while it is running. The default value for this variable is false. When set to true MapleNet will check for new certificates added to the CAFILE or CAPATH.</td>
</tr>
</tbody>
</table>

3.11 Client Configuration

<table>
<thead>
<tr>
<th>Environment Variable</th>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| MAPLENET_WEBCLIENT_CONFIGURATION | key=value | This variable is used to set client configuration values in MapleNet. The default value for this variable is the empty string (no values set). These key, value pairs are placed into a JavaScript map in the MapleWorksheet.html.
3.12 Managing Maple Engines

<table>
<thead>
<tr>
<th>Environment Variable</th>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAPLENET_POOL_MAXENGINES</td>
<td>integer</td>
<td>This variable sets the maximum number of Maple engines that MapleNet will start. The default value for this variable is 0, meaning no limit. This value is different than MAPLENET_POOL_MAXRUNNINGENGINES, as this limits the total number of engines that can be opened, not the number of running engines.</td>
</tr>
<tr>
<td>MAPLENET_POOL_MAXFALLBACKENGINES</td>
<td>integer</td>
<td>This variable sets the maximum number of Maple engines that MapleNet will start for image plot generation. If the value is negative, the fallback engine pool is disabled. If 0, then a default value is calculated (typically set to the number of CPUs in the system).</td>
</tr>
<tr>
<td>Environment Variable</td>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>MAPLENET_POOL_COMPUTATION_TIMELIMIT</td>
<td>seconds</td>
<td>This variable sets the timelimit for compute requests (as opposed to document computations). The default value is 360 seconds. Compute requests that run for longer than this will be stopped by MapleNet and an error will be returned.</td>
</tr>
<tr>
<td>MAPLENET_POOL_DOCUMENT_COMPUTATION_TIMELIMIT</td>
<td>seconds</td>
<td>This variable sets the timelimit for computations related to an open document (worksheet/workbook). The default value is 1200 seconds. Computations that last longer than this will be stopped by MapleNet and an error will be returned.</td>
</tr>
<tr>
<td>MAPLENET_POOL_QUEUE_TIMELIMIT</td>
<td>seconds</td>
<td>This variable sets the timelimit for requests (computation or document) that are not able to run because MapleNet is not allowed to start a running engine. The default value for this variable is 60 seconds. An engine may not be available to run because of limits on the number of running engines. For example license restrictions or MAPLENET_POOL_MAXRUNNINGENGINES. If a request waits longer than this limit, the request will be cancelled and an error will be returned.</td>
</tr>
<tr>
<td>MAPLENET_POOL_MAXRUNNINGENGINES</td>
<td>integer</td>
<td>This variable sets the maximum number of running engines that MapleNet will allow. It defaults to 0, which means the maximum allowed by the license. It is an error to set this value greater than the license allows.</td>
</tr>
</tbody>
</table>

3.13 Maple Configuration

<table>
<thead>
<tr>
<th>Environment Variable</th>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAPLENET_MAPLE_LIBRARY</td>
<td>path</td>
<td>This variable specifies a value to set for the Maple libname variable. The default is the empty string, which uses the default value for Maple's libname. When specifying more than one path, use a comma (,) as a separator. When setting this parameter, only the directories listed will be used. If Maple's library (maple.mla) is not present in the list, MapleNet will not function properly.</td>
</tr>
<tr>
<td>MAPLENET_MAPLE_MSERVER</td>
<td>filename</td>
<td>This variable specifies the file to be executed when starting a Maple engine. The default value for this variable is the empty string. The default value uses the normal Maple engine binary.</td>
</tr>
</tbody>
</table>

3.14 Configuring Logging

<table>
<thead>
<tr>
<th>Environment Variable</th>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAPLENET_LOGGING_DISABLE</td>
<td>boolean</td>
<td>This variable specifies if logging is disabled in MapleNet. The default value is false, meaning log messages will be generated.</td>
</tr>
<tr>
<td>MAPLENET_LOGGING_FILENAME</td>
<td>filename</td>
<td>This variable specifies a file that MapleNet's logs should be written to. The default value is the empty string. This default causes MapleNet to log to the console. Setting this value will capture the logs in a file within the Docker container. This is probably not what you want. Instead capture the output of Docker or use the docker logs command.</td>
</tr>
<tr>
<td>MAPLENET_LOGGING_FLUSH</td>
<td>boolean</td>
<td>This variable specifies if MapleNet should flush its logs whenever a logging message is produced. The default is false. Flushing causes log messages to not get buffered. This can</td>
</tr>
</tbody>
</table>
reduce performance of MapleNet, but reduces the likelihood of a log message being lost if MapleNet should exit unexpectedly.

<table>
<thead>
<tr>
<th>Environment Variable</th>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAPLENET_LOGGING_LEVEL</td>
<td>log level</td>
<td>This variable specifies the logging level that MapleNet uses. There are 6 logging levels, from least to most output: fatal, error, warning, info, debug and trace. The default value is info, which generates sufficient logging for normal operations, without being excessive. Levels below info (debug and trace) are intended for debugging and generate too much output for normal use.</td>
</tr>
<tr>
<td>MAPLENET_LOGGING_SYNCHRONOUS</td>
<td>boolean</td>
<td>This variable whether MapleNet uses synchronous logging. The default is false. Synchronous logging forces the log messages to be generated directly by the caller, not send to another thread for output. This means the message is output more directly, reducing the likelihood the message will be lost if MapleNet exits unexpectedly.</td>
</tr>
</tbody>
</table>

3.15 Data Limit

<table>
<thead>
<tr>
<th>Environment Variable</th>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAPLENET_ENGINE_JAVADATALIMIT</td>
<td>mebibytes</td>
<td>This variable specifies a data limit for Java operations used by MapleNet. The default is 2048 MiB. The Maple engine can utilize a Java virtual machine (JVM) for certain operations. This variable limits the maximum amount of memory the JVM is allowed to use.</td>
</tr>
</tbody>
</table>

3.16 Compute Engine

<table>
<thead>
<tr>
<th>Environment Variable</th>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAPLENET_COMPUTEENGINE_COMMANDLINE</td>
<td>string</td>
<td>This variable specifies extra command line arguments to use when starting a Maple engine for the compute endpoint. The default value for this variable is the empty string.</td>
</tr>
<tr>
<td>MAPLENET_COMPUTEENGINE_DISABLESECURITY</td>
<td>boolean</td>
<td>This variable specifies whether MapleNet disables the security setting when starting a Maple engine for the compute endpoint. The default value for this variable is false. The Maple engine has security settings that restrict access to the operating system. Disabling the security setting will disable these restrictions, allowing Maple access to the entire system.</td>
</tr>
<tr>
<td>MAPLENET_COMPUTEENGINE_CPULIMIT</td>
<td>integer</td>
<td>This variable specifies whether MapleNet starts the Maple engines for the compute endpoint with a CPU limit. The default value for this variable is 0, which means no limit is given. Passing a CPU limit to the Maple engine halts the Maple engine after a the given number of CPU seconds. When setting a CPU limit, it is important to remember that compute engines are re-used a limited number of times and the CPU limit applies to the lifetime of the compute engine.</td>
</tr>
</tbody>
</table>
| MAPLENET_COMPUTEENGINE_DATALIMIT | integer | This variable specifies whether MapleNet starts the Maple engines for the compute endpoint with a data limit. The default value for this variable is 0, which means no limit is given. Passing a data limit to the Maple engine limits the maximum amount of memory a Maple engine can access. If this limit is exceeded the Maple engine will shutdown. Compute engines are restarted between each computation, so each
3.17 Document Engine

<table>
<thead>
<tr>
<th>Environment Variable</th>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAPLENET_DOCUMENTENGINE_COMMANDLINE</td>
<td>string</td>
<td>This variable specifies extra command line arguments to use when starting a Maple engine for a document. The default value for this variable is the empty string.</td>
</tr>
<tr>
<td>MAPLENET_DOCUMENTENGINE_DISABLESECURITY</td>
<td>boolean</td>
<td>This variable specifies whether the MapleNet security setting is disabled when starting a Maple engine for a document. The default value for this variable is false. The Maple engine has security settings that restrict access to the operating system. Disabling the security setting will disable these restrictions, allowing Maple access to the entire system.</td>
</tr>
<tr>
<td>MAPLENET_DOCUMENTENGINE_CPULIMIT</td>
<td>integer</td>
<td>This variable specifies whether MapleNet starts the Maple engines for documents with a CPU limit. The default value for this variable is 0, which means no limit is given. Passing a CPU limit to the Maple engine halts the Maple engine after a certain number of CPU seconds. Document engines persist for the lifetime of the document, are not re-used. Thus this variable limits the total amount of CPU time a document session can consume.</td>
</tr>
<tr>
<td>MAPLENET_DOCUMENTENGINE_DATALIMIT</td>
<td>integer</td>
<td>This variable specifies whether MapleNet starts the Maple engines for the compute endpoint with a data limit. The default value for this variable is 0, which means no limit is given. Passing a data limit to the Maple engine limits the maximum amount of memory a Maple engine can access. If this limit is exceeded the Maple engine will shutdown. Document engines persist for the lifetime of the document, are not re-used. Thus this variable limits the total amount of memory a document session can consume.</td>
</tr>
</tbody>
</table>
4 Security Issues

MapleNet permits remote users to execute Maple code on a server. Maple is a full featured programming language, including tools for accessing the file system, networking and external calling to other programming language, such as Java, Python and C. It is difficult to restrict what users can access. Deploying MapleNet securely requires understanding the environment in which it is intended to be used. Do you trust your users, or is there a risk of malicious access? Are there users whose content should be kept private from others? This section will describe the security risks of deploying MapleNet server and best practices for limited harm.

4.1 Untrusted Users

The risk of allowing untrusted users to access MapleNet is that someone malicious might attempt to cause harm or exploit the system for their own purposes. It is difficult to secure MapleNet against malicious users so we advise against allowing untrusted users to access a MapleNet installation. The biggest risk is allowing an untrusted user to execute their own code. If you intend to deploy MapleNet where it would be accessible to untrusted users, we suggest the following procedures.

1. Configure MapleNet behind a load balancer with SSL offload.
2. Disable the compute endpoint. The compute endpoint explicitly allows users to run arbitrary Maple code on the server.
3. Disable the help endpoints. The help pages may contain examples that could be exploited.
4. Disable uploading. Another route to executing malicious code would be to embed it in a worksheet and upload it.
5. Disable directory listing. This makes it harder for malicious users to find content on the site.
6. Double-check your content. Maple worksheets can contain embedded components. These components can accept user input and cause Maple code to be evaluated. It is possible to create worksheets that execute Maple code entered into a component (a text area or math container, for example). Do not allow such worksheets to be hosted.
7. Make sure you have limited the CPU and data limits for your document engines. This makes denial of service attacks via Maple code more difficult.
8. Assume the content that users view is available to other users. With all the steps above implemented, it is very hard for one user to "snoop" on another user's content, however we suggest that you do not use MapleNet to display content that you would consider private when untrusted users have access to MapleNet.

4.2 Trusted Users

In an environment when you trust your users to not be malicious, MapleNet features can be enabled as you see fit. However there are still some issues to consider. Turning off unnecessary features is still a good idea. A curious user might experiment with the compute features of MapleNet without realizing it could negatively effect the performance of documents. With directory listings enabled, it is possible to locate temporary files created by on going computations and open documents (the contents of the cache directory). These locations can also be determined by viewing the HTTP requests made by a open document. These requests are encrypted when using SSL, but are sent in the clear when SSL is not enabled. This may be a concern as it allows one user to see some of the content generated by another user's document. If this is a concern, using SSL and disabling directory listings makes it significantly harder to discover those files. If you need to be certain that no data leakage can occur between groups of users, we suggest running multiple instances of MapleNet that are only accessible by users of the particular security levels.
5 MapleNet Metrics and Monitoring

5.1 Metrics and Monitoring Tools

MapleNet provides some secondary features and server monitoring tools. These are described below. The term endpoint refers to a URL that MapleNet provides that can be accessed using standard HTTP requests. When these endpoints are accessed MapleNet replies with an HTTP response containing the requested information. There is no file on the server corresponding to these replies, they are generated by MapleNet itself.

Health Check

The Health Check endpoint is `/healthcheck/`. When an HTTP GET accesses this endpoint MapleNet will reply with an HTTP response with a status code of 200 and with no content. This is intended to be used by monitoring services to verify that MapleNet is available. A successful reply from the health check endpoint verifies that MapleNet is able to accept new connections, but it does not verify that MapleNet is able to execute commands or open a new document.

The endpoint returns a json object of the form:

```json
{
  "check": "Foo",
  "level": "WARNING",
  "message": "Lorem ipsum dolor sit amet, consectetur adipiscing elit"
}
```

Where `check` is the name of the check that generated the message and `check` is one of:

- `PoolHealthCheck($poolName)`, where `$poolName` is one of `Document`, `Compute`, or `Fallback`
- `LicenseCheck`

The level field is one of `OK`, `WARNING`, or `ERROR`.

It's important to note that `messages` is supposed to be an array.

The message is an arbitrary string providing feedback for the MapleNet administrator.

A successful health check won't produce any messages. A health check that is not successful will produce either a `WARNING` or an `ERROR` message, which will appear as an entry in the messages.

The most severe level of all the messages is put in the status field. If there are no messages, the status field is set to `OK`.

Status is one of `OK`, `WARNING`, or `ERROR`.

The http return code for a GET to `/healthcheck/` will be 200 if the status is `OK` or `WARNING`. An http return code of 500 is returned if the status is `ERROR`.

When the healthcheck endpoint is requested, the health checks that are exercised are:

- a license check
- exercising each kernel pool
- When each kernel pool is exercised, `2+3` is executed on each kernel. An error is returned if a kernel could not be retrieved from the pool or if the returned value is incorrect (in other words, if the answer is not 5). This could happen if the pools are already full and no kernels are released.
<table>
<thead>
<tr>
<th>Command Line Parameter</th>
<th>Domain</th>
<th>Default</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>WebServer.Endpoints.HealthCheck.LicenseCheck</td>
<td>boolean</td>
<td>true</td>
<td>Set to false to disable the license check, true to enable it</td>
</tr>
<tr>
<td>WebServer.Endpoints.HealthCheck.Pool.Compute</td>
<td>boolean</td>
<td>true</td>
<td>Set to true to exercise the compute kernel pool, false to disable it</td>
</tr>
<tr>
<td>WebServer.Endpoints.HealthCheck.Pool.Fallback</td>
<td>boolean</td>
<td>true</td>
<td>Set to true to exercise the fallback kernel pool, false to disable it</td>
</tr>
<tr>
<td>WebServer.Endpoints.HealthCheck.KernelTimeout</td>
<td>positive integers</td>
<td>10</td>
<td>The amount of time (in seconds) the check will wait for a kernel to return the results of the test command</td>
</tr>
<tr>
<td>WebServer.Endpoints.HealthCheck.QueueTimeout</td>
<td>positive integers</td>
<td>10</td>
<td>The amount of time (in seconds) the check will wait for a kernel to be allocated from a pool</td>
</tr>
</tbody>
</table>

Monitoring

The monitoring endpoint is `/monitoring/`. When an HTTP GET accesses this endpoint, a snapshot of the internal state of MapleNet as a string of JSON is returned. The information displayed can be divided into two types, static values and dynamic values. The static values are values defined at MapleNet start up time, for example configuration values and version information. Dynamic values are values that change as clients connect to MapleNet, for example connected clients and open documents. If you want to view the monitoring data in a web browser, plugins are available for pretty printing JSON. This makes the monitoring output more human readable.

<table>
<thead>
<tr>
<th>Value</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limiter</td>
<td>The limiter describes the number of running Maple engines. A running Maple engine corresponds to the restrictions imposed by the license. A waitingEngine is an engine that can't run because the maximum number of running engines has been reached.</td>
</tr>
<tr>
<td>engineManager</td>
<td>The engineManager provides a detailed breakdown of the Maple engines in use by MapleNet. Document engines are engines connections to open documents. Compute engines are used for the compute endpoint. As compute engines are pooled and reused, there is list of pooled compute engines.</td>
</tr>
<tr>
<td>documentManager</td>
<td>The documentManager section describes the documents currently opened by clients. Each open document lists the following fields: id a unique id assigned to that copy of the open document, the name of the document, the working directory of the document and the source of the document. The working directory is where the content created for displaying the document is kept.</td>
</tr>
<tr>
<td>clients</td>
<td>The clients section describes the document clients currently connected to MapleNet Server. Each client lists the IP address from which they are connected and the id of the document that they have opened.</td>
</tr>
<tr>
<td>helpDatabases</td>
<td>The helpDatabases section describes the help database found for use with the help endpoints.</td>
</tr>
<tr>
<td>Version</td>
<td>The Version section describes the versions of the various pieces used by MapleNet. This include the MapleNet and Maple build dates, release ids and build ids. These values are useful when reporting bugs or contacting Maplesoft Support.</td>
</tr>
<tr>
<td>license</td>
<td>The license section describes the license being used.</td>
</tr>
<tr>
<td>Start Up Configuration</td>
<td>The Start Up Configuration section describes the values applied by the MapleNet configuration. This combines the options set with configuration variables and default values.</td>
</tr>
</tbody>
</table>
Metrics over Prometheus

Metric Group: Web Endpoint Handling

<table>
<thead>
<tr>
<th>Metric</th>
<th>Metric Type</th>
<th>Domain</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>request_latency_seconds</td>
<td>Histogram</td>
<td>Non-negative double</td>
<td>A histogram of HTTP request handling latencies. Each datapoint is given two labels: the HTTP request method, and the handler. The HTTP methods are: • get • post • put • delete • head • options • patch</td>
</tr>
</tbody>
</table>

The handlers are:

<table>
<thead>
<tr>
<th>Handler Name</th>
<th>Expected HTTP Method</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>worksheet</td>
<td>get</td>
<td>The handler responds to requests to *.mw and *.maple</td>
</tr>
<tr>
<td>html_file</td>
<td>get</td>
<td>Performs substitutions in html files, namely ${MAPLE_CLOUD_CDN} to the maple cloud cdn value provide in the docker configuration.</td>
</tr>
<tr>
<td>soap</td>
<td>get</td>
<td>Responds to SOAP requests at /services/MapleService</td>
</tr>
<tr>
<td>mcs</td>
<td>post</td>
<td>Responds to /mnserver/mcs protobuf requests.</td>
</tr>
<tr>
<td>compute</td>
<td>post</td>
<td>Responds to /mnserver/compute</td>
</tr>
<tr>
<td>attachment</td>
<td>get</td>
<td>Responds to /attachment/</td>
</tr>
<tr>
<td>version</td>
<td>get</td>
<td>Responds to /maplenet/mnstatus/version.jsp</td>
</tr>
<tr>
<td>upload</td>
<td>post</td>
<td>Responds to /upload</td>
</tr>
<tr>
<td>monitoring</td>
<td>get, post</td>
<td>Responds to /monitoring/</td>
</tr>
<tr>
<td>healthcheck</td>
<td>get</td>
<td>Responds to /healthcheck/</td>
</tr>
</tbody>
</table>

Metric Group: Webserver Monitoring

<table>
<thead>
<tr>
<th>Metric</th>
<th>Metric Type</th>
<th>Domain</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>active_connections</td>
<td>Gauge</td>
<td>Non-negative integer</td>
<td>The current number of connections</td>
</tr>
<tr>
<td>Metric</td>
<td>Metric Type</td>
<td>Domain</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------------</td>
<td>-------------</td>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>max_active_connections</td>
<td>Counter</td>
<td>Non-negative, monotonically increasing integer</td>
<td>High watermark for the maximum number of simultaneous connections.</td>
</tr>
<tr>
<td>connections_total</td>
<td>Counter</td>
<td>Non-negative, monotonically increasing integer</td>
<td>The total number of connections that the webserver has handled.</td>
</tr>
<tr>
<td>requests_total</td>
<td>Counter</td>
<td>Non-negative, monotonically increasing integer</td>
<td>The total number of requests that the webserver has handled.</td>
</tr>
<tr>
<td>data_received_bytes_total</td>
<td>Counter</td>
<td>Non-negative, increasing integer</td>
<td>The total number of bytes the webserver has received.</td>
</tr>
<tr>
<td>data_sent_bytes_total</td>
<td>Counter</td>
<td>Non-negative, increasing integer</td>
<td>The total number of bytes the webserver has sent.</td>
</tr>
</tbody>
</table>

Metric Group: Prometheus Webserver Monitoring

<table>
<thead>
<tr>
<th>Metric</th>
<th>Metric Type</th>
<th>Domain</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>exposer_transferred_bytes_total</td>
<td>Counter</td>
<td>Non-negative, increasing integer</td>
<td>The number of bytes the prometheus webserver has transmitted on the /metrics page</td>
</tr>
<tr>
<td>exposer_scrapes_total</td>
<td>Counter</td>
<td>Non-negative, monotonically increasing integer</td>
<td>The number of times the /metrics page has been generated</td>
</tr>
<tr>
<td>exposer_request_latencies</td>
<td>Summary</td>
<td>Non-negative float</td>
<td>The amount of time it takes to generate the response to the /metrics page</td>
</tr>
</tbody>
</table>

Metric Group: Kernel Pool Monitoring

<table>
<thead>
<tr>
<th>Metric</th>
<th>Metric Type</th>
<th>Domain</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>engines</td>
<td>Gauge</td>
<td>Non-negative integer</td>
<td>The number of engines running. Two labels on this statistic are "pool", which can be "document", "compute", or "fallback". And "state", which can be "idle", or "running". Note: MapleNet does not pool document kernels, therefore there will never be a metric with both pool=document and state=idle.</td>
</tr>
<tr>
<td>promised_engines</td>
<td>Gauge</td>
<td>Non-negative integer</td>
<td>Note: This does not distinguish between waiting document, compute, or fallback kernels.</td>
</tr>
</tbody>
</table>

Metric Group: Protobuf Messages Monitoring

<table>
<thead>
<tr>
<th>Metric</th>
<th>Metric Type</th>
<th>Domain</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>workbook_handler_latency_seconds</td>
<td>Summary</td>
<td>Non-negative float</td>
<td>Records the amount of time it takes to handle each protobuf message received on the websocket. There is a unique label for each type of protobuf message. The server does not have</td>
</tr>
</tbody>
</table>
The reported messages are:

<table>
<thead>
<tr>
<th>Message Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WORKSHEET_RENDER_COMPLETE</td>
<td>Sent by the client when it has fully rendered the page.</td>
</tr>
<tr>
<td>UPDATE_IMAGE</td>
<td>Sets the content of an image from a specified file</td>
</tr>
<tr>
<td>UPDATE_CONTENTS</td>
<td>Updates the string contents of a model</td>
</tr>
<tr>
<td>SET_MODEL</td>
<td>Sets and saves the content for a model</td>
</tr>
<tr>
<td>SEND_MODEL_UPDATE</td>
<td>Sends a model update from the server to the client</td>
</tr>
<tr>
<td>QUERY_MODEL</td>
<td>Returns the value of a specific component (optionally including subcomponents) on a page</td>
</tr>
<tr>
<td>QUERY_CONTENTS</td>
<td>Returns a model's content for a specific model id</td>
</tr>
<tr>
<td>OPEN_WORKSHEET</td>
<td>Use to open a worksheet</td>
</tr>
<tr>
<td>MODEL_UPDATE</td>
<td>An event fired by the server when a change in the model has happened, or when a client wants to update the state of the model.</td>
</tr>
<tr>
<td>GET_ATTACHMENT_URL</td>
<td>Gets the URL for an attachment</td>
</tr>
<tr>
<td>GENERATE_PLOT_IMAGE</td>
<td>Generates an image for a plot. For instance, used to generate a thumbnail image of a plot.</td>
</tr>
<tr>
<td>EXECUTE_WORKBOOK_COMMAND</td>
<td>Executes a workbook command. A workbook command is a message internal to the MapleNetServer. Workbook handlers can be made of a sequence of workbook commands.</td>
</tr>
<tr>
<td>EC_SERVER_EVENT</td>
<td>Encodes plot events (play, pause, stop, etc)</td>
</tr>
<tr>
<td>EC_EVENT</td>
<td>Events for embedded components (button clicks, slider changes.</td>
</tr>
<tr>
<td>COMPUTE_PLOT</td>
<td>Used during testing</td>
</tr>
<tr>
<td>CLICK_BUTTON_GROUP</td>
<td>A button client event</td>
</tr>
</tbody>
</table>

Messages that the server doesn't explicitly handle (but accepts and no-ops):

<table>
<thead>
<tr>
<th>Message Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPEN_FILE</td>
<td>A message used to open a file within a workbook</td>
</tr>
<tr>
<td>PING</td>
<td>An application level ping, separate from the websocket-level ping message</td>
</tr>
<tr>
<td>CONFIG_OPTIONS</td>
<td>A message the server sends to the client to provide configuration values</td>
</tr>
<tr>
<td>ACTIVE_CLIENTS</td>
<td>Used to provide statistics about the open documents of each client</td>
</tr>
<tr>
<td>VERSION</td>
<td>A message the server sends to the client to provide version information</td>
</tr>
<tr>
<td>ERROR_MESSAGE</td>
<td>A message the server sends to the client so that the client can display an error message generated by the server</td>
</tr>
<tr>
<td>DOCUMENT_LOAD_COMPLETE</td>
<td>A message the client sends to the server when a document has finished loading</td>
</tr>
<tr>
<td>OPEN_WORKBOOK</td>
<td>The first message in a two step process to open worksheets</td>
</tr>
<tr>
<td>ENGINE_STATUS</td>
<td>A message the server sends to the client to indicate when a kernel has started (or stopped) running</td>
</tr>
<tr>
<td>WORKSHEET_SAVE_STATE</td>
<td>A message the server sends to the client to indicate information about the saved state of the worksheet</td>
</tr>
</tbody>
</table>

Metric Group: License

<table>
<thead>
<tr>
<th>Metric</th>
<th>Metric Type</th>
<th>Domain</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>license_expiry_remaining_seconds</td>
<td>Gauge</td>
<td>Non-negative, monotonically decreasing integer</td>
<td>Reports the amount of time until a license will expire. The label "feature" is used to differentiate different license.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If a license in unexpiring, the entry for</td>
</tr>
</tbody>
</table>
the license is "Nan".

Note: We do not report the time remaining as an atomic operation. Each time we calculate the amount of time remaining on a license, we get the current time in milliseconds. Therefore, if two licenses have the same expiry, the output of monitoring will report a slight discrepancy between the amount of time remaining for each license.

Metric Group: Kernel

<table>
<thead>
<tr>
<th>Metric</th>
<th>Metric Type</th>
<th>Domain</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>kernel_command_seconds</td>
<td>Summary</td>
<td>Non-negative float</td>
<td>Reports the amount of time it takes for an engine to perform a command. All commands are aggregated into the same metric, <code>kernel_command_seconds</code>, unless the command is a bellwether command where it is uniquely identified with a "command" label. A bellwether command is a command that is run on every kernel. Bellwether commands include " _libraryversion();", "kernelopts(toolboxversion);", "kernelopts(version);", and "interface(version);". All of these commands are executed on a kernel every time a kernel is started. The results are used to initialize MapleNetServer values. Because these commands are always executed, variations in these values could indicate a change in the deployment's health or performance.</td>
</tr>
</tbody>
</table>

Bellwether commands:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>_libraryversion();</td>
<td>Kernel values needed by MapleNetServer. Executed every time a new kernel is started.</td>
</tr>
<tr>
<td>kernelopts(toolboxversion);</td>
<td>Kernel values needed by MapleNetServer. Executed every time a new kernel is started.</td>
</tr>
<tr>
<td>kernelopts(version);</td>
<td>Kernel values needed by MapleNetServer. Executed every time a new kernel is started.</td>
</tr>
<tr>
<td>interface(version);</td>
<td>Kernel values needed by MapleNetServer. Executed every time a new kernel is started.</td>
</tr>
<tr>
<td>License Check;</td>
<td>The license check performed every time a kernel is started.</td>
</tr>
<tr>
<td>2+3;</td>
<td>The command sent to a kernel (in each of the compute, document, and fallback pools–if configured) when /healthcheck/ is queried.</td>
</tr>
</tbody>
</table>

Note: bellwether commands are lazily added to the list of kernel_command_seconds and are not added to the list of kernel_command_seconds until the command is first executed. For instance `kernel_command_seconds(command="2+3")` will not appear in the list until the first time the health check is queried.
6 Example Configurations

This section contains example configurations for typical MapleNet deployments.

The following variables are used in this document, and should be replaced with the correct values:

LICENSEFILE: The location of the MapleNet license file (on the Docker host)

HOSTPORT: The port on the host machine on which MapleNet should accept connections

IMAGETAG: The tag of the Docker image created by the installer

CONTENTDIR: The directory containing Maple content for hosting by MapleNet (on the Docker host)

MAPLEONLINECDNURL: The URL of a Content Delivery Network hosting the MapleNet JavaScript libraries

MATHJAXCDNURL: The URL of a Content Delivery Network hosting the MathJax JavaScript package

Additional documentation for the configuration variables used in these examples is available in the Configuration section of the Administrators Guide. These examples are shown as separate commands, however arguments from one example can, in general, be combined with arguments from other examples.

Note: In the following examples long commands are broken across multiple lines. The \ character is used to indicate the continuation of the command on the next line. This is supported in many terminals so copying and pasting the entire command should work. If that does not work, duplicating the command as a single line by omitting these characters and joining the argument should also work.

6.1 Basic Document Hosting

These configurations are for customers who want to host Maple documents located within a directory on the Docker host machine.

Mounting as a subdirectory of /webroot

The easiest way to add user content to the container is to simply mount the directory containing the content as a subdirectory of /webroot.

```
docker run --mount type=bind,source=$LICENSEFILE,target=/maple/license/license.dat,readonly \
--mount type=bind,source=$CONTENTDIR,target=/webroot/content \
--publish $HOSTPORT:8080 \
--rm \
maplesoft/maplenet:$IMAGETAG
```

With this configuration, the files in the $CONTENTDIR directory are available under

http://localhost:$HOSTPORT/content

If you want to be able to navigate the directory structure via the web browser you can enable directory listings using the MAPLENET_WEBSERVER_ENABLEDIRECTORYLISTING variable.
With this configuration the default locations of MapleNet's libraries are unaffected by the mount. However this does leave the MapleNet landing page and example document on the server. If you want to replace the entire /webroot directory, the following configuration will do that.

Mounting on top of /webroot

Replacing /webroot completely will hide the JavaScript libraries required for document rendering in MapleNet. Therefore you will need to either use a Content Delivery Network (see next configuration) or copy those libraries into your content directory so they continue to be available when /webroot is hidden. To copy the libraries from the Docker image, we first need to start the image. This is only to access the files, so a simple `docker run` command is sufficient.

```
docker create --name copy_container \
   --rm maplesoft/maplenet:$IMAGETAG
```

We use the `--name` option to give the container a easy to remember name. We can now copy the directory containing the MapleNet libraries to the directory of content we want to mount on top of /webroot.

```
docker cp -a copy_container:/webroot/mapleonline $CONTENTDIR

docker cp -a copy_container:/webroot/MathJax $CONTENTDIR
```

Now stop this container

```
docker stop copy_container
```

There should now be directories named `mapleonline` and `MathJax` within `$CONTENTDIR` containing the JavaScript libraries from the Docker container.

Now we can start the Docker container with `$CONTENTDIR` replacing /webroot.

```
docker run --mount type=bind,source=$LICENSEFILE,target=/maple/license/license.dat,readonly \
   --mount type=bind,source=$CONTENTDIR,target=/webroot \
   --publish $HOSTPORT:8080 \
   --rm \
   maplesoft/maplenet:$IMAGETAG
```

With this configuration, the `$CONTENTDIR` directory is the root of the files served by MapleNet.

Using a Content Delivery Network for JavaScript libraries

If you are able to use a Content Delivery Network (CDN) to host MapleNet's JavaScript libraries this can simplify the process of replacing /webroot as the MapleNet content is no longer require to exist within the Docker container. However to place the content on a CDN, it still needs to be extracted from the Docker image as described above. To use a CDN, the following command should be used.

```
docker run --env MAPLENET_WEBSERVER_MAPLECL OUDCDN=$MAPLEONLINECDNURL \
   --env MAPLENET_WEBCLIENT_CONFIGURATION="MathJaxCDN=$MATHJAXCDNURL" \
   --publish $HOSTPORT:8080 \
   --mount type=bind,source=$LICENSEFILE,target=/maple/license/license.dat,readonly \
   --mount type=bind,source=$CONTENTDIR,target=/webroot \
```

24 • 6 Example Configurations
Logging Configuration

The following example configures the json-file logger (the docker default) to perform log rotation with three log files each with a maximum size of 10 Mb. Thus if the current log file reaches 10 Mb and there are already three log files, the oldest is deleted as a new log file is created.

```bash
docker run --log-opt max-size=10m --log-opt max-file=3 --mount type=bind,source=$LICENSEFILE,target=/maple/license/license.dat,readonly --mount type=bind,source=$CONTENTDIR,target=/webroot --publish $HOSTPORT:8080 --rm maplesoft/maplenet:$IMAGETAG
```

The MapleNet container can also be configured to pass its logs to standard logging facilities, for example

```bash
docker run --log-driver syslog --mount type=bind,source=$LICENSEFILE,target=/maple/license/license.dat,readonly --mount type=bind,source=$CONTENTDIR,target=/webroot --publish $HOSTPORT:8080 --rm maplesoft/maplenet:$IMAGETAG
```

For a complete list of supported logging facilities, see the docker log driver documentation:

https://docs.docker.com/config/containers/logging/configure/

6.2 Basic Compute Hosting

This example configuration is for MapleNet's compute API. The primary concern for the compute API is usually resource limits. The following command starts MapleNet with restricted compute limits of 5 seconds of compute time and 500 MiB of memory.

```bash
docker run --env MAPLENET_POOL_COMPUTATIONTIMELIMIT=5 --env MAPLENET_COMPUTEENGINE_DATALIMIT=500 --mount type=bind,source=$LICENSEFILE,target=/maple/license/license.dat,readonly --publish $HOSTPORT:8080 --rm maplesoft/maplenet:$IMAGETAG
```

Cross-Origin Resource Sharing (CORS)

Cross-Origin Resource Sharing is a mechanism for allowing web applications running on one domain to access web services running on another. Normally web browsers do not allow applications to access services running on different domain. CORS allows the service to state if a domain is allowed to make requests to the server. This may be important for the compute service if users have written web applications hosted on other domains and want access the compute service. By default MapleNet is configured to not allow requests from different domains.
The following configuration allow requests from any domain

```
docker run --env MAPLENET_WEBSERVER_CORS_ALLOWORIGIN="*" \
  --mount type=bind,source=$LICENSEFILE,target=/maple/license/license.dat,readonly \
  --mount type=bind,source=$CONTENTDIR,target=/webroot \
  --publish $HOSTPORT:8080 \
  --rm \
  maplesoft/maplenet:$IMAGETAG
```

If you have a list of domains you are willing to accept requests from you can use a comma separated list of domain names

```
docker run --env MAPLENET_WEBSERVER_CORS_ALLOWORIGIN="domain1.com,domain2.com,domain3.com" \
  --mount type=bind,source=$LICENSEFILE,target=/maple/license/license.dat,readonly \
  --mount type=bind,source=$CONTENTDIR,target=/webroot \
  --publish $HOSTPORT:8080 \
  --rm \
  maplesoft/maplenet:$IMAGETAG
```

6.3 Adding Maple Libraries and Help Databases

Users can add Maple libraries and help databases to MapleNet. Adding Maple libraries allows hosted documents and compute requests to access the Maple functionality in those libraries. Adding help databases allows MapleNet to host Maple help pages for display in browsers. In this example we will simply add the user libraries and help databases to the Maple library directory. For this example, we’ll use `$MAPLELIBRARYDIR` to represent the path to a Maple library (.mla) `$MAPLELIBRARY` and `$MAPLEHELPDIR` to represent the path to a Maple help database (.help) `$MAPLEHELP`.

```
docker run --mount type=bind,source=$LICENSEFILE,target=/maple/license/license.dat,readonly \
  --mount type=bind,source=$MAPLELIBRARYDIR/$MAPLELIBRARY,target=/maple/lib/$MAPLELIBRARY \
  --mount type=bind,source=$MAPLEHELPDIR/$MAPLEHELP,target=/maple/lib/$MAPLEHELP \
  --publish $HOSTPORT:8080 \
  --rm \
  maplesoft/maplenet:$IMAGETAG
```

Multiple libraries and help database can be added by having multiple mount commands.

Care must be taken to not override the default Maple libraries (maple.mla, update.mla, MathematicalFunctions.mla or MTM.mla) as this would remove Maple (and MapleNet) functionality. If the name of your library conflicts with an existing Maple library, you can simply mount it with a different name.

```
docker run --mount type=bind,source=$LICENSEFILE,target=/maple/license/license.dat,readonly \
  --mount type=bind,source=$MAPLELIBRARYDIR/maple.mla,target=/maple/lib/mymaple.mla \
  --publish $HOSTPORT:8080 \
  --rm \
  maplesoft/maplenet:$IMAGETAG
```

Changing the URL for the Help Database

If you are hosting a help database, you can change the value of URL that MapleNet uses for help by using the WebClient.HelpUrl command parameter.
For example, to instruct MapleNet to use "http://exampledatabase.com/help" as the help database URL:

```bash
docker run --mount type=bind,source=$LICENSEFILE,target=/maple/license/license.dat,readonly 
--publish $HOSTPORT:8080 maplesoft/maplenet:$IMAGETAG 
```

6.4 Enabling the Upload Page

MapleNet includes an upload page that allows users to upload Maple documents to MapleNet from their web browsers. To enable this feature the MAPLENET_WEBSERVER_ENDPOINTS_UPLOAD variable must be set. In addition, the upload page displays the contents of the upload directory if MAPLENET_WEBSERVER_ENABLEDIRECTORYLISTING is set.

```bash
docker run --env MAPLENET_WEBSERVER_ENDPOINTS_UPLOAD=true 
--env MAPLENET_WEBSERVER_ENABLEDIRECTORYLISTING=true 
--mount type=bind,source=$LICENSEFILE,target=/maple/license/license.dat,readonly 
--mount type=bind,source=$CONTENTDIR,target=/webroot/content 
--publish $HOSTPORT:8080 
--rm 
maplesoft/maplenet:$IMAGETAG
```

With these variables set, the upload page

http://$HOSTNAME/mapleonline/upload/upload.html

will be fully functional.

By default the upload directory lives within the docker container, thus when the container is restarted any uploads are lost. To have the uploaded content persist between MapleNet restarts, mount a host directory on top of the upload directory. With this, the uploads are saved to the host directory. If /webroot is replaced with a host directory (as described above), uploads will be stored into the host directory. If that is not the case, the following command mounts the $UPLOADDIR from the host machine on top of the MapleNet upload directory.

```bash
docker run --env MAPLENET_WEBSERVER_ENDPOINTS_UPLOAD=true 
--env MAPLENET_WEBSERVER_ENABLEDIRECTORYLISTING=true 
--mount type=bind,source=$LICENSEFILE,target=/maple/license/license.dat,readonly 
--mount type=bind,source=$CONTENTDIR,target=/webroot/content 
--mount type=bind,source=$UPLOADDIR,target=/webroot/worksheet/upload 
--publish $HOSTPORT:8080 
--rm 
maplesoft/maplenet:$IMAGETAG
```

6.5 Security Options

The following options implement the suggested configuration in the Security section of the Administrators Guide. It also mounts $CONTENTDIR on top of /webroot as described above.

```bash
docker run --env MAPLENET_ENDPOINTS_COMPUTE=false 
--env MAPLENET_ENDPOINTS_HELP=false 
--env MAPLENET_DOCUMENTENGINE_CPULIMIT=120 
--env MAPLENET_DOCUMENTENGINE_DATALIMIT=2048 
--mount type=bind,source=$LICENSEFILE,target=/maple/license/license.dat,readonly 
--mount type=bind,source=$CONTENTDIR,target=/webroot/content 
--publish $HOSTPORT:8080 
```
6.6 Troubleshooting

Docker not starting

Error: Bind for $HOSTPORT failed: port is already allocated

The port you specified for MapleNet to listen on is already in use. This could be caused by an existing MapleNet instance using the same port. Running

docker ps

will show all the running Docker containers as well as the port they are using. You can use docker stop to stop a running container or select a different port for MapleNet.

MapleNet is not starting

Error: The license file, /maple/license/license.dat, does not exist

This indicates that MapleNet was unable to locate a valid license. Make sure you completed the installation step to obtain a valid license and that it was correctly mounted into the Docker container.

Error: Unable to create compute cache directory

If you are mounting on top of /webroot, MapleNet needs to be able to create directories in the mounted directory. The permissions on the $CONTENTDIR may be preventing MapleNet from doing so.
Performances Issues

Error: Users seeing "Time out" errors when accessing MapleNet

When users see time out errors when connecting to MapleNet, this usually indicates that MapleNet is overloaded. There are a few configuration options that may be able to solve these issues.

MAPLENET_WEBSERVER_NUMTHREADS: The MapleNet web server has a limited number of threads to handle incoming connections. If you are handling a large number of incoming connections you may need to increase this value. Be aware that increasing the number of web server threads also increases the amount of memory MapleNet will use.

MAPLENET_POOL_MAXENGINES: MapleNet maintains a pool of Maple engines. If there are a large number of open documents, it is possible to reach this limit. Increasing this limit will allow more users to have open documents on MapleNet. Each running Maple engine requires memory, so this will also lead to higher memory usage. This variable does not effect the maximum number of running engines, simply the maximum number of open engines.

MAPLENET_POOL_QUEUETIMELIMIT: MapleNet has a limit on the number of engines that can run at the same time (limited by the MapleNet license). When MapleNet runs a command it may need to wait if the maximum number of engines are already running. This variable determines how long MapleNet should wait for an available engine before aborting.

MAPLENET_WEBSERVER_REQUESTTIMEOUTMS: This variable limits how long MapleNet keeps a connection open when it stops receiving messages from a client. The MapleNet client sends regular messages to keep the connection alive and these are normally sufficient. However if users have low speed or unreliable connections, this timeout may be exceeded, and the connection closed.

MapleNet memory usage

MapleNet allows multiple users to run commands in Maple on a single server. This can use a lot of memory, potentially making the host machine unstable. If you have problems with excessive memory usage, you can try adjusting the following variables.

MAPLENET_POOL_MAXENGINES: Reduce the maximum number of open Maple engines, with the trade off of allowing fewer users to access MapleNet.

MAPLENET_COMPUTEENGINE_DATALIMIT and MAPLENET_DOCUMENTENGINE_DATALIMIT: These variables limit the amount of memory a single compute or document engine can use. Setting these limits will stop individual connections from using a large amount of memory, with the trade off that large computations may not be able to finish.

MAPLENET_ENGINE_JAVADATALIMIT: If you see mjava processes consuming large amounts of memory, adjusting this variable may help. In some circumstances (machines with a large amount of memory) the java virtual machine may use a large amount of memory instead of collection more quickly. This variable forces java to work within a smaller memory footprint.

Increase the number of allowed running engines

If the none of the suggestions above help, and you are seeing high load on the machine, then you may need to increase the number of licensed running engines. Before doing this, verify that during peak load times, you are seeing one running engine for each allowed running engine in your license. The easiest way to do this is to look at the MapleNet monitoring page. In the limiter section you should see three values, maxRunningEngines, runningEngines and
waitingEngines. If waitingEngines is greater than 0, then MapleNet is running at or beyond its optimal capacity. You may need to increase your number of licensed engines to allow more engines to run in parallel. This only makes sense if you also have available CPU resources. MapleNet is designed to run with one core per running engine. Running MapleNet with more allowed running engines than CPU cores is not suggested, and will not increase performance.
7 Copyright

7.1 Client Side Software Copyright Statements

error_prone_annotations
http://www.apache.org/licenses/LICENSE-2.0

j2objc-annotations 1.3
Copyright © 2015 Google, Inc.
http://www.apache.org/licenses/LICENSE-2.0

guava 23.0
Copyright © 2017 Google, Inc.
http://www.apache.org/licenses/LICENSE-2.0

guava-gwt 23.0
Copyright © 2017 Google, Inc.
http://www.apache.org/licenses/LICENSE-2.0

gwtquery 1.5 beta 1
Copyright © 2017 Google, Inc
http://www.apache.org/licenses/LICENSE-2.0

gwtexporter 2.5.0
Copyright © 2007 Timepedia.org
http://www.apache.org/licenses/LICENSE-2.0

eventbinder 1.10
Copyright © 2014 Google, Inc.
http://www.apache.org/licenses/LICENSE-2.0

akjava
Copyright © 2011- 2013 Aki Miyazaki
http://www.apache.org/licenses/LICENSE-2.0

gwt-log 3.3.2
Copyright © 2014 Google, Inc.
http://www.apache.org/licenses/LICENSE-2.0

GWT 2.8.1
Copyright © Google, Inc.
7.2 Server Side Software Copyright Statements

Maple Licensed Code
Maple/MapleNet has licensed code from the following sources:

Star Division GmbH
• Portions Copyright © 1991 - 1994 by Star Division GmbH.

Mathematics Dictionary
• The mathematics dictionary utilized both in whole and in parts within the Help system of Maple is utilized with the permission of MathResources Inc., and the authors of the database Borwein, Dr. Jonathan and Borowski, Mr. Ephraim (1997), The MathResource: Interactive Math Dictionary. Nova Scotia: MathResources Inc. (www.mathresources.com).

FLEXlm
• FLEXlm Copyright © 1994, 2004 by Macrovision Corporation.

Intel
• Intel® MKL Copyright © 1999, 2000-2008 Intel Corporation. All rights reserved.
• Intel® IPP Copyright © 2012 Intel Corporation. All rights reserved.
• Intel® RunTime Copyright © 2012 Intel Corporation. All rights reserved.

Dr. Piet Jonas
• WMFWriter
http://piet.jonas.com/WMFWriter/WMFWriter.html

Microsoft
• MSVC Redistributable
Microsoft Software License Terms MSVC 2013
Microsoft Software License Terms MSVC 2015

NICONET
• NICONET
The Maple routines LinearAlgebra[CARE] and LinearAlgebra[DARE] are based on the SLICOT library. All rights, title and interest in and to SLICOT is, and shall at all times remain, the sole and exclusive property of NICONET as the developers of the software library. Maplesoft shall have all right, title and interest in and to any modifications, error corrections, derivatives, or enhancements made from or to SLICOT by Maplesoft.

http://www.niconet-ev.info/en/
http://www.slicot.org/

TeamDev
• JNIWrapper
https://www.teamdev.com/jniwrapper-licence-agreement
Open Source

Abseil Python Common Libraries
Abseil Python Common Libraries (absl-py) - © 2018 The Abseil Authors
https://github.com/abseil/abseil-py
Apache License Version 2.0

Adaptive Precision Floating-Point Arithmetic and Fast Robust Predicates for Computational Geometry
This code is in the public domain
https://www.cs.cmu.edu/~quake/robust.html

Apache Batik
• Apache Batik 1.10 - Copyright © 2002-2018 The Apache Software Foundation.
http://xmlgraphics.apache.org/batik/
Apache License Version 2.0

Apache Commons Codec
• Apache Commons Codec 1.8 - Copyright © 2002-2013 The Apache Software Foundation.
http://commons.apache.org/proper/commons-codec/archives/1.8/index.html
Apache License Version 2.0

Apache Commons IO
• Apache Commons IO 2.4 - Copyright © 2002-2014 The Apache Software Foundation.
http://commons.apache.org/proper/commons-io/
Apache License Version 2.0

Apache FOP
• Apache FOP - Copyright © 1999-2010 The Apache Software Foundation
http://xmlgraphics.apache.org/fop/
Apache License Version 2.0

Apache log4j
• Apache log4j 1.2.3 - Copyright © 1999-2012 The Apache Software Foundation
http://logging.apache.org/log4j/1.2/
Apache License Version 2.0

Apache POI
• Apache POI 3.17 - Copyright © 2002-2010 The Apache Software Foundation.
http://poi.apache.org/
Apache License Version 2.0
Apache Xerces2 Java
• Apache Xerces2 Java Parser 2.3.0 - Copyright © 1999-2003 The Apache Software Foundation.
 http://xerces.apache.org/xerces2-j
Apache License Version 2.0

Apache Xalan-Java
• Apache Xalan-Java - Copyright © 1999-2014 The Apache Software Foundation. All rights reserved.
 https://xalan.apache.org/
Apache License Version 2.0

Apache XMLBeans
• Apache XMLBeans 2.3.0 - Copyright © 2004 The Apache Software Foundation. All rights reserved.
 http://xmlbeans.apache.org/
XMLBeans NOTICE
Apache License Version 2.0

arb
• C library for arbitrary-precision interval arithmetic.
Copyright © 2012-2018, Fredrik Johansson
The arb library is distributed under the terms of the GNU Lesser General Public License Version 2.1. In accordance with this license, we are making the version of the arb source code that Maple uses available for download at http://www.maplesoft.com/support/downloads/source.
GNU Lesser General Public License

astor -- AST observe/rewrite
Copyright © 2012, Patrick Maupin
Copyright © 2013, Berker Peksag
Copyright © 2008, Armin Ronacher
 https://github.com/berkerpeksag/astor
BSD License (3-Clause)

ATLAS
• ATLAS Automatically Tuned Linear Algebra Software Copyright © 1998-2008 R. Clint Whaley.
 http://math-atlas.sourceforge.net
ATLAS License Agreement

Beautiful Soup
• Copyright © 2004-2018 Leonard Richardson. Distributed under the terms of the MIT License.
Beautiful Soup incorporates code from the html5lib library, which is also made available under the MIT license.
Copyright © 2006-2013 James Graham and other contributors.
BLAD
• BLAD, BMI

The Maple package DifferentialAlgebra uses the BLAD and BMI libraries. These libraries are free and are protected under the GNU Lesser General Public License Version 2.1.

In accordance with this license, we are making the versions of the BLAD and BMI source code that Maple uses available for download at http://www.maplesoft.com/support/downloads/source. A copy of the license file for each is included (see "COPYING.LIB").

GNU Lesser General Public License

bleach
• Copyright © 2014-2016, Mozilla Foundation. Distributed under the terms of the Apache License Version 2.0.

Boost
• Boost - Copyright © 1999-2015 Boost contributors

http://www.boost.org/

Boost License Agreement

Civetweb

Copyright © 2013-2018 The CivetWeb developers

https://github.com/civetweb/civetweb

CLAPACK
• CLAPACK

Maple uses portions of the CLAPACK library. For more information, see LAPACK Users' Guide, Third Edition by Anderson, E.; Bai, Z.; Bischof, C.; Blackford, S.; Demmel, J.; Dongarra, J.; Du Croz, J.; Greenbaum, A.; Hammarling, S.; McKenney, A.; and Sorensen, D. or visit:

http://www.netlib.org/lapack/lug/
http://www.netlib.org/clapack/

CLAPACK License Agreement
http://www.netlib.org/lapack/

LAPACK License

ControlsFX
• ControlsFX - Copyright © 2013, 2014

http://fxexperience.com/controlsfx/

ControlsFX License

CoolProp
• CoolProp

The Maple package ThermophysicalData uses the CoolProp library. For more information, see http://www.coolprop.org/ or the citation below.
The license for the CoolProp library is available on the License-CoolProp help page.

Cuba

- Cuba

Maple uses the Cuba library, developed by Thomas Hahn and distributed via http://www.feynarts.de/cuba/. It is distributed under the terms of the **GNU Lesser General Public License Version 3**. In accordance with this license, we are making the version of the Cuba source code that Maple uses available for download via https://www.maplesoft.com/support/downloads/source. A copy of the license file is included in the archive available there (see "COPYING").

GNU Lesser General Public License version 3

CUDA

- CUDA

The Maple package CUDA uses the CUDA® library from NVIDIA®.

NVIDIA License

cURL

- cURL 7.62.0 Copyright 1996 - 2018 David Stenberg and others (see THANKS page)

https://curl.haxx.se/

cURL License

DocBook XSL Stylesheets

Copyright © 1999-2007 Norman Walsh
Copyright © 2003 Jiří Kosek
Copyright © 2004-2007 Steve Ball
Copyright © 2005-2009 The DocBook Project

DocBook XSL Stylesheets License Agreement

http://docbook.sourceforge.net/

dom4j

- dom4j Copyright © 2001 - 2016 by MetaStuff, Ltd. and DOM4J contributors. All Rights Reserved.

dom4j Copyright and License Agreement

enum34

- Copyright © 2013, Ethan Furman. Distributed under the terms of the BSD License (3-Clause).

f2c

- f2c Copyright © 1990 - 1997 by AT&T, Lucent Technologies and Bellcore.
f2c Copyright and License Agreement

FLINT

- FLINT: Fast Library for Number Theory

FLINT is a C library for doing number theory, maintained by William Hart.

The FLINT library is distributed under the terms of the GNU Lesser General Public License Version 2.1. In accordance with this license, we are making the version of the FLINT source code that Maple uses available for download at http://www.maplesoft.com/support/downloads/source.

GNU Lesser General Public License

FreeHEP

- The FreeHEP Java library is distributed under the terms of the GNU Lesser General Public License Version 2.1. In accordance with this license, we are making the version of the FreeHEP source code that Maple uses available for download at http://www.maplesoft.com/support/downloads/FreeHEP.html. A copy of the license file is included (see "COPYING.LIB").

GNU Lesser General Public License

gast

- Copyright serge-sans-paille. Distributed under the terms of the BSD License (3-Clause).

https://pypi.org/project/gast/

GCC

- The GCC Runtime Libraries - Copyright © 2009 Free Software Foundation, Inc.

The GCC Runtime Libraries source code is distributed under the GNU General Public License version 3 with the additional permission of the GCC Runtime Library Exception.

In accordance with this license, we are making the version of the GCC source code that Maple uses available for download at http://www.maplesoft.com/support/downloads/source. A copy of the license file is included (see "COPYING.RUNTIME").

GNU Lesser General Public License version 3

GCC Runtime Library Exception

http://gcc.gnu.org

GeoNames

- All works from GeoNames are licensed under the Creative Commons Attribution 3.0 License.

http://www.geonames.org/

CC BY 3.0

GL2PS C library

- Copyright © 2003 Christophe Geuzaine

In accordance with this license, we are making the version of the GL2PS source code that Maple uses available for download at http://www.maplesoft.com/support/downloads/source. A copy of the license file is included (see "COPYING.GL2PS").

GL2PS License Agreement
GMP
• **GMP 5.1.1** Copyright © 1996 - 2013.

The GMP library is distributed under the terms of the **GNU Lesser General Public License Version 3**. In accordance with this license, we are making the version of the GMP source code that Maple uses available for download at http://www.maplesoft.com/support/downloads/GMP.html. A copy of the license file is included (see "COPYING.LIB").

GNU Lesser General Public License version 3

google
• Google search from Python.

Copyright © 2018 Mario Vilas. Distributed under the terms of the BSD License (3-Clause).

https://breakingcode.wordpress.com/2010/06/29/google-search-python/

gRPC
• Copyright © 2015 - 2018 the gRPC authors.

Distributed under the terms of the Apache License Version 2.0.

https://pypi.org/project/grpcio/

Henry Spencer

Henry Spencer Permission Statement

html5lib
• Copyright © 2006-2013 James Graham and other contributors.

Distributed under the terms of the MIT License.

https://pypi.python.org/pypi/html5lib

ICU
• International Components for Unicode

Copyright © 1995-2015 International Business Machines Corporation and others

ICU License

http://site.icu-project.org/

Info-Zip
• Info-Zip - Copyright © 1990-2009 Info-ZIP. All rights reserved.

http://www.info-zip.org/

Info-Zip License

iText
• iText Library - Copyright © 1999-2009 by Bruno Lowagie and Paulo Soares. All rights reserved.
The iText library is distributed under the terms of the GNU Lesser General Public License Version 2.1. In accordance with this license, we are making the version of the iText source code that Maple uses available for download at http://www.maplesoft.com/support/downloads/source. A copy of the license file is included (see "COPYING.LIB").

GNU Lesser General Public License

http://www.itextpdf.com/

Java

• Java is a registered trademark of Oracle and/or its affiliates.

Oracle Binary Code License Agreement for the Java SE Platform Products and JavaFX

JavaMail

JavaMail uses several licenses:

• Most of the JavaMail source code is licensed under the CDDL license and the GPLv2 with Classpath Exception license; see the license information at the top of each source file.

• The source code for the demo programs is licensed under the BSD license; again, the license is in each source file.

• The binary jar files published to the Maven repository are licensed under the same CDDL and GPLv2+CE licenses as the corresponding source code; see the file META-INF/LICENSE.txt in each jar file.

• The JavaMail API specification is licensed under the standard JCP Specification License.

You'll find the text of the CDDL and GPLv2+CE licenses in the workspace in the file mail/src/main/resources/META-INF/LICENSE.txt. The specification license is in the workspace at mail/src/main/java/doc-files/speclicense.html. Don't let the presence of these license files in the workspace confuse you into thinking that they apply to all files in the workspace.

In accordance with the CDDL, we are making the version of the JavaMail source code that Maple uses available for download at http://www.maplesoft.com/support/downloads/source.

The BSD License

JavaMail CDDL and GPLv2 with Classpath Exception

JCP Specification License

JOGL

• JOGL (Java Binding for the OpenGL) is distributed under the terms of the JOGL License.

JOGL License

http://jogamp.org/jogl/www/

• This software is based in part on the work of the Independent JPEG Group.

jsmn

• JSON parser - http://zserge.com/jsmn.html

Copyright © 2010 Serge A. Zaitsev. Distributed under the terms of the MIT License.

jsoup: Java HTML Parser

jsoup HTML parser copyright © 2009-2016 Jonathan Hedley

The jsoup code-base (include source and compiled packages) are distributed under the open source MIT License.
https://jsoup.org/

JUnit
- JUnit unit testing framework - http://www.junit.org/
Distributed under the terms of the Eclipse Public License - v 1.0.
http://www.junit.org/

latex2mathml
- Copyright © 2016-2019 Ronie Martinez. Distributed under the terms of the MIT License.
https://pypi.org/project/latex2mathml/

L2FProd Common Components
L2FProd 7.3 - Copyright © 2004-2007 L2FProd.com
Apache License Version 1.1
https://github.com/l2fprod/l2fprod-common

json-simple
JSON.simple - A simple Java toolkit for JSON
Apache License Version 2.0
https://code.google.com/archive/p/json-simple/

Libexslt
Libexslt License Agreement
http://xmlsoft.org/XSLT/EXSLT/index.html

LibJPEG
LibJPEG License Agreement
http://libjpeg.sourceforge.net/
http://www.iijg.org/

libpng
- libpng version 1.6.35 - July 15, 2018
Copyright © 1998-2018 Glenn Randers-Pehrson
(Version 0.96 Copyright © 1996, 1997 Andreas Dilger)
(Version 0.88 Copyright © 1995, 1996 Guy Eric Schalnat, Group 42, Inc.)
libpng License Agreement
http://www.libpng.org/pub/png/libpng.html
LibTIFF

LibTIFF License Agreement
http://www.libtiff.org/

Libxml2
• Copyright © 1998-2012 Daniel Veillard. All Rights Reserved.

Libxml2 License Agreement
http://xmlsoft.org/

Libxslt
• Libxslt - Copyright © 2001-2002 Daniel Veillard. All Rights Reserved.

Libxslt License Agreement
http://xmlsoft.org/XSLT/

LibYAML
• LibYAML - YAML 0.2.1 parser - http://pyyaml.org/wiki/LibYAML
Copyright © 2017-2018 Ingy döt Net © 2006-2016 Kirill Simonov. Distributed under the terms of the MIT License.

LLVM
• LLVM - Copyright © 2003-2013 University of Illinois at Urbana-Champaign.
Clang - Copyright © 2007-2013 University of Illinois at Urbana-Champaign.
LLVM and Clang are distributed under the LLVM Release License.

LLVM Release License
http://llvm.org
http://clang.llvm.org

MapleSAT
• MapleSAT - An efficient SAT solver based on MiniSat
Copyright © 2016, Jia Hui Liang, Vijay Ganesh
Distributed under the terms of the MIT License.
https://sites.google.com/a/gsd.uwaterloo.ca/maplesat/

Markdown
Copyright 2007 - 2008 The Python Markdown Project (v. 1.7 and later)
Copyright 2004, 2005, 2006 Yuri Takhteyev (v. 0.2-1.6b)
Copyright 2004 Manfred Stienstra (the original version)
Distributed under the terms of the BSD License (3-Clause).
Mesa
• Mesa 7.2 - Copyright © 1999 - 2007 by Brian Paul
Copyright © 1994 - 1999 The XFree86 Project, Inc. All rights reserved.
Mesa Copyright and License Agreement
http://www.mesa3d.org/

miGIF Compression
• mouse and ivo's GIF-compatible compression
- run length encoding compression routines -
Copyright © 1998 Intuit Inc.
miGIF Permission Statement

MiniSat
• MiniSat is a minimalistic, open-source SAT solver - http://minisat.se/
Copyright © 2003-2006, Niklas Eén, Niklas Sörensson
Copyright © 2007-2010, Niklas Sörensson
Distributed under the terms of the MIT License.

Minizip
• Minizip - Copyright © 1998-2010 Gilles Vollant
Version 1.2.11
Minizip: zip.h Copyright and License Agreement
Minizip: unzip.h Copyright and License Agreement
http://www.winimage.com/zLibDll/minizip.html

MorphAdorner
• MorphAdorner
Copyright © 2006-2009 by Northwestern University. All rights reserved.
http://morphadorner.northwestern.edu/morphadorner/
MorphAdorner License Agreement

MPFR
• The MPFR library is distributed under the terms of the GNU Lesser General Public License Version 2.1. In accordance with this license, we are making the version of the MPFR source code that Maple uses available for download at http://www.maplesoft.com/support/downloads/source. A copy of the license file is included (see "COPYING.LIB").
GNU Lesser General Public License
http://www.mpfr.org/
Nauty

• Nauty and Traces version 2.6r10, released November 25, 2017.

Nauty and Traces are programs for computing automorphism groups of graphs and digraphs. They can also produce a canonical label.

See Nauty Copyright and License Statement for details on copyright and licensing.

http://pallini.di.uniroma1.it/

NumPy

• Copyright © 2005-2017, NumPy Developers.

Distributed under the terms of the BSD License (3-Clause).

Open Watcom

• Open Watcom is distributed under the terms of the Sybase Open Watcom Public License.

Sybase Open Watcom Public License

Part Of Speech Database

• Part Of Speech Database (http://wordlist.sourceforge.net/pos-readme), compiled by Kevin Atkinson (kevin@users.sourceforge.net).

The part-of-speech.txt file contains is a combination of "Moby™ Part-of-Speech II" and the WordNet database.

Part of Speech Database Copyright and License

pip

• Copyright © 2008 - 2018, the pip developers.

Distributed under the terms of the MIT License.

https://pypi.org/project/pip/

Protocol Buffers

• Protocol Buffers - Google data interchange format

Copyright 2008 - 2018, Google Inc. All rights reserved.

Protocol Buffers License Agreement

https://developers.google.com/protocol-buffers/

Pthreads-win32

The pthreads-win32 software is distributed under the terms of the GNU Lesser General Public License Version 2.1. In accordance with this license, we are making the version of the pthreads-win32 source code that Maple uses available for download at http://www.maplesoft.com/support/downloads/source. A copy of the license file is included (see "COPYING.LIB").

GNU Lesser General Public License

Python

• Python

Copyright © 2001-2017 Python Software Foundation; All Rights Reserved
http://www.python.org/
Python License

QuantLib
• QuantLib - A free/open-source library for quantitative finance
 http://quantlib.org/
QuantLib License

Qhull
• Qhull - Copyright © 1993-2015 C.B. Barber and The Geometry Center.
 • http://qhull.org/
 • Qhull License

RSyntaxTextArea and AutoComplete
• RSyntaxTextArea - Copyright © 2012 Robert Futrell. All Rights Reserved.
RSyntaxTextArea Copyright and License Agreement
 http://bobbylight.github.io/RSyntaxTextArea/
 • AutoComplete - Copyright © 2012 Robert Futrell. All Rights Reserved.
AutoComplete Copyright and License Agreement
 https://github.com/bobbylight/autocomplete

Setuptools
• Copyright © 2016 Jason R Coombs <jaraco@jaraco.com>
Distributed under the terms of the MIT License.

Six
• Copyright © 2010-2017 Benjamin Peterson
Distributed under the terms of the MIT License.

Sliding Layout and Universal Tween Engine
• Sliding Layout - by Aurelien Ribon
 http://github.com/AurelienRibon/sliding-layout
 Apache License Version 2.0
• Universal Tween Engine - by Aurelien Ribon
 http://code.google.com/p/java-universal-tween-engine/
 Apache License Version 2.0

SCOWL
• Spell Checking Oriented Word Lists (SCOWL). (http://wordlist.sourceforge.net/scowl-readme)
Revision 7.1 (SVN Revision 161) January 6, 2011 by Kevin Atkinson (kevina@gnu.org)
SCOWL Copyright and License

SQLite

• SQLite

All of the code and documentation in SQLite has been dedicated to the public domain by the authors. All code authors, and representatives of the companies they work for, have signed affidavits dedicating their contributions to the public domain and originals of those signed affidavits are stored in a firesafe at the main offices of Hwaci. Anyone is free to copy, modify, publish, use, compile, sell, or distribute the original SQLite code, either in source code form or as a compiled binary, for any purpose, commercial or non-commercial, and by any means.

http://www.sqlite.org/

TensorBoard

• Copyright 2018 The TensorFlow Authors. All rights reserved.
Distributed under the terms of the Apache License Version 2.0.

TensorFlow

• Copyright 2018 The TensorFlow Authors. All rights reserved.
Distributed under the terms of the Apache License Version 2.0.

termcolor

• Copyright 2008 - 2011 Volvox Development Team.
Distributed under the terms of the MIT License.

Thumbnailator - a thumbnail generation library

Copyright © 2008-2015 Chris Kroells
Distributed under the terms of the MIT License.

https://github.com/coobird/thumbnailator/

Triangle

Maple includes triangular meshes generated by Triangle.

https://www.cs.cmu.edu/%7Equake/triangle.html

UMFPACK, UFconfig, and AMD

• UMFPACK Version 5.0.2 - Copyright © 1995-2006 by Timothy A. Davis. All Rights Reserved. Used by permission.

UFconfig Version 3.5.0 - Copyright © 2006-2009, Timothy A. Davis. All Rights Reserved. Used by permission.

AMD Version 2.2.1 - Copyright © 2009 by Timothy A. Davis, Patrick R. Amestoy, and Iain S. Duff. All Rights Reserved. Used by permission.

The UMFPACK library and supporting libraries UFconfig and AMD are distributed under the terms of the GNU Lesser General Public License Version 2.1. In accordance with this license, we are making the modified versions of the UFconfig, AMD and UMFPACK source code that Maple uses available for download at the following links:

http://www.maplesoft.com/support/downloads/UFconfig-3.5.0.zip

http://www.maplesoft.com/support/downloads/AMD.zip (a copy of the license file is included - see "README.txt")
http://www.maplesoft.com/support/downloads/UMFPACK.zip (a copy of the license file is included - see "README.txt")

The original code is available at: http://faculty.cse.tamu.edu/davis/SuiteSparse/.

GNU Lesser General Public License

Webencodings
• Copyright © 2012 by Simon Sapin

python-webencodings License

Werkzeug
• Copyright © 2015 by the Werkzeug Team, see AUTHORS for more details.

Distributed under the terms of the BSD License (3-Clause).

wheel
• "wheel" copyright © 2012-2014 Daniel Holth <dholth@fastmail.fm> and contributors.

Distributed under the terms of the MIT License.

Z3
• Z3 - Copyright © Microsoft Corporation. All rights reserved.

Distributed under the terms of the MIT License.

zlib
• zlib general purpose compression library

Copyright © 1995-2017 Jean-loup Gailly and Mark Adler

Version 1.2.11, January 15, 2017

zlib license

http://zlib.net/

Font Licenses

Bitstream
• DejaVu fonts

DejaVu fonts are copyright © 2003 by Bitstream, Inc. DejaVu changes are in public domain. Explanation of copyright is on Gnome page on Bitstream Vera fonts. Glyphs imported from Arev Fonts are copyright © Tavmjung Bah.

DejaVu Fonts Copyright and License Agreement

STI Pub Companies
• STIX font

The STIX font is copyright © 2001-2010 by the STI Pub Companies, with portions copyright © 1998-2003 by MicroPress, Inc. and copyright © 1990 by Elsevier, Inc.

STIX Font License
The STIX Fonts Project

SIL Open Font License Version 1.1
Index

A
Adding Content to MapleNet, 5

C
Content Delivery Network, 8, 24
CORS, 9
 Example, 25

D
Data Limit for Java Operations, 13
docker compose file, 4
Docker Container, 1
 information
 where to find, 1
docker run command, 3
docker stack command, 4
Document Hosting, 5

E
Enable Directory Listings, 8, 23
Endpoints
 Compute, 8
 Document, 8
 Download, 8
 Help, 8
 Upload, 8
Environment Variables
 Base URL for JavaScript Library, 8
 Compute Engine, 13
 Disabling Security, 13
 Specify CPU Limit, 13
 Specify Data Limit, 13
 Specify Data Limit, Example, 25
 Specifying Extra Command Line Arguments, 13
Configuration Logging, 12
 Disabling Logging, 12
 Flushing Logs, 12
 Specify Log File, 12
 Specifying Logging Level, 12
 Using Synchronous Logging, 12
Content Delivery Network, 8
CORS
 Allow Headers Header, 9
 Allow Methods Header, 9
 Allow Origin Header, 9
 Cross-origin Resource Sharing, 9
 Directory Listings, 8
 Document Engine, 14
 CPU Limit, 14
 CPU Limit, Example, 27
 Data Limit, 14
 Data Limit, Example, 27
 Disabling Maple Access to Operating System, 14
 Specifying Command Line Arguments, 14
Enable Compute Endpoint, 8
 Example, 27
Enable Document Endpoint, 8
Enable Download Endpoint, 8
Enable Help Endpoint, 8
 Example, 27
Enable sendfile Command, 8
Enable Upload Endpoints, 8
File Not Found, 7
Health Check Endpoints, 9
Injecting String into HTML Page Sent to Client, 10
Licensing, 7
Managing Server Connections, 7
Maple Configuration, 12
MapleNet Web Server Endpoints, 8
Mapping Help Links in Worksheets to Webpages, 10
Maximum Number of Maple Engines, 11
Maximum Number of Maple Engines for Image Plot Generation, 11
Maximum Number of Threads Used for Accepting Connections, 7
Overview, 7
Port for New Connections, 7
Set Client Configuration Values, 10
Setting Maple libname Variable, 12
Setting Maximum Number of Running Engines, 11
Setting Queue Time Limit, 11
Setting Time Limit for Computations Related to Open Document, 11
Setting Time Limit for Compute Requests, 11
 Example, 25
Setting up content directories, 7
Specify Java Data Limit, 13
Specify the File that should be Executed When Starting Maple Engine, 12
SSL, 10
 Certificate Authority Path, 10
 Check for Certificates, 10
 Cypher List, 10
 Default Values for Certificate Authority Path and File, 10
 Specify Certificate Authority File, 10
 Specify Minimum SSL Protocol Version Accepted, 10
 Specify the Maximum Depth of a Certificate Authority File, 10
 Verify Connecting Clients Have Valid Signed Certificate, 10
Web Server Request Timeouts, 7
Worksheet Template Location, 8
Example Configurations
 Basic Compute Hosting, 25
 Content Delivery Network, 24
 CORS, 25
 Document Hosting, 23
 Mounting as a subdirectory of webroot, 23
 Mounting on top of webroot, 24
 Overview, 23
 Security Options, 27

H
Health Check Endpoints, 9

M
Managing MapleNet Server Connections
 Environment Variables, 7
MapleNet
 Overview, 1
MapleNet Basics, 3
Metrics and Monitoring
 Health Check, 17
 Metrics
 Prometheus, 19
 Monitoring, 18
Metrics and Monitoring Tools, 21
Mounting host directory as a subdirectory of webroot, 23
Mounting host directory into Docker container, 23
Mounting host directory on top of webroot, 24

O
Overview
 MapleNet, 1

R
Replacing the MapleNet Landing Page, 4

S
Security Issues, 15
Set MathJax Version, 10
Starting MapleNet, 3
 docker run command, 3
Starting the MapleNet
 docker compose file, 4
Stopping MapleNet, 4
Storing cache files, 7

T
Troubleshooting
 Docker not starting, 28
 MapleNet not starting, 28
 Overview, 29