MapleMBSE 2026.0 Virtual
Features Guide

Copyright © Maplesoft, a division of Waterloo Maple Inc.
2026

MapleMBSE 2026.0 Virtual Features Guide

Contents

PrEface ...oeneiiee e Xi
T INErOAUCLION ..ttt et e e e 1
1.1 Scope and Purpose of this Documentcccoeeiiiiiiiiiniiiieieeieciecieean, 1
1.2 Prerequisite KNOWIEAZEcovniiviiiiiiiie e 1
1.3 Motivation for Using MapleMBSE Virtual Featuresccooovveiineinnennnnn. 1
1.4 Importing the MapleMBSE ECOrecooviiiiiiiiiiiieiiei e 3
1.5 General Syntax for the MapleMBSE Virtual Featuresccccoeeivviinennn.n. 3
1S (<0 3 o1 S PP PR PN 5
2.1 MEtaclasSINAIMEceuniiitiieii e et 5
DIESCIIPLION ..evtiieiii it e e e e et e e et e et e et e et e et e e e e e e aaneeaneeanaas 5
)2 4L PPN 5
Using the metaclassName Virtual Featurecc.coeeiiiiiiiiiiiiiiiieieiin, 5
EXAMPIE L.oiieiiiiie e 6
2.2 fRALUTEINAIMIE ...e..eiiiie ettt et e e e et e e e e eees 6
DIESCIIPLION ..evtiiiiii ettt e e e e e e e e et e et e et e et e e e e e aaneeanaeanaes 6

) 4L PPN 7
Using the featureName Virtual Featurecooviiiiiiiiiiiniiiiieeeeieeans 7
EXAMPIE L.oiieiiiiie e 8
2.3 SETEOLYPENEAIMIES ...uvueineineiieinei et et et et et et et e e et e aie e e e e e e e eeneaneeneaneanaanns 9
DIESCIIPLION ..evuiieiieeii et et e e e e e et e e e e et e et e et e et e e e e e e eaneeaneeanaas 9

) 1L PPN 9
Using the stereotypeNames Virtual Featurecccooeviiiiiiiiiiiiiineein, 9

| 51111 o) (TP PPT 10
2.4 MELACIASS ..o eee e e 10
DIESCIIPLION ..itiiitiit it e e e et et et et e et e e e e e et e e e et e e eaneeanaeanas 10

) 11 TP 10
Creating the Stereotype with metaclass in the MSE Filec....c....o. 11

| 51111 o) (TP PPT 11

3 ASSOCIALIONS ...ttt ettt ettt et ettt et et e et e et et e e e e et e et e aes 15
3.1 @SSOCIAtEAPTOPEILY ...vuiieiiineiie et e e e e e et e e e e e e 15
DIESCIIPLION 1uuivniiiiit ettt et e e e e e et et e e e e e e et e et e et e e e aneaanaarnnns 15

N 117 PP PP 15
Using the associatedProperty Virtual Featurec.coeviviiiiiiniiiniinnnnnns 16

| 51111 o) (TP PPT 17

3.2 directed AssoCIatedPIOPEItY .. ovuiveiiieiiee e 18
DIESCIIPLION vttt ettt et e e e e e e e et e e e e e e et e et e et e e e e eanaarnns 18

N 117 PP PP 18
Using the directAssociatedProperty Virtual Featureccooeeiiiiniinnnnnn. 18

| 51111 o) (TP PPT 19

3.3 otherAssociatedENdoiiiiiiiiii 20
D IleT |13 Te) 1 U PTPPPPRN 20

il

iv ¢ Contents

N 117 PP PP 20
Using the otherAssociatedEnd Virtual Featureccc.occoiviiiiiininan. 20
EXAMPIC .. oeniiiiieie e 21

3.4 nestedDirectedCOmMPOSITIONo.uuiieiiniiii et iiee e ee et e e e e eenes 23
DIESCTIPLION «e.ueiiieiiie e et 23

N 117 PP PP 23
Using the nestedDirectedComposition virtual featureccooeeeeveennneen. 23
251111 o) (< 24

A BIOCKS ..t 25
4.1 recursivePartPropertiesvviuiiiiiiie i 25
DIESCTIPLION «e.ueiiieiiie e et 25

N 117 PP 25
Using the recursivePartProperties Virtual Featureccccocoeviiiiniiiniinn.. 25
251111 o) (< 26
4.2 propertyDefaultValueooieuiiiiiiiiiiiii 26
DIESCTIPLION «e.ueiiieiiie e et 26

N 117 PP 26
Using the propertyDefaultValue Virtual Featurec...cccovviiniiiinenninnn. 26
251111 o) (< 26

4.3 GELAIIPTOPEITIES .. evuneiiiieeiiee et et 27
DIESCTIPLION «e.ueiiieiiie e et 27

N 117 P PP PP 29
Using the getAllProperties virtual featureccoeeeeviiiiniiiniiiiniiine. 29
251111 o) (< 30

5 CONMMNECTOLS ...evuiiiiii it 31
5.1 connectedPropertyOrPortccouiiiiiiiiiniiiii e 31
DIESCTIPLION «e.ueiiieiii e et 31

N 117 PP PRP 31
Using the connectedPropertyOrPort virtual featurecccc.coeveiineiinn. 32
251111 o) (< 32

5.2 otherConnectorEndccooiiiiiiiiiiiiiiiii 33
DIESCTIPLION «e.ueiiieiii e et 33

N 117 PP PRP 33
Using the otherConnectorEnd Virtual Featurec.c.occoeviiiiiiiininin.. 33
251111 o) (< 33

6 DEPCNACIICIES ...evneiteiieeie et e e et e e e e e e e et et e e e e eaeean s 35
6.1 clientDependenciescouuiiiiiiiiiiiie et 35
DIESCTIPLION «c.ueiiieiii et 35

N 117 PP PRP 35
Using the clientDependencies Virtual Featureccoocoiviiiniiiiniineenn.. 35
251111 o) (< 35

6.2 SUPPlIETDEPENAEIICIES .. e..uiiiieiiieiiie et 36

LD Tl er | o151 WP 36

Contents ¢ v

N 117 PP PP 37
Using the supplierDependencies Virtual Featureccoooeivviiiniiinin. 37
EXAMPIE .. ooniiiiie e 38

6.3 TRAtUTEIMPACTeuuiiiiiiii e 38
DIESCTIPLION «e.ueiiieiiie e et 38

N 117 PP PP 39
Using the featureImpact Virtual Featureccooooiiiiiiniiiniiiiiiinn 39
EXAMPIE .. ooniiiiie e 39
6.4 Multiple Dependencies Classoeeeuuiiiiiiiiinieiineiiii e, 40
INtrOAUCTION ...euiniiiie e 40
Creating a Multiple Dependencies Class inan MSE filecc...ccoovin 40

6.5 Three Way Dependencies CIasscc..oveuueiiiiiiiiiniiineiiiieiiieeiinecieennne 41
DIESCTIPLION «e.ueiiieiiie e et 41
Creating a ThreeWayDependency Class in an MSE Filecco.ccoeii. 41

7 ENUMETALION . o..eiiiteiiiie ettt ettt e e e e 43
7.1 ENUMErationNaAITICuoevuniiiniiiieiii ettt ettt e et eea e eenes 43
DIESCTIPLION «e.ueiiieiiie e et 43

N 117 P PP PP 43
Using the enumerationName Virtual Featureccooocoiviiiniiiniinn 43
251111 o) (< 44

7.2 EnumerationLabel ... 44
DIESCTIPLION «e.ueiiieiiie e et 44

N 117 P PP PP 44

8 TaBEEAVAIUEceitiiiii e 47
8.1 1a8ZeAVAlUE ...iiviiiiiiii e 47
DIESCTIPLION «c.eeiiieiii e et 47

N 117 PP PRP 47
Using the taggedValue in the MSE Filecoooiiiiiiiiiiieee, 47
251111 o) (< 49

O UL e e 51
9.1 MUItiPliCIEYPIOPETLY ..c.eueiiiiiiieiii e 51
DIESCTIPLION «e.ueiiieiiie e et 51

N 117 PP PRP 51
Using the multiplicityProperty Virtual Featurec.ooccoeviiiniiiinieinnenn.. 51
251111 o) (< 52

10 Activity DIQIAIMS «...eevuniiiiiiiii e e 53
10.1 ActivityControlFIOWc..iiiiiiiiiiii e 53
DIESCTIPLION «eueiiieiiie e et 53

N 117 PP PRP 53
Using the ActivityControlFlow Virtual Featurec...ccooveiiiniiiniiinninn. 53
251111 o) (< 54
10.2 ActiVityODBJECtFIOW ...covuiiiiiiiiiiii e 55

LD Tl er | o151 WP 55

vi ¢ Contents

N 117 PP PP 55
Using the ActivityObjectFlow Virtual Featurec...ccoovviiiiiiiniiiniin. 55
EXAMPIC .. oeniiiiieie e 56

11 StateMACRINESuoeeiieiiie it 57
11.1 VerteXTIansitionccouuuniiiiiiniiiiii et 57
DIESCTIPLION «e.ueiiieiiie e et 57

N 117 PP PP 57
Using the VertexTransition Virtual Featurecccooeiiiiiiiniiiniin 57
251111 o) (< 58
11.2 Vertical TranSItionc.ueeuuneeuineiiii ettt eae e e 58
DIESCTIPLION «e.ueiiieiiie e et 58

N 117 PP 59
Using the VertexTransition Virtual Featurecccooeiiiiiiiiiniiiniiini 59

12 COMIMENLS ...eeuiitiiin ittt ettt e ea e e eeaes 61
12.1 OWNEACOMIMENES ...cevuneiiineiiiieeit ettt e e e e eeees 61
DIESCTIPLION «e.ueiiieiiie e et 61

N 117 PP 61
Using the ownedComments Virtual Featureccooooiiiiiiniiiiiiiinin 61
251111 o) (< 62

13 INStANCE MALTICESuuneiiiiineeiiiii e e et 65
13,1 SIOtVAIUE ..t e 65
DIESCTIPLION «e.ueiiieiiie e et 65

N 117 P PP PP 65
Using the SlotValue Virtual Featurec.o.coooiiiiiiiiiiiniiinineceeene, 66
251111 o) (< 67
132 INStANCETIORvveeiiieii e 67
DIESCTIPLION «e.ueiiieiii e et 67

N 117 PP PRP 68
Using the InstanceTree Virtual Featureccoocoooiiiiiiiiiniiiniiinen, 68
251111 o) (< 69
13.3 InstanceWithSIOtscoouuiiiiiiiii e 70
DIESCTIPLION «e.ueiiieiii e et 70

N 117 PP PRP 70
Using the InstanceWithSlots Virtual Featureccc.ooiiviiniiiniiini 70
251111 o) (< 71
13.4 RecursivelnstanceWithSIOtscoiiiiiiiiiiiiiiini e 71
DIESCTIPLION «c.ueiiieiii et 71

N 117 PP PRP 72
Using the RecursivelnstanceWithSlots Virtual Featureccoooceiiinn 72
251111 o) (< 73
13.5 AttachedFileocuuniiiiiiiii i 73
DIESCTIPLION ittt et 73

N 117 PP PRP 73

Contents ¢ vii

Using the attachedFile Virtual Featureccoooiiiiiiiiiiiininn 74
251111 o) (< 74
130 SLOES ettt e 74
DIESCTIPLION «e.ueiiieiiie e et 74

N 117 PP PP 74
Using the slots Virtual Featureccooiiiiiiiiiiiniiiii e 74
EXAMPIE .. ooniiiiie e 75
13,7 ATTaYNAME ...covniiiiiiiii e 75
DIESCTIPLION «e.ueiiieiiie e et 75

N 117 OO 75
Using the arrayName Virtual Featurec..ccooiiiiiiiiiiiiineineeeeen, 75
251111 o) (< 76
13.8 MultiplicityOfINStanceoeeuuniiiiniiiieiiine e e 76
DIESCTIPLION «e.ueiiieiiie e et 76

N 117 PP 77
Using the multiplicityOflnstance Virtual Featureccooocoviiiiiniininnnn.. 77
251111 o) (< 77

14 RECUTSIVILY vttt ettt ettt et ettt et et e e e e 79
14.1 GEtRECUISIVELY ..oevtiiiiiiii e 79
DIESCTIPLION «e.ueiiieiiie e et 79

N 117 P PP PP 79
Using the getRecursively Virtual Featureccooooiiiiiiniiiniininn. 80
251111 o) (< 80

15 CONSLIAINES ..evueeiineiii ettt ettt ettt et et e e et e e et e eeaaeeenes &3
15.1 durationCONSLIAINTeuueiei it e et e et e e e e e e e e e e e eanns 83
LD el er | o151 RPN 83

N 117 PP PRP 83
Using the durationConstraint Virtual Featureccooociiniiiiniinin. 84
251111 o) (< 84

16 GENETAlIZALIONeevieiiie et 87
16.1 SPECIICCIASS ..ueeviieeiiieiii et 87
DIESCTIPLION «e.ueiiieiiie e et 87

N 117 PP PRP 87
Using the specificClass Virtual Featureccoooiiiiiiniiiniiniineeeans 87
251111 o) (< 87

17 Working with SySML Diagramscc.ueiuiiineiiniiiiieiii e iee e e eieeenes 89
17.1 downloadDiagramceeueiniiniiiiii e e 89
DIESCTIPLION «eueiiieiiie e et 89

N 117 PP PRP 89
Using the clientDependencies Virtual Featureccoocoiviiiiniiiniinennn.. &9
251111 o) (< 89
17.2 diaramTYPC ...vvnieneiiiei ettt e e e et et e et e e e aa s 90

DIESCTIPLION «eueiiieiiie e et 90

viii * Contents

N 117 PP PP 90

Using the supplierDependencies Virtual Featureccooeeiiviiiiniinni. 90
EXAMPIC .. oeniiiiieie e 90

18 File AttaChMENESveniiniiie e et e e e e 91
18.1 AttaChedFileevnieiie e e 91
DIESCTIPLION «e.ueiiieiiie e et 91

N 117 PP PP 91

Using the attachedFile Virtual Featureccooiiiiiiiiiiiiiiiniiin 91
251111 o) (< 91

L 2 153 10 T4 L) T PP 93
19.1 €leMENETYPE .oeneeneiieie et ettt e e e e e e e e e e e e 93
DIESCTIPLION «e.ueiiieiiie e et 93

N 117 PP 93

Using the elementType Virtual Featurecoooiviiiiiiiiiiniiinineieeeenn 93
251111 o) (< 93

List of Figures

Figure 2.1: metaclassName Exampleccooiiiiiiiiiiiiinii e 6
Figure 2.2: The appliedStereotypelnstance Structurec..oceuveeiuneiiineiiineenneennn. 7
Figure 2.3: featureName EXamplec.oooiiiiiiiiiiiiiii e 8
Figure 2.4: stereotypeNames EXamplecccoviiiiiiiiiiiiiiniiei e, 10
Figure 3.1: associatedProperty Exampleccooviiiiiiiiiiiiiiiiiiee e, 17
Figure 3.2: directAssociatedProperty Examplecccoeiiviiiiiiiniiiniiiiiiieiieen 19
Figure 3.3: otherAssociatedEnd Exampleocooiiiiiiiiiiiniiiiiiec e 22
Figure 5.1: connectedPropertyOrPort Exampleccooovviiiiiiiiiiniiiniiieeeeecn, 32
Figure 5.2: otherConnectorEnd Examplecoooiiiiiiiiiiiiiiiii e, 34
Figure 6.1: clientDependencies Exampleccooviiiiiiiiiiiiiiiiiiiiiceceeeee, 36
Figure 6.2: supplierDependencies Examplecoooviiiiiiiiiiiiiiiiiiiiiiiieecie 38
Figure 9.1: multiplicityProperty Exampleccoooiiiiiiiiiiiiiiiiieeeeee, 52
Figure 10.1: ActivityControlFlow Exampleccooviiiiiiiiiiiiiiiiiniiiccece 54
Figure 10.2: ActivityObjectFlow Examplecooooiiiiiiiiiiiiiiiiieen 56
Figure 11.1: VertexTransition Exampleccoooiiiiiiiiiiinie e 58

X

x < List of Figures

Preface

MapleMBSE Overview

MapleMBSE™ gives an intuitive, spreadsheet based user interface for entering detailed
system design definitions, which include structures, behaviors, requirements, and parametric
constraints.

Related Products

MapleMBSE 2026 requires the following products.
* Microsoft® Excel® 2016, Excel 2019 or Excel Office 365 desktop.

* Oracle® Java® SE Runtime Environment 8.
Note: MapleMBSE looks for a Java Runtime Environment in the following order:

1) If you use the -vm option specified in OSGiBridge.init (not specified by default),
MapleMBSE will use it.

2) If your environment has a system JRE (meaning either: JREs specified by the environment
variables JRE_ HOME and JAVA_HOME in this order, or a JRE specified by the Windows
Registry (created by JRE installer)), MapleMBSE will use it.

3) The JRE installed in the MapleMBSE installation directory.
» Teamwork Cloud™ server 2021.x, 2022.x and 2024.x
» Magic Collaboration Studio 2021.x, 2022x and 2024.x

If you are using Eclipse CapellaTM with MapleMBSE, the following version is supported:
*+ 606X

If you are using EclipseTM, the following version is supported:

* 2024-3

X1

xii ¢ Preface

Related Resources

Resource Description

System requirements and installation instructions for
MapleMBSE. The MapleMBSE Installation Guide is available
MapleMBSE Installation |in the Install.html file located in the folder where you installed
Guide MapleMBSE, or on the website.

https://www.maplesoft.com/documentation_center/
MapleMBSE Applications | Applications in this directory provide a hands on demonstration
of how to edit and construct models using MapleMBSE. They,
along with an accompanying guide, are located in the Application
subdirectory of your MapleMBSE installation.

MapleMBSE Configuration | This guide provides detailed instructions on working with
Guide configuration files and the configuration file language.
MapleMBSE User Guide |Instructions for using MapleMBSE software. The MapleMBSE
User Guide is available in the folder where you installed

MapleMBSE.
Frequently Asked You can find MapleMBSE FAQs here:
Questions
https://fag.maplesoft.com
Release Notes The release notes contain information about new features, known

issues and release history from previous versions. You can find
the release notes in your MapleMBSE installation directory.

For additional resources, visit http://www.maplesoft.com/site_resources.
Getting Help
To request customer support or technical support, visit http://www.maplesoft.com/support.

Customer Feedback

Maplesoft welcomes your feedback. For comments related to the MapleMBSE product
documentation, contact doc(@maplesoft.com.

https://www.maplesoft.com/documentation_center/
http://www.maplesoft.com/site_resources
http://www.maplesoft.com/support

1 Introduction

1.1 Scope and Purpose of this Document

The purpose of the MapleMBSE Virtual Features Guide is to describe MapleMBSE virtual
features and explain how to use them.

The intended audience for this document are users who are familiar with UML, SysML and
Model-based Systems Engineering concepts and who intend to create their own MapleMBSE
configuration files.

1.2 Prerequisite Knowledge

To fully understand the information presented in this document the reader should be famil-
iar with the following concepts:

* The Eclipse Modeling Framework ecore serialization. In particular, knowing how to
use any tool of your choice to track all the eReferences independently of the eSuperTipes.

* Thus, some basic concepts of Meta Object Facility like eClassifiers and eStructuralFea-
tures. A correct mse configuration file has within each qualifier a concrete UML eClas-
sifiers and each dimension should be accessed using a non-derived StructuralFeature
defined in the UML . ecore or a virtual one inside this guide.

* MapleMBSE Configuration Language elements (especially dimension and qualifiers,
and the syntax for importing the MapleMBSE ecore). For more information on the
MapleMBSE Configuration language, see the MapleMBSE Configuration Guide.

1.3 Motivation for Using MapleMBSE Virtual Features

SysML provides a high level of abstraction to cover as many modeling scenarios as possible
with the diagrams offered. It is a powerful and complex language that is extremely difficult
to master because of its complexity (there are hundreds of pages of technical specifications
for SysML).

Many different concrete and abstract Classifiers, with very specific semantics, are part of
the SysML technical specifications. These Classifiers should not be used interchangeably.
Even "linking" elements changes depending on the "linked" elements. For example, SysML
Associations are to Classes as Connectors are to Ports, or, what ControlFlows can be for
ActivityNodes. However, these elements are not interchangeable.

An end user, defined as a user who will be updating model information using the
MapleMBSE spreadsheet interface but likely will not be involved in creating or editing
configuration files, who interested in taking advantage of the modeling capabilities of
SysML, should not need to know its complexities. MapleMBSE helps to hide this complexity

2 « 1 Introduction

from the end user, through virtual features. They are called virtual features because, although
they extend the capabilities of native SysML, they themselves are not part of SysML.

With the right choice of labels within an Excel template and a well designed configuration
(.mse) file that implements MapleMBSE virtual features, an end user can enter a couple of
inputs in a spreadsheet and create Blocks and the Associations linking them, or Ports and
Connectors, or other combinations of elements.

For example, consider the following code snippet from a MapleMBSE configuration file
in the figure below. This figure illustrates the scenario where a configuration file is designed
without the use of virtual features to represent SysML Associations between Blocks.

Notice in the generated Excel worksheet, the number of inputs required of the end user to
represent the Association between Customer and Product. This requires knowledge of
SysML on the part of the end user.

syncrable-schema SchemaZ (p3g: BlockSchema, asg: AssociationSchema) {
I“‘ilr dim [Model] { . Creating a configuration file without MapleMBSE virtual
=Y Soiumn fname as miane features results in an excel file that requires more
input from the end user and requires the end userto
know SysML to add elements to the spreadsheet.

=lternative {

group {
record dim /

ckagedElement [Class | msg::mecaclassHame="SysML::Blocks::Block"] {

rey o /name a3 ¢

record dim /ownedAttribute[Property] {

\[kagl} Block name Association name Property name Name of property's type name of property's assodation

Model
Model |Custofmer

Model _|Product

purchases

associationRef Model

ef = gsg { Model _|Customer boughtitem _|Product purchases

lame as ascRef Model |Product buyer Customer purchases

record dim /packagedElement [Asscciation]

key column /name as aName

warksheet-template Template2 (sgh: Schema2) |

y field miame

}

Now consider an example that represents the same Association between Customer and
Product, as shown in the figure below. This time, the configuration file is designed using
the MapleMBSE virtual features, specifically, the associatedProperty virtual feature. Notice,
the only inputs required of the end user are the two SysML Blocks, Customer and Product.
The cross-references need for the Association are completed automatically.

1.4 Importing the MapleMBSE Ecore + 3

Creating a configuration file that uses MapleMBSE
virtual features results in an excel file that requires
much less input from the end user and the end user

does not need to know uml to create Association

osition classRef

Block Target block
Product
< Product _|Customer
Customer
Customer | Product

1.4 Importing the MapleMBSE Ecore

Loading MapleMBSE virtual features is analogous to the way you would load UML
Structural Features using UML Ecore. The corresponding MapleMBSE Configuration lan-
guage uses import-ecore.

The general syntax is

import-ecore "URI"

For example, to specify the NoMagic ecore:
"http://www.nomagic.com/magicdraw/UML/2.5"

To specify the MapleMBSE ecore:
"http://maplembse.maplesoft.com/common/1.0"
You must create an alias for the ecore using the syntax:
import-ecore "URI" as Alias

For example, to specify an alias for the MapleMBSE ecore:

import-ecore "http://maplembse.maplesoft.com/common/1.0" as
mse

This allows you to use the short form, mse, instead of the whole syntax.

1.5 General Syntax for the MapleMBSE Virtual Features

The general syntax for the virtual features is

[./]?alias::virtualfeature

4 « 1 Introduction

The first character can be a dot, a forward slash, or a blank. There is no strict rule of thumb
for this. For specific syntax, see the Syntax subsection for each virtual feature.

alias - This is the alias for the ecore import

virtualfeature - This is the virtual feature name you want to use, for example, asso-
ciatedProperty.

2 Stereotypes

SysML can be explained as a subset of elements defined in the UML specifications plus
some additional features not included in UML. One of these features is a Stereotype. Stereo-
types are applied to those elements adding extra meaning or modeling semantics.
MapleMBSE offers several virtual features to apply Stereotypes and navigate their extended
modeling capacities.

2.1 metaclassName

Description

Use the metaclassName virtual feature to apply Stereotypes while creating elements using
MapleMBSE. To use this virtual feature you need to identify the qualified name of the
Stereotype that you want to apply and whether the element is compatible with that stereotype.

Syntax

Any Element of the Model can have a list of appliedStereotype but only certain Stereotypes
should be applied to certain Element. This is one of the few virtual features that is used as
a filter inside the qualifier and it does not require a dot or slash notation prior to the alias.
The metaclassName virtual feature must be followed by an equals symbol and the qualified
name of the Stereotype between quotation marks.

—n"

alias::metaclassName="qualified::name"

It is important to note that this qualified name is basically a path and the name that identifies
uniquely each Stereotype, and each substring is concatenated with a double colon notation.

Using the metaclassName Virtual Feature

The following steps illustrate what you need to do to use the metaclassName virtual feature:
1. The MapleMBSE ecore is imported and its alias is mse.

2. Two data-sources are used for this example with metaclassName to filter Blocks and
Requirements. Note: both of those SysML concept are UML Classes but with different
Stereotypes.

3. Defining synctable-schemas, one for Blocks and another for Requirements. Note:
To avoid problems with MapleMBSE it is a good practice to use the same qualifier and
Stereotype filter in the data-source and the first dimension of the schema.

4. Complete the rest of the configuration as usual: worksheet-templates, synctable
and workbook.

6 -+ 2 Stereotypes

Example

The following example showcases how to use metaclassName to create Classes applying
2 different Stereotypes.

import-ecore “"http://www.nomagic.com/magicdraw/UML/2.5"

2 import-ecore "http://maplembse.maplesoft.com/common/1.8" as mse

3

4 data-source Root[Model]

5 data-source blocks = Root/packagedElement[Class | mse::metaclassName="SysML::Blocks::Block"]
6 data-source requirements = Root/packagedElement[Class | mse::metaclassName="SysML::Requirements::Requirement”]
3= synctable-schema BlockSchema {

9 record dim [Class | mse::metaclassName="SysML::Blocks::Block"] {
1@ key column /name as bName
12}
13
14= synctable-schema RequirementSchema {
15 record dim [Class | mse::metaclassName="SysML::Requirements::Requirement”] {

key column /name as rlame

¥

}

worksheet-template BlockTemplate (bsc: BlockSchema) {
vertical table tabl at (1, 1) = bsc {
key field bName: String

8
g

)

B R

¥
l

worksheet-template RequirementTemplate(rsc: RequirementSchema) {
vertical table tabl at (1, 1) = rsc {
key field rName: String

R T

}

synctable blockTable = BlockSchema<blocks>
synctable requirementTable = RequirementSchema<requirements:

PR

workbook {
worksheet BlockTemplate(blockTable)
worksheet RequirementTemplate(requirementTable)

Ll L WL L L L L LU Ra ORI ORI ORI R RS R R R R
e~ & 2@ 7 g

o

Figure 2.1: metaclassName Example

2.2 featureName

Description

As mentioned in the introduction of this section, once you applied a Stereotype to any Ele-
ment, you are changing its semantics and extending it. Use featureName to access those
extended properties stored in Slots using their qualified names.

The class diagram in Figure 2.2 (page 7) shows the different EClasses that need to be
queried in order to access those Slots. Remember that Element is an abstract EClass and it
should not be used as the qualifier. Basically all elements in a Model implement Element,
thus EClasses like Class have the structural feature appliedStereotypelnstance to query In-
stanceSpecification.

2.2 featureName < 7

Element

-appliedStereotypelnstance:

Instace Specification

-slot

Slot

Figure 2.2: The appliedStereotypelnstance Structure

Syntax

Use featureName the same way metaclassName is used within a qualifier as a filter,
meaning that no dot or slash notations are needed before the alias. It expected, following
the virtual feature, an equal symbol and a string between quotation marks; this string is the
qualified name of the property to access.

alias::featureName="qualified: :name"

This qualified name is similar to the one used to identify the Stereotype but it differs slightly
at the end with extra information concatenated to identify a single extension. As mentioned
before this virtual feature is usable while querying a Slot inside a InstanceSpecification inside
an concrete Element, but you must also know that this Element must be filtered by meta-
className with the qualified name that identifies the Stereotype.

Using the featureName Virtual Feature

To access extra Properties added after applying a Stereotype:
1. Import the MapleMBSE ecore.

2. Inside a synctable-schema navigate to a MultiplicityElement, in this case, /ownedAt—
tribute [Property] withina Class.

3. Within that dimension, define a regular column using /mse: :multiplicityProp-
erty.

4. Complete the rest of the configuration as usual: worksheet-templates, synctable and
workbook.

8 + 2 Stereotypes

Example

The following example illustrates how to access extra Properties added after applying a
Stereotype.

1. Import MapleMBSE ecore, for this example use mse as the alias.

2. Create a data-source using the metaclassName virtual feature mentioned before to
filter Requirements.

3. Define a synctable-schema for Requirements. Note: use the same qualifier and Stereotype
for the first dimension as for the data-source.

4. To access the SysML: :Requirements: :Requirement: : Text Property added
to a Class after applying the Requirement Stereotype you must:

1. Navigate appliedStereotypelnstance to get an InstanceSpecification.
2. Then slot to recover all the Slots within the InstanceSpecification

3. Use featureName with the Slot qualifier to filter the Property that you want to access

Note: The qualified name of that Property is the name of the qualified Stereotype plus 2
colons and the name of the Property.
Stereotype: SysML: :Requirements: :Requirement
Property: SysML: :Requirements: :Requirement: : Text
4. Complete the rest of the configuration as usual: worksheet-templates, synctable
and workbook.
import-ecore “http://www.nomagic.com/magicdraw/UML/2.5"
» import-ecore "http://maplembse.maplesoft.com/common/1.8" as mse
- data-source Root[Model]

5 data-source requiresents = Root/packagedElement[Class | mse::metaclassName="SysML::Requirements::Requirement”]

i= synctable-schema RequirementSchema {
¥ record dim [Class | mse::metaclassName="SysML::Requirements::Requirement™] {

18 key column /name as riame
11 column fappliedStereotypelnstance[InstanceSpecification]/slot[Slot|mse: : featureName=
"SysML: :Requirements: :Requirement::Text"]/value[LiteralString]/value
13 as spec
1

17% worksheet-template RequirementTemplate(rsc: RequirementSchema) {
vertical table tabl at (1, 1) = rsc {

key field riame: String

field spec: String

2}

synctable requirementTable = RequirementSchema<requirements>

5= workbook {
worksheet RequirementTemplate(requirementTable)

Figure 2.3: featureName Example

2.3 stereotypeNames ¢ 9

2.3 stereotypeNames

Description

Use the stereotypeNames virtual feature to filter and create Model Elements with the spe-
cific combination of Stereotypes. To use this virtual feature you need a complete and neces-
sary list of Stereotypes and their qualified names, and concatenate those qualified names
into a single String. Only Elements which Stereotypes match in number and in qualified
name are accepted by this filtering. The order of those Stereotypes is not important.

Syntax

This virtual feature is used as a attribute filter inside the qualifier and it does not require a
dot or slash. The stereotypeNames virtual feature must be followed by an equal symbol
and a String with Stereotypes. That String must separate the Stereotypes qualified names
with a comma to work properly.

alias::stereotypeNames="one::qualified: :name,another::quali-
fied: :name"

It is important to know that the order of the qualified names are not important. They can be
swapped and the same result is to be expected. On the other hand, the String must include
the exact number of Stereotypes the filter should use. Meaning if you have a model with N
Elements with Stereotypes A and B, filtering using the String "A;B;C" would not show any

of those N Elements as they do not have the same number of Stereotypes.

Using the stereotypeNames Virtual Feature

The following steps illustrate what you need to use the stereotypeNames virtual feature:
1. The MapleMBSE ecore is imported and its alias is mse.

2. A couple data-sources are used for this example with stereotypeNames to filter
Packages and Classes.

3. To use this feature to apply Stereotypes, you need to define a synctable-schema.
Note: To avoid problems with MapleMBSE it is a good practice to use the same qualifier
and Stereotypes filter in the data-source and the first dimension of the schema.

4. Complete the rest of the configuration as usual: worksheet-templates, synctable

and workbook.

10 « 2 Stereotypes

Example

The following example showcases how to use stereotypeNames to create and filter
Elements with different Stereotypes.

import-ecore "http://www.nomagic.com/magicdraw/UML/2.5.1"
import-ecore "http://maplembse.maplesoft.com/common/1.8" as mse

4= workbook {

5 worksheet ActivityTable(functionalTableSchema)

worksheet FunctionFMEAMatrix(functicnalFMEASchema,functionalTableSchema,fMEATableSchema)

worksheet FunctionsFMEATable(functionalFMEASchema)

worksheet FMEARequirementTable(fMEARequirementSchema)

worksheet DerivedFMEARequirementTable({derivedFMEARequirementSchema)

worksheet RequirementFMEAMatrix(derivedFMEARequirementSchema, fMEARequirementSchema, fMEATableSchema)

data-source Root[Model
data-source pkg = Root/packagedElement[Model|name = “Model-UAVSysten”]/packagedlement[Package|name = "System Behavior”]
data-source act = pkg/packagedElement [Activity]
data-source fmea = pkg/packagedElement[Package|name = "FMEA"]/packagedElement[Class|mse::stereotypelames="CustomStereotypes:: FMEA"
© data-source fmeaR = pkg/packagedElement[Package|name 1EA"]/packagedElement[Package [name = "FMEARequirement”]
/packagedElement[Class|mse: :sterectypeNames="CustomSterectypes: :FMEARequirement, SysML: :Requirements: :AbstractRequirement”]

iR EE R Rl R AR NS TR R

synctable-schema FunctionalTableSchemaf
record dim[Activity]{
key column /name as actName
H

}

< synctable-schema FMEARequirementSchema{
9< record dim[Class|mse: :stereotypelames="CustomStereotypes : :FMEARequirement”]{
column /name as ReqMame
1= key column /appliedStereotypelnstance[InstanceSpecification]
/slot[Slot |mse: : featureName="SysML: :Requirements: :AbstractRequirement::Id"]/value[LiteralString]/value as ReqID
- column /appliedStereotypelnstance[InstanceSpecification]
4 /slot[Slot |mse: :featureName="SysML: :Requirements: :AbstractRequirement: : Text"]/value[LiteralString]/value as RegSpecification

Figure 2.4: stereotypeNames Example

2.4 metaclass

Description

Use the metaclass virtual feature to create new Stereotypes and update the Stereotypes'
metaclass.

Syntax

Any Stereotype of the Model should either be empty (possible using MapleMBSE) or have
ametaclass (by default using modeling tools or this feature). This feature will return a string
that matches the name of the metaclass that limits to which elements the Stereotype can be
applied.

/alias::metaclass

This should be only used as a non-key column.

2.4 metaclass * 11

Creating the Stereotype with metaclass in the MSE File

The following steps illustrate what you need to do to use metaclasss virtual feature:
1. The MapleMBSE ecore is imported and its alias is mse.

2. A data-source that encompasses all the desired Stereotypes.

3. Defining a synctable-schema with a dimension that queries those Stereotypes.

4. Use the virtual feature metaclass as a column in the Stereotype dimension.
5

. Complete the rest of the configuration as usual: worksheet-templates, synctable and
workbook.

Notes:
To have a more useful stereotype view as shown below, synctable-schema must also include
another dimension for the properties, a reference decomposition, another synctable-schema

for those properties and a data-source that feeds into it.

While showing the properties, we recommend filtering out the base property. There is an
example of how to do that using the predicate called notBaseProperty.

Example

Step 1: The Ecore import.

import-ecore "http://www.nomagic.com/magicdraw/UML/2.5.1.1"

import-ecore "http://maplembse.maplesoft.com/common/1.0" as
mse

predicate notBaseProperty := NOT Property.association[Exten-
sion|memberEnd[ExtensionEnd|type[Stereotype]]]

data-source Root [Model]

data-source profile = Root/packagedElement [Profile|name="Cus-
tomProfile"]

Step 2: A data-source with that encompasses all the wanted desired Stereotypes

data-source stereotypes = profile/packagedElement [Stereotype]

12« 2 Stereotypes

data-source types library * [Package|qualifiedName="SysML::Lib-
raries::PrimitiveValueTypes"]

data-source types = types library/packagedElement [NamedEle-
ment]

synctable-schema TypeSchema {
dim [Typel {

key column /name as mName

Step 3: Defining a synctable-schema with a dimension that queries those Stereotypes

synctable-schema MainSchema (msc: TypeSchema) {
record dim [Stereotype] {
key column /name as sName

Step 4: Use the virtual feature metaclass as a column in the Stereotype dimension

column /mse::metaclass as metaclass

dim /ownedAttribute[Property|notBaseProperty] {
key column /name as pName

reference-query .typel[Type] @ tRef
reference-decomposition tRef = msc {

foreign-key column mName as mName

2.4 metaclass * 13

Step 5: Complete the rest of the configuration as usual: worksheet-templates, synctable and
workbook.

synctable typeTable TypeSchema<types>

Synctable mainTable MainSchema<stereotypes> (typeTable)
worksheet-template MainTemplate (msc: MainSchema) {
vertical table tabl at (2, 1) = msc {

key field sName

field metaclass

key field pName

key field mName

sort-keys sName

}
H

workbook { worksheet MainTemplate(mainTable) {label="Steotype View"} }

14 « 2 Stereotypes

3 Associations

An Association between two Blocks creates cross references for two UML Classes with
SysML Block Stereotypes (<<block>>) to one Association using two properties and also
makes some cross references, like Type and Association, within those properties .

3.1 associatedProperty

Description

In MagicDraw, with a couple clicks from one block to another, all of these elements are
correctly created. Similarly in MapleMBSE, the associatedProperty virtual feature
provides the ability to connect two SysML Blocks, creating a bidirectional Association at
the same hierarchicallevel in the diagram as the source Block.

Package

Source Block

Association

When MapleMBSE queries the model, the associatedProperty returns the target
Block (the Block that is related to a Property through an Association).

Syntax

The general syntax for using the associatedProperty virtual feature is as follows:
.alias::associatedProperty

Where alias is the alias you assigned to the MapleMBSE ecore. For more information
on assigning aliases, see Importing the MapleMBSE Ecore (page 3).

15

16 + 3 Associations

The associatedProperty virtual feature must be used when querying the Property
of a Block.

Using the associatedProperty Virtual Feature

The following example illustrates what you need to do to use AssociatedProperty virtual
feature.

1. In line two, the maplembse ecore is imported with an alias.
2. Use an ownedAttribute [Property] as the queried dimension.
3. Make a reference-query to a class using mse::associatedProperty.

4. Complete the reference-decomposition.

3.1 associatedProperty < 17

Example

17
188
19&
20
21
22
23
24
25
26
27
288
29E
3@
31
32
33
34
352
365
37
38
39
4@
41
428
43
44
45

import-ecore “"http://www.nomagic.com/magicdraw/UML/2.5"
import-ecore "http://maplembse.maplescft.com/common/1.8" as mse

data-source Root[Model]
data-source structurePkg = Root/packagedElement[Package]
data-source clss = structurePkg/packagedElement[Class]

synctable-schema ClassTableSchema {

dim [Class] {
key column /name as ClassName
¥
}
synctable-schema ClassTreeTableSchema(blocks: ClassTableSchema) {

record dim [Class] {
key column /name as classNamel
¥
dim fownedAttribute[Property].mse::associatedProperty[Class] @ cls {
reference-decomposition cls = cts {
foreign-key column ClassName as referredClassName
1
1
1
synctable classTableSchema = ClassTableSchema<clss:

synctable classTreeTableSchema = ClassTreeTableSchema<clss:»(classTableSchema)

worksheet-template ClassTable(cts: ClassTableSchema) {

vertical table tabl at (&5, 2) = cts {
key field ClassMame : String
key field Name4 : String
¥
¥
worksheet-template ClassTreeTable(ctt: ClassTreeTableSchema) {

vertical table tabl at (&5, 2) = ctt {
key field ClassMamel : String
key field referredClassName : String
H
H
workbook{
worksheet ClassTable(classTableSchema)
worksheet ClassTreeTable(classTreeTableSchema)
1

Figure 3.1: associatedProperty Example

18 + 3 Associations

3.2 directedAssociatedProperty

Description

To create Associations with navigability in one direction MapleMBSE uses directedAssoci-
atedProperty, using this virtual feature links two Classes and adds a Property to the source
Block and other Property to an Association.

Based on the aggregation value we can use this virtual feature to create Association, Ag-
gregation and Composition with direction.

Syntax

The general syntax for using the directedAssociatedProperty virtual feature is
as follows:

.alias::directedAssociatedProperty

Where alias is the alias you assigned to the MapleMBSE ecore (hyperlink to above).

The directedAssociatedProperty virtual feature must be used when querying the
Property of a Block.

Using the directAssociatedProperty Virtual Feature

The following example illustrates what you need to do to use directedAssociated-
Property.

1. In line two, the maplembse ecore is imported with an alias.
2. Use an ownedAttribute [Property] as the queried dimension.
3. Make a reference-query to a class usingmse: :directedAssociatedProperty.

4. Complete the reference-decomposition.

3.2 directedAssociatedProperty <+ 19

Example

import-ecore “http://www.nomagic.com/magicdraw/UML/2.5"
import-ecore “http://maplembse.maplesoft.com/common/1.8" as mse

data-source Root[Model]
data-source structurePkg = Root/packagedElement[Package]
data-source clss = structurePkg/packagedElement[Class]

= synctable-schema ClassTableSchema {

= dim [Class] {
key column /name as ClassName
}

¥

synctable-schema ClassTreeTableSchema(blocks: ClassTableSchema) {

el el i
P I i AT I - R Y. S FTR C)

158 record dim [Class] {
16 key column /name as classNamel
17 }
BE dim fownedAttribute[Property].mse::directedAssociatedProperty[Class] @ cls {
198 reference-decomposition cls = cts {
20 foreign-key column ClassName as referredClassName
21 1
22 3
23 3}
24
25 synctable classTableSchema = ClassTableSchema<clss:
26 synctable classTreeTableSchema = ClassTreeTableSchema<clss»>({classTableSchema)
287 worksheet-template ClassTable(cts: ClassTableSchema) {
298 vertical table tabl at (6, 2) = cts {
38 key field ClassName : String
31 key field Name4 : String
32 3
33}
34
35- worksheet-template ClassTreeTable(ctt: ClassTreeTableSchema) {
36E vertical table tabl at (6, 2) = ctt {
37 key field ClassNamel : String
38 key field referredClassName : String
29 }
48 3}
41
42= workbook{
43 worksheet ClassTable(classTableSchema)
e worksheet ClassTreeTable(classTreeTableSchema)

Figure 3.2: directAssociatedProperty Example

20 + 3 Associations

3.3 otherAssociatedEnd

Description

otherAssociationEnd is used in the case when two classifiers have to be linked and the in-
formation about the properties of these classifiers are owned by the association and not the
classifiers themselves, such as in the case of UseCase diagram where association exists
between an actor and usecase and these two classifiers do not own any property that defines
the other classifier.

Syntax

The general syntax for using the otherAssociationEnd virtual feature is as follows:

.alias::otherAssociationEnd

Where alias is the alias you assigned to the MapleMBSE ecore (hyperlink to above).

The otherAssociationEnd virtual feature must always be used when querying a Class

Using the otherAssociatedEnd Virtual Feature

The following example illustrates what you need to do to use otherAssociationEnd.
1. In line two, the maplembse ecore is imported with an alias.
2. Use when a Class as the queried dimension.

3. Make a reference-query to a class using mse: : otherAssociationEnd, unlike
other virtual features in this section otherAssociationEnd should not be used when a
property is querried.

4. Complete the reference-decomposition.

3.3 otherAssociatedEnd « 21

Example

22 + 3 Associations

1 import-ecore "http://www.nomagic.com/magicdraw/UML/2.5"

2 import-ecore "http://maplembse.maplescft.com/common/1.8" as mse
3

4 data-source Root[Model]

5 data-source useCasePkg = Root/packagedElement[Package]

6 data-source actors = useCasePkg/packagedElement[Actor]

7 data-source useCases = useCasePkg/packagedElement[UseCase]
8

9= synctable-schema ActorsTable {

les record dim [Actor] {

11 key column /name as Actor

12 1

13}

14

15= synctable-schema UseCasesTable(ac:ActorsTable) {

162 record dim [UseCase] {

17 key column /name as Name

18 reference-query .mse::otherAssociationEnd[Actor] @ actor
198 reference-decomposition actor = ac {

28 foreign-key column Actor as Actor

21 }

22 1

23}

24

25

26 synctable actorsTable = ActorsTable<actors:

27 synctable useCasesTable = UseCasesTable<useCases>(actorsTable)
28

29= worksheet-template Actors{ac: ActorsTable) {

38 vertical table tabl at (5, 3) = ac {
31 key field Actor : String

32 1

33 3}

34

35- worksheet-template UseCases(auct: AssociatedUseCasesTable) {
362 vertical table tabl at (5, 3) = auct {
37 key field Name : String

38 key field Actor : String

39 1

48 }

41

42= workbook {

43 worksheet Actors(actorsTable)

R worksheet UseCases(useCasesTable)

a5 1

Figure 3.3: otherAssociatedEnd Example

3.4 nestedDirectedComposition * 23

3.4 nestedDirectedComposition

Description

MapleMBSE is powerful enough to change any SysML feature, in particular a nestedClas-
sifier. The effort to change the model in a desired way is always related to creating the right
schemas and data sources to offer intuitive views. Unfortunately, creating a nested block
and a directed composition to it is not an easy task without this virtual feature. The creation
of composition association to non-existing nested block should be possible just by mentioning
the name of the target block in the right dimension.

Syntax
The general syntax for using the nestedDirectedComposition virtual feature is as follows:
dim /alias::nestedDirectedComposition| Association]

Where alias is the alias you assigned to the MapleMBSE ecore (hyperlink to above).

The nestedDirectedComposition virtual feature must be used when querying the Block and
Association in a dimension. It always needs to be used in conjunction with another virtual
feature to set up the target Block: targetBlockName.

The general syntax for using the targetBlockName virtual feature is as follows:
key column /alias: :targetBlockName

This targetBlockName virtual feature should be the only key column for a nestedDirected-
Composition dimension.

Using the nestedDirectedComposition virtual feature

The following example illustrates what you need to do to use nestedDirectedComposition
1. In line two, the maplembse ecore is imported with an alias.

2. Use a Class or an Association qualifier in the querried dimension, as shown in line 8, 12
and 16.

3. Create a targetBlockName key column for each nestedDirectedComposition dimension

24 + 3 Associations

Example

1 data-source Root[Model]

2

3= data-source blocks = Root

4= fpackagedElement[Package | name="5Structure™]

5 /packagedElement[Class|mse::metaclassName="SysML: :Blocks: :Block™]
6

7= synctable-schema Schema {

8= record dim [Class|mse::metaclassName="5SysML::Blocks::Block"] {
a key column /name as bName

10 3

11

12 Fecord dim /mse::nestedDirectedComposition[Association] {

13 key column /mse::targetBlockName as nbName

14 1

15

16€ record dim /mse::nestedDirectedComposition[Association] {

17 key column /mse::targetBlockName as nbName2

18 1

19

20 }

21

22= worksheet-template Template(sc: Schema){

238 vertical table tabl at (4,2) = sc {

24 key field bName

25 key field nbName

26 key field nbName2

27 sort-keys bName, nbName, nbName2

28 1

29 }

3

31 synctable blockTable = BlockSchema<rBlocks:

32 synctable dataTable = Schema<blocks>

33 synctable associatedDataTable = AssociatedPropertySchema<blocks:(blockTable)
34

352 workbook {

36 worksheet Template(dataTable) {label="Nested Classifier"}

37 3}

4 Blocks

4.1 recursivePartProperties

Description

The recursivePartProperties virtual feature helps finds all the related blocks and sub-blocks
and part properties, recursively.

Displaying a block and related sub-blocks in the same syncview is difficult if they are in
different packages, and there is a chance that relevant blocks are missing in the syncview.
The recursivePartProperties virtual feature helps find all the related blocks, sub-blocks and
part properties, recursively. This makes it easier to create a corresponding configuration
file.

The recursivePartProperties virtual feature works in a similar fashion to recursivelnstance-
WithSlots, and a common use case is to use both of these in conjunction for instance matrices.

Syntax

The configuration file syntax for using recursivePartProperties is illustrated below.

datasource blocks = Root/packageElement [Pack-
age|name="Test”] /packageElement [Class|name="B1l”]/mse: :recurs-
ivePartProperties[Class];

synctable-schema TestSchema {

record dim[Class]{

key column /name as mainBlock

}

Dim /mse::recursivePartProperties[Class] {

Key column /name as subBlocks

}

}

Using the recursivePartProperties Virtual Feature

The following example illustrates one way to use the recursivelPartProperties virtual feature:
1. Import the MapleMBSE ecore with an alias.

2. Create a datasource that has the context/main block for which you want to find the
properties(for example, . . /packageElement [Class |name="B1"]).

3. Use recursivePartProperties[Class] to return all the classes linked to the
context/main block and sub-blocks.

25

26 + 4 Blocks

4. Create a sync-schema and synctable and after that use that datasource in the
synctable.

Example

datasource blocks = Root/packageElement [Pack-
age | name="Test”] /packageElement [Class|name="B1l”]/mse: :recurs-
ivePartProperties[Class];

4.2 propertyDefaultValue

Description

Previously, to view or edit the default value of the value property or property without any
Stereotype, the author/editor of the configuration file editor had to write the line column
/value[LiteralReal]/value. If the property contains a value other than a real value then
MapleMBSE will not display this value in the cell. If the configuration editor were to write
the MSE file in such a way as to view the value of every type of value property, It will
complicate the MSE file and still, the end user will not able to view the values in one single
column. The propertyDefaultValue virtual feature fixes this problem and helps the config-
uration file editor and the end user to view and edit the value in one column.

Syntax

/mse::propertyDefaultValue

Using the propertyDefaultValue Virtual Feature

1.Import the MapleMBSE ecore with an alias.

2. Create a datasource that has the blocks/classes for which you want to find the properties(for
example, . . /packageElement [Class]).

3. Use ownedAttribute [Property] to get properties from the block/Class

4. Use the propertyDefaultValue to get the value from the property

5. Create a sync-schema and synctable and then use that datasource in the synctable.

Example

synctable-schema Schema{

record dim [Class|mse::metaclassName="SysML::Blocks::Block] {
key column /name as BlockName

}

record dim /ownedAttribute[Property mse::metaclassName |="MD Customization

for SysML::additional stereotypes::ValueProperty"] {

4.3 getAllProperties * 27

key column /name as pName

column /mse::propertyDefaultValue as pvalue
}

}

4.3 getAllProperties

Description

The getAllProperties virtual feature retrieves properties under a block. These prop-
erties can be direct or indirect. If the block has generalization it can go as much as possible
in the upper direct to get the properties but for the composition it can only go one step down.

The images below show the model, MSE file, and the view in MapleMBSE. In the model
block, Comp11, and Comp?2 are generalized to GenBlock using this feature MapleMBSE
can query and modify the properties that are also inherited from the GenBlock.

28 + 4 Blocks

«blocks
Comp1
values
valuel - Real =710
value? - Real =450
lvalue3 Real =450
valued - Real =34 0

Comp11 Comp2
ablocks ablocks
Compii Compd
wakes values
valel : Real=40 valuel : Real =450
value2 : Real =350 value2 : Real =34 0
value3 : Real =320 valued : Real =230
valued : Real=2350 valued | Real =50
ahblochs
GenBlock
valves

valueGG1 - String = test
valueGG2 - Real = BET
valueGG3 - String = mmw
valueGG4 - Real=340

Note: This feature can be used with the recursivePartProperties to get the flat
view or can be used alone for the hierarchical view.

4.3 getAllProperties * 29

Blocks ValueProperties DefaultValue ~
Compl valuel 7
Compl value?2 45
Compl value3 45
Compl valued 34
Compll valuel 4
Compll value?2 35
Compll value3 32
Compll valued 235
Compll valueGG1 test
Compll valueGG2 887
Compll valueGG3 mmw
Compll valueGG4 34
Comp?2 valuel 45
Comp? value?2 34
Comp?2 value3 23
Comp?2 valued 5
Comp? valueGG1 test
Comp?2 valueGG2 887
Comp?2 valueGG3 mmw
Comp? valueGG4 34
Syntax

dim /mse::getAllProperties

Using the getAllProperties virtual feature

1.Import the MapleMBSE ecore with an alias.
2. Create a datasource that has the blocks/classes for which you want to find the properties(for
example, ../packageElement[Class]).

3. Use mse::getAllProperties[Property] to get properties from the block/Class (directly

owned properties or inherit properties)

4. Create a sync-schema and synctable and after that use that datasource in the synctable.

30 < 4 Blocks

Example

synctable-schema BlocksValueTable {

dim[Class|mse: :metaclassName="SysML: :Blocks: :Block"] {
key column /name as BlockName

}

dim /mse::getAllProperties[Property
||mse: :metaclassName="MD Customization for SysML::additional_stereotypes::ValueProperty",

aggregation="composite®™] {

key column /name as ValueProp
column /mse::propertyDefaultValue as defaultValue

5 Connectors

‘ConnectableElement|

-role |1 T

Connector | Property |

-partWithPort
-end |2 -end |0.*

‘ ConnectorEnd | | Port |

A Connector is used to link ConnectableElements (for example, Ports or Properties) of a
Class through a ConnectorEnd. A Connector has two ConnectorEnds.

Based on the connection between Properties of a Class the connection can be of two types:
Delegation (connecting Ports or Properties from the system to Ports or Properties inside
a Class) or Assembly (connecting Ports or Properties within a Class).

5.1 connectedPropertyOrPort

Description

To achieve this connection MapleMBSE uses connectedPropertyOrPort virtual
feature.

The connectorPropertyOrPort virtual feature connects Ports or Properties of a
Class. It automatically detects the kind of relation required between the Properties being
connected and creates the appropriate connection.

When MapleMBSE queries the model, the connectedPropertyOrProt return the list
of target properties.

Syntax

The general syntax for using the connectedPropertyOrPort virtual feature is as
follows:

.alias::connectedPropertyOrPort

Where the alias is alias you assigned to MapleMBSE ecore.

31

32 < 5 Connectors

When the connection is created through connectedPropertyOrPort, the owner of
the connected Property is determined automatically by MapleMBSE, regardless of whether
this is a Delegation or Assembly type connection.

Using the connectedPropertyOrPort virtual feature

In general, to use the connectedPropertyOrPort virtual feature:

1. First, import the MapleMBSE ecore with alias

2. Use an ownedAttribute [Property] as the queried dimension.

3. Make a reference-query to a property using mse::connectedPropertyOrPort.

4. Complete the reference-decomposition.

Example

A specific example of how to use the ConnectedPropertyOrPort virtual feature is
shown below.

import-ecore "hittp://www.nomagic.com/magicdraw/UML/2.5"

2 import-ecore "http://maplembse.maplesoft.com/common/1.8" as mse

3

4= synctable-schema BlocksTable {

= record dim [Class|mse::metaclassMame="SysML::Blocks::Block"] {
6 key column /name as BlockName

7 ¥

8= dim fownedAttribute[Property] {

9 key column /name as PropertyName
5 }
12= synctable-schema ConnectedPropertyOrPortTable(bT: BlocksTable) {
138 record dim [Class|mse::metaclassName="SysML::Blocks::Block™] {

key column /name as classMame

F
[

record dim /fownedaAttribute[Property] {
key column /name as ParentPort

e sy |
|

}

record dim .mse::connectedPropertyOrPort @ cls {
reference-decomposition cls = bT {
foreign-key column BlockName as referredClassName
foreign-key column PortName as referredPortName

}

s s
(U]
1

=
1

[I o I T S S R S
lad B}

[

}

Figure 5.1: connectedPropertyOrPort Example

5.2 otherConnectorEnd + 33

5.2 otherConnectorEnd

Description

To achieve this connection MapleMBSE also use otherConnectorEnd virtual feature.
This virtual feature can connect between ports or properties of a class, otherCon-
nectorEnd automatically create the relation required between the properties being con-
nected and creates appropriate connection.

When MapleMBSE queries the model, the otherConnectorEnd return the list of con-
nectorEnds which is associated with the property.

Syntax
The general syntax for using the otherConnectorEnd virtual feature is as follows:

.alias::otherConnectorEnd

Where the alias is the alias you assigned to the MapleMBSE ecore.

When the connection is created using otherConnectorEnd, the owner of the connected
Property is determined automatically by MapleMBSE, regardless of whether this is a Del-
egation or Assembly type connection.

Using the otherConnectorEnd Virtual Feature

How to use the otherConnectorEnd virtual feature is shown in the example below:
1. First, import the MapleMBSE ecore with an appropriate alias

2. Use an ownedAttribute [Property] asthe queried dimension.

3. Make a reference-query to a property using mse : : otherConnectorEnd.

4. Complete the reference-decomposition.

Example

A specific example of how to use the otherConnectorEnd virtual feature is shown
below.

34 < 5 Connectors

1 import-ecore “http://www.nomagic.com/magicdraw/UML/2.5"
2 import-ecore “http://maplembse.maplesoft.com/common/1.8" as mse
3= synctable-schema BlocksTable {

4= record dim [Class|mse::metaclassName="5Sy=ML::Blocks::Block"] {

5 key column /name as blockName

B

78 dim fownedAttribute[Property] {

8 key column /name as propertyName

9 1

18 }

11= synctable-schema OtherConenctorEndTable(bt:BlocksTable){

122 record dim[Class|mse::metaclassName="5ysML: :Blocks::Block"”]{

13 key column /fname as ownerBlockName

14 1

15

168 record dim /ownedAttribute[Property]{

17 key column /name as pname

13 }

198 record dim .mse::otherConnectorEnd[ConnectorEnd] {

2@ key reference-query .role @ cls

21 reference-decomposition cls = bt {

22 foreign-key column BlockName as refRoleBlock
23 foreign-key column PropertyName as refportiame
24 }

25 reference-query .partWithPort @ pwp

268 reference-decomposition pwp = bt {

27 foreign-key column BlockName as refPropertyBlock
28 foreign-key column PropertyName as refPropertName
29 1

38 3

31}

Figure 5.2: otherConnectorEnd Example

6 Dependencies

A Dependency is used between two model elements to represent a relationship where a
change in one element (the supplier element) results in a change to the other element (client
element).

A Dependency relation can be created between any namedElement. Different kinds of De-
pendencies can be created between the model elements such as Refine, Realization,
Trace,Abstraction etc.

6.1 clientDependencies

Description

The clientDependencies virtual feature creates a relation between the client being
the dependent and supplier who provides further definition for the dependent.

Syntax

The general syntax for using the clientDependencies virtual feature is as follows:
/mse::clientDependencies

This virtual feature is used while querying a Class that has to be assigned as client to the
dependency that is being created and is used in a following dimension the class that is being
queried.

Where alias is the alias you assigned to the MapleMBSE ecore.

Using the clientDependencies Virtual Feature

In general, the following steps outline how to use clientDependencies:
1. It should be used when a named element is queried.

2. Information about the type of relationship is specified as [Dependency], [Abstrac-
tion] etc.

3. When querying the model element withmse : : clientDependencies, the reference
decomposition should be to a supplier element.

Example

The example below is an illustration of how to use the c1ientDependencies virtual
feature.

35

36 e« 6 Dependencies

import-ecore "http://www.nomagic.com/magicdraw/UML/2.5"

2 import-ecore “"http://maplembse.maplesoft.com/common/1.8" as mse

3

4 data-source Root[Model]

5 data-source package = Root/packagedElement[Package|name="Package"]
6 data-source act = package/packagedElement[Activity]

7 data-source cls = package/packagedElement[Class]

9= synctable-schema ActivityTableSchema {
las record dim [Activity] {
11 key column /name as ActName
12 }
13 }
15= synctable-schema ClassAbstractionTableSchema(acts:ActivityTable) {
168 record dim [Class] {
17 key column /name as ActNamel
198 record dim /mse::clientDependencies[Dependency] {

4 &

key reference-query .supplier @ refDecomp
reference-decomposition refDecomp = reqs {
foreign-key column ActName as AbsName

LR IR WA N

}

synctable activityTableSchema = ActivityTableSchema<act>

o

~

w0

(<)

= worksheet-template ActivityTable(cts:ActivityTableSchema){
= vertical table tabl at (4,5) = cts{
key field ActName : String
¥

}

= worksheet-template ClassAbstractionTable(cds:ClassAbstractionTableSchema){
vertical table tabl at (4,5) = cds{

LR I WA S]

=~

8 key field ActNamel : String
a key field AbsName : String
@ }
1}

= workbook{

worksheet ActivitiesTable(ActivityTable)
worksheet ClassAbstractionTable(classAbstractionTableSchema)

S s e f LU LU Ll L LU L Ld Lu L RO R BRI RS R RI BRI R R R

|\- Rk

i
[]

Figure 6.1: clientDependencies Example

6.2 supplierDependencies

Description

synctable classAbstractionTableSchema = ClassAbstractionTableSchema<cls:(ActivityTable)

6.2 supplierDependencies * 37

Similar to clientDependencies, supplierDependencies is used to create a re-
lation between two named elements. The only difference between the two virtual features

is supplierDependencies is used when the relationship has to be made from supplier
to client instead of client to supplier, as in the case of clientDependencies.

Syntax

The general syntax for using the supplierDependencies virtual feature is as follows:
/mse: :supplierDependencies

This virtual feature is used while querying a Class that has to be assigned as supplier to the
dependency that is being created and is used in a dimension following the class that is being
queried.

Where alias is the alias you assigned to the MapleMBSE ecore.

Using the supplierDependencies Virtual Feature

The following example illustrates what you need to do to use supplierDependencies
1. It should be used when a named element is being queried.

2. Information about the type of relationship is specified as [Dependency], [Abstraction]
etc.

3. When querying the model element with mse::supplierDependencies the reference decom-
position should be to a client element.

38 « 6 Dependencies

Example

import-ecore "http://wew.nomagic.com/magicdraw/UML/2.5"
import-ecore “http://maplembse.maplesoft.com/common/1.8" as mse

data-source Root[Model]
data-source package = Root/packagedElement[Package|name="Package”]
data-source cls = package/packagedElement[Class|mse::metaclassName="SysML: :Requirements: :Requirement™]

LI S

8= synctable-schema RequirementsTableSchema {
Q= record dim [Elasslnse::metaclassﬂame:'&y;HL::ﬂequirement:::Rquirement"] {
1@ key column /name as RegName

12 3

14= synctable-schema RequirementsDerivesTableSchema(reqs:RequirementsTable) {
15 record dim [Class|mse::metaclassName="5ysML: :Requirements: :Requirement™] {
key column /name as RegNamel

18 record dim /mse::supplierDependencies[Abstraction|mse::metaclassName="SysML: :Requirements: :DeriveReqt™] {
19 key reference-query .client @ reqDecomp

20 reference-decomposition reqDecomp = regs {

foreign-key column RegName as DeriveName

24}

26 synctable requirementsTableSchema = RequirementsTableSchema<cls»
27 synctable requirementsDerivesTableSchema = RequirementsDerivesTableSchema<cls»(requirementsTable)

= worksheet-template ReqClassTable(cts:RequirementsTableSchema){
vertical table tabl at (4,5) = cts{
key field Name : String

[
[=l-R

L

b

n

}

worksheet -template ReqClassDependency(cds:RequirementsDerivesTableSchema){
vertical table tabl at (4,5) = cds{
key field Namel : String

W W W L

B o

key field DeriveName : String
}
a0 3}
42+ workbook{
43 worksheet ReqClassTable(requirementsTableSchema)
2 worksheet ReqClassDependency(requirementsDerivesTableSchema)
45 }

Figure 6.2: supplierDependencies Example

6.3 featurelmpact

Description

The featurelmpact virtual feature is used in context with the MBPLE profile. Using this
profile a user can model a 150% model and use the feature impact (Dependency) relation
to link the Existence with the Feature Model. When a feature impact relationship is created,
the tag values should also be set based on the client and supplier. Adding the relation with
real features requires the user to add additional details that complicates the user actions.

6.3 featureImpact * 39

Using featurelmpact, just by specifying the source and target, the tag values are updated
automatically. The featureImpact virtual feature works similar to the clientDependencies
virtual feature. The constraint is always set as client and the supplier is the feature.

Syntax

/mse::featurelmpact

Using the featurelmpact Virtual Feature

1. Import the MapleMBSE ecore with an alias.

2. Create a datasource for the existence (constraints with stereotypes) to which the features
has to be linked.

3. Use /mse::featureImpact and this will set the constraint as client, and to set the supplier
use the supplier feature.

Example

synctable-schema featureImpactVFSchema (es : featureSchema, sps : valpropertySchema) {
record dim [Class|mse::stereotypeNames="SysML::Blocks::Block"]{
key column /name as blockName

}

record dim /ownedRule[Constraint|mse::stereotypeNames
"MBPLE Profile::ExistenceVariationPoint,UML Standard Profile::MagicDraw Profile::InvisibleStereotype"]{
key column /name as existenceMame
reference-query .constrainedElement[Property|mse::stereotypeNames=
"MD Customization for SysML::additional_stereotypes::PartProperty”] @ feaRef
reference-decomposition feaRef = sps |
foreign-key column propertyName as propertyhame
‘f
}
J**
* create dependency, constraint and tag values
=
record dim /mse::featureImpact[Dependency|mse::stereotypeNames="MBPLE Profile:
key reference-query .supplier[Property|mse::stereotypeNames="MEPLE Profile:
reference-decomposition feaRef = es {
foreign-key column featurename as featureName

:FeatureImpact™] {
:Feature"] @ feaRef

}
column /appliedStereotypelnstance[InstanceSpecification]/slot[Slot|mse:: featurename=
"MBPLE Profile::FeatureImpact::testFor™]/value[InstanceValue].instance[EnumerationLiteral]/name as fName

1
b

}

40 < 6 Dependencies

6.4 Multiple Dependencies Class

Introduction

Earlier on in this guide, when the Matrix concept was introduced, the focus was on a Matrix
where you can view only one type of relation in a Matrix.

However, through the use of a virtual mse::MultipleDependencies Eclass and the mul-
tipleDependencies virtual feature, multiple types of relations can be displayed at once in a
Matrix, where the user can pass a parameter to the virtual feature to control the type of rela-
tions displayed in the matrix.

Creating a Multiple Dependencies Class in an MSE file
The syntax for creating the multiple dependencies is:

data-source deps = <previous-ds>/mse::multipleDependencies(StringFilters)[mse::Mul-
tipleDependencies]

where where <previous-ds> represents the needed navigation to all the dependencies expected
to be displayed, e.g. Root/packagedElement[Package|name="Dependencies"].

Next, mse::multipleDependencies(StringFilters) represents the virtual feature, multipleDepend-
encies. In this case, StringFilters represents the parameters passed to multipleDependencies
used to select the type of relations displayed in the matrix.

An example:

This example is taken from the TWCSysML-RelationMatrix. MSE model file from the
Application\TWCSysML\2021x directory of your MapleMBSE installation.

data-source multiDep = sysStructurePkg/mse::multipleDependencies("SysML::Require-
ments::Satisfy","SysML::Requirements:: Verify")[mse::MultipleDependencies]

The data-source, multiDep is defined as a multi-relational datasource. Here sysStructurePkg
represents the Package data source where the virtual feature, multipleDependencies will
find the Dependencies. Here, the string filters provided are two dependencies, "Satisfy" and
"Verify". The [mse::MultiDependencies] part of this code represents the output from the
multiDependences virtual feature, which is a MultipleDependencies object.

Note: If you do not specify a stereotype as a parameter to multiDependencies, then all ste-
reotypes attached to the dependencies will be used and they will appear in the model
worksheet as a list of stereotypes.

6.5 Three Way Dependencies Class « 41

6.5 Three Way Dependencies Class

Description

The ThreeWayDependency Eclass achieves three way dependencies from a single input in
a matrix, in a way similar to the MultipleDependencies feature. In this case , a three way
dependency is defined as a combination of two two way dependencies where the supplier
of the first dependency is identical to the client of the second dependency.

Creating a ThreeWayDependency Class in an MSE File

First, some definitions:

Term Definition

client Is a reference to the client, R, of the first two-way dependency (R->M)

common Is a reference to the common element M, i.e., the supplier of the first two-way
dependency and the client of the second two-way dependency.

supplier Is a reference to the supplier, C, of the second two-way dependency (M->C)

toCommon Is a reference to the first two-way dependency (R->M)

fromCommon |Is a reference to the second two-way dependency (M->C)
toCommonStereotype | Is a string that encodes a comma-separated list of the stereotypes for the first
two-way dependency (R->M)

fiomCommorSeeoype| Is a string that encodes a comma-separated list of the stereotypes for the second
two-way dependency (M->C)

We start with a root dimension where the common element will be queried and then using
the common version of the three-way dependency feature we can navigate to the client and
the supplier.

predicate toCommonSt := mse:: ThreeWayDependency/toCommonStereotype =
"SysML::Requirements::Trace"

predicate fromCommonSt := mse::ThreeWayDependency/fromCommonStereotype =
"SysML::Requirements:: Verify"

synctable-schema ThreeDependecySchemaCommon(cISC: ClientThreeWayDependency-
Schema, sSC: SupplierThreeWayDependencySchema) {

dim [Class|mse::metaclassName="SysML::Requirements::Requirement"] { key column
/name as common }

dim /mse::threeWayDependencyCommon("SysML::Allocations::Allocate", "SysML::Re-
quirements::DeriveReqt") [mse:: Three WayDependency|toCommonSt, fromCommonSt] {

42 « 6 Dependencies

key reference-query .supplier @ refSupplier
reference-decomposition refSupplier = sSC {
foreign-key column supplier as supplier

}

key reference-query .client @ refClient
reference-decomposition refClient = cISC {
foreign-key column client as client

H
H
H

This MSE fragment has other essential parts needed to set the right stereotype combination
and select other possible three-way dependencies that have any of the root dimension ele-
ments as common element.

The stereotypes are passed as arguments to the three-way dependency feature. There will
be up to two encoded comma separated stereotypes; if no stereotypes are needed, the empty
string can be passed. The first string will be considered as toCommonStereotype and the
second string will be the fromCommonStereotype. This is particularly important when
creating a new three-way dependencies in this view. Matching for those stereotypes will be
done exactly, in the same way as the stereotypeNames virtual feature.

Two types of filters are needed to enforce the expected view updates (in the example, both
the stereotypes passed to the virtual feature mse::threeWayDependencyCommon, as well
as the predicates used in the qualifier of the virtual mse::ThreeWayDependency class). This
is particularly important when a three-way dependency is created in another view.

7 Enumeration

Enumeration is a special DataType that can be compared to a list of possible values, the
way that "colors" can be an enumeration and possible values can be: red, blue, green, etc.
These Enumerations are composed of EnumerationLiterals which are the different values
and the actual Elements to be referenced. MapleMBSE supports a couple virtual features
that need to be used in conjunction to access and reference any Enumeration and its Enu-
merationLiterals independently of where in the TWCloud project those values are stored
(for example, under Model or customized profile)

7.1 EnumerationName

Description

MapleMBSE, to simplify Enumeration identification, supports an enumerationName
virtual feature that allows simpler access to a specific Enumeration while creating an MSE
configuration. Note that MapleMBSE, while using this virtual feature, will by default instan-
tiate the accessed Element to the first EnumerationLiteral of the Enumeration. Nonetheless,
enumerationLabel can be used to change to another EnumerationLiteral. See the next section
for further details.

Syntax

The general syntax for using the enumrationName virtual feature is as follows:
alias::enumrationName="qualified: :name"

Where alias is the alias you assigned to the MapleMBSE ecore and qualified: : name
is the qualifiedName of the Enumeration. For more information on assigning aliases,
see Importing the MapleMBSE Ecore (page 3).

The enumrationName virtual feature must be used while querying an Element with a
Stereotype that supports some Property with an Enumeration type . For more information
on how to access a Slot, see the sections in the guide on the metaclassName and featureName
virtualFeatures. Once you get the specific Slot, retrieve its value and within its Qualifier
filter use enumrationName.

Using the enumerationName Virtual Feature

The following example illustrates what you need to do to use the enumerationName
virtual feature:

1. Import the maplembse ecore with an alias.

2. Create a schema that takes an Element with a Stereotype and navigate down to its In-
stanceValue for a Property with an Enumeration type. See lines 15 to 18 in the example
code in the next section for an illustration.

43

44 + 7 Enumeration

3. Make sure you are using the right combination of qualified names for Stereotypes, Slot
Properties and Enumeration.

4. Complete the /value[InstanceValue] navigation with an enumerationLabel (see next
section for further details).

Example

1 dimport-ecore "http://www.nomagic.com/magicdraw/UML/2.5"
2 dmport-ecore "http://maplembse.maplesoft.com/common/1.8" as mse

3
4= workbook {

5 worksheet EnumrationTemplate(enums)
}

data-source Root[Model]
9= data-source regs = Root/packagedElement[Package|name="Enum"]
/packagedElement[Class |mse: :metaclassName="5SysML: :Non-Normative Extensions::Requirement::extendedRequirement”]

0 oo~ o

= synctable-schema EnumSchema {
dim [Class|mse::metaclassName="5SysML::Non-Normative Extensions::Requirement::extendedRequirement™] {
key column /name as riame
column /appliedStereatypeInstance[InstanceSpecification]
/slot[Slot|mse: :featureName="SysML: :Non-Normative Extensions::Requirement::extendedRequirement: :verifyMethod"]
/value[InstanceValue |mse: :enumerationName="SysML: :Non-Normative Extensions::Requirement::VerificationMethodKind"]
/mse::enumerationLabel as verificationMethod

T
LRE®06-DonhWoe®
D @ @

[
—

synctable enums = EnumSchema<reqs>

4= worksheet-template EnumrationTemplate (es: EnumSchema) |
vertical table tabl at (1, 1) = es {

key field rName

field verificationMethod

PRI R R R R RN R T b

B oo
-

-

7.2 EnumerationLabel

Description

As shown in the previous sections on EnumerationName, MapleMBSE allows you to make
a reference to Enumeration using a qualifiedName. However, without the right mechanism
to translate from String to EnumerationLiterals and vice versa, the end user will be forced
to deal with strange Object references or unusable Excel cells. This is exactly the problem
enumerationLabel was designed to solve. Using this virtual feature allows the end user to
see the String name of the EnumerationLiteral without forcing any reference-decomposition
and it allows also the end user to change the reference from the Slot Property using the
String name of the desired EnumerationLiteral

Syntax

The general syntax for using the enumerationLabel virtual feature is as follows:
/alias::enumerationLabel

Where alias is the alias you assigned to the MapleMBSE ecore. For more information
on assigning aliases, see Importing the MapleMBSE Ecore (page 3).

The enumerationLabel virtual feature must be used while querying an InstanceValue
with a Stereotype that supports some Property with a Enumeration t ype and which was

7.2 EnumerationLabel « 45

filtered with enumerationName. For more information how to access this kind of In-
stanceValue, see the previous section.

46 + 7 Enumeration

8 TaggedValue
8.1 taggedValue

Description

The TaggedValue virtual EClass, along with the taggedValue virtual feature, allows the
user to access the value of any model TaggedValue without concern about its concrete im-
plementation (e.g. StringTaggedValue, ElementTaggedValue).

Syntax

The syntax for using this feature is:
/alias::taggedValue [mse: :TaggedValue]

This feature should be used to query any model element to which a stereotype has been
applied. That stereotype should have properties. The virtual feature returns a virtual EClass,
TaggedValue. Thus this should be used in a successive dimension.

Using the taggedValue in the MSE File

With the use of the taggedValue virtual feature, the end user would see all tags defined by
each stereotype’s property for each element, whether or not the corresponding tag values
exist in the model. If a tag value does not exist, the corresponding field is empty, as shown
below.

Element Stereotype Property Value

Sedan

Sedan CustomCar doors 5
Sedan CustomCar color Red

Sedan CustomCar isElectric FALSE

Sedan CustomCar range 620.5
Sedan CustomCar vin 2T1KR32E14C263084
Hybrid

Hybrid CustomCar doors

Hybrid CustomCar color

Hybrid CustomCar isElectric

Hybrid CustomCar range

Hybrid CustomCar vin 1C3CCCABAFM551683
Hybrid CustomElectric |batteryType |Lithium-lon =
Hybrid CustomElectric |capacity 1.3

47

48 + 8 TaggedValue

There is a particular case for ElementTaggedValue defined by enumerations where the
model TaggedValue’s value will be created when the user selects an enumeration value
from the pulldown menu. Similarly, the user can delete an existing tag value by selecting
the empty row in the pulldown menu. For all other primitive types (e.g. real, string, boolean),
the user should input the desired value and MapleMBSE will select the correct model im-
plementation. Similarly, deleting those values will delete the model TaggedValue.

Here is an example of a synctable-schema that produces the view shown above. Note that
this synctable-schema uses both the virtual EClass, mse::Tagged Value, and an accompanying
virtual feature, mse::taggedValue

synctable-schema TaggedValueSchema {

record dim[Class] {

key column/name as bName

dim /mse::taggedValue[mse: :TaggedValue] {
column .stereotype[Stereotype]/name as sName
key column .tagDefinition[Property]/name as tName

column /value as tValue

It is important to mention that the value feature will be always initialized for an enumeration
in order to guarantee the appearance of the pulldown menu. In this case, the value will be
a string, encoding all the possible options of the pulldown menu, as well as the currently
selected option.

Regarding filtering, there are two possible placements at an element and tag level. Filtering
at the element level can happen either at the data-source level or the root dimension:

[Class| mse::stereotypeNames="SysML::Blocks::Block”]

At the element level, this filter would include only blocks although other custom stereotypes
could be applied.

8.1 taggedValue « 49

At the tag level, it would be in the successive dimension that accesses the virtual Tagged-
Value:

/mse: :taggedValue [mse: :TaggedValue |notRequirementTags]
where the predicate notRequirementTags is defined as:

NOT mse::TaggedValue.stereotype[Stereotypelqualified-
Name="SysML: :Requirements:: Requirement"]

This tag filter would exclude all TaggedValues defined by the requirement stereotype.

Example

import-ecore "http://www.nomagic.com/magicdraw/UML/2.5.1.1"

import-ecore "http://maplembse.maplesoft.com/common/1.0" as mse

predicate stereotype := mse::stereotypeNames SUPERSET
"SysML::Blocks::Block,Tagged Value:: Testing Profile::Colored, Tagged Value:: Testing
Profile::CarElectric"

data-source Root[Model]

data-source structure = Root/packagedElement[Packagename="Tagged Value"]/packagedEle-
ment[Package/name="Structure"]

data-source elements = structure/packagedElement[Class|stereotype]
synctable-schema MainSchema {

record dim [Class] {

key column /name as eName

}

dim /mse::taggedValue[mse::TaggedValue] {

column .stereotype[NamedElement]/name as sName

key column .tagDefinition[NamedElement]/name as tdName

50 < 8 TaggedValue

column /value as tValue

H
i

synctable mainTable = MainSchema <elements>
worksheet-template MainTemplate(msc: MainSchema) {
vertical table tabl at (3, 1) = msc {

key field eName

field sName

key field tdName

field tValue

sort-keys eName, sName, tdName

i
}

workbook {

worksheet MainTemplate(mainTable) {label="Tagged Values"}

}

9 Util

This section contains all other virtual features that do not create elements but offer a better
alternative to access and map model information.

9.1 multiplicityProperty

Description

The UML specification contains several MultiplicityElements like Properties that have upper
and Jower features to describe their multiplicity. Use the multiplicityProperty
virtual feature to make a configuration that translates a string into those upper and lower
values and the other way around.

This virtual feature recognizes the UML commonly used notation for multiplicity (e.g. 0..¥).
Supporting this notation makes MapleMBSE much easier to use without adding complexity
and thus the final user has less to input into Excel.

Syntax

The general syntax for using themultiplicityProperty virtual feature is as follows:
/alias::multiplicityProperty

Where the alias is the alias you assigned to the MapleMBSE ecore.

This virtual feature can only be used while querying a concrete EClass implementing a
MultiplicityElement like a Property or a Pin. A slash notation is needed prior to the alias,
the 2 colons, and multiplicityProperty.

As mention previouslymultiplicityProperty uses astring to represent the multipli-
city, meaning that this particular virtual feature cannot being used as a dimension with a
qualifier. It is intended to be used only at a column declaration.

Using the multiplicityProperty Virtual Feature

The following example shows you how to map the multiplicity of a concrete MultiplicityEle-
ment like Property and a string.

1. Import the MapleMBSE ecore, as usual the alias used is mse

2. Inside a synctable-schema navigate to a MultiplicityElement, in this case /ownedAttrib-
ute[Property] within a Class

3. Within that dimension, define a regular column using /mse: :multiplicityProp-
erty

51

52 « 9 Ut

4. Complete the rest of the configuration as usual: worksheet-templates, synctable
and workbook

Example

1 import-ecore “http://www.nomagic.com/magicdraw/UML/2.5"

2 import-ecore "http://maplembse.maplesoft.com/common/1.8" as mse
3

4 data-source Root[Model]

5 data-source classes = Root/packagedElement[Class]

B

7= synctable-schema Schema {

8BS record dim [Class] {

4 key column /name as cName

18 }

11

128 record dim fownedAttribute[Property] {
13 key column fname as pName

14 column /mse::multiplicityProperty as multiplicity
15 }

16 }

17

18- worksheet-template Template(sch: Schema) {
198 vertical table tabl at (2, 2) = sch {
2@ key field cName : String

21 key field pName : String

22 field multiplicity : String

23 sort-keys cName, pMName

24 }

25 }

26

27 synctable tableProperty = Schema<classes:
28

29= workbook {

3a worksheet Template(tableProperty)

31 }

Figure 9.1: multiplicityProperty Example

10 Activity Diagrams

An Activity Diagram is a diagram with a direct connection, ActivityEdge, that connects a
node, ActivityNode, to another ActivityNode. An Activity Diagram is useful to abstract
behavioral information within a system. In order to improve MSE configurations,
MapleMBSE supports control and object flow, the 2 kind of ActivityEdges, with two distinct
virtual features.

10.1 ActivityControlFlow

Description

A ControlFlow is an ActivityEdge that is used to control the execution of ActivityNodes
within an Activity.

In MapleMBSE, the virtual feature ActivityNode is used as a reference to create Control-
Flows. Note that in MapleMBSE, abstract classes such as ActivityNode cannot be instanti-
ated. Thus, you must instantiate concrete classes such as Call ActionBehavior, ActivityPara-
meterNode, or InitialNode. See the example section for further details.

Syntax

The general syntax for using the activityControlFlow virtual feature is as follows:
.alias::activityControlFlow

Where alias is the alias you assigned to the MapleMBSE ecore. For more information
on assigning aliases, see Importing the MapleMBSE Ecore (page 3).

The activityControlF1low virtual feature must be used when querying the ActivityNode
of Activity.

Using the ActivityControlFlow Virtual Feature

The following example illustrates what you need to do to use activityControlFlow
virtual feature:

1. Import the maplembse ecore with an alias.

2. Create a schema that navigates until an ActivityNode or an element that has an ActivityN-
ode as its first dimension

3. Make a dimension reference-query to another ActivityNode using
.mse::activityControlFlow.

4. Complete the reference-decomposition.

This example has extra schema, Cal1BehaviorActionSchema used to create concrete
ActivityNodes. The other schemas in this example will fail to instantiate Element because

53

54 + 10 Activity Diagrams

ActivityNode is an abstract class.

Note: Some data sources specific to a fictional project were created to simplify the refer-
ence-decomposition. In areal life scenario you might need to identify the Package,
the Activity and the ActivityNode that you want to connect to.

Example

import-ecore "http://www.nomagic.com/magicdraw/UML/2.5"
import-ecore "http://maplembse.maplescft.com/common/1.8" as mse

data-source Root[Model]

data-source pkg = Root/packagedElement[Package|name = "controlflow”]
data-source activities = pkg/packagedElement[Activity|name="activity"]
data-source nedes = activities/node[ActivityNode]

data-source cha = activities/node[CallBehaviorAction]

o [R W T S T S)

woco

(&)

= synctable-schema NodeSchema {
18 dim [ActivityNode] {

12 key column /name as nName

13 }

14 }

15

16= synctable-schema CallBehavicrActionSchema {

178 dim [CallBehaviorAction] {
key column /name as nName
¥

=
woca

}

S <)

~ worksheet-template CallBehaviorActionTemplate (cbasc: CallBehaviorActionSchema) {
= vertical table tabl at (2, 1) = chasc {
key field nName
¥

[V SR FTRy Sy

}

= synctable-schema Schema(nsc: NedeSchema) {
= dim [ActivityMode] {
key column /name as nName

= o

woco

Ll L Ll R R R R R R R RO RO R
[&x)

1)

2

38 dim .mse::activityControlFlow[ActivityNode] @ tgtNode {
4 reference-decomposition tgtNode = nsc {

5 foreign-key column nName as tgtNode

& ¥

7 }

8}

Figure 10.1: ActivityControlFlow Example

10.2 ActivityObjectFlow < 55

10.2 ActivityObjectFlow

Description

An ObjectFlow is an ActivityEdge that represents the flow of object data between ActivityN-
odes within an Activity. Sometimes, the ObjectFlow directly connects two ActivityNodes.
However, due to UML specifications, some ActivityNodes cannot be connected directly
using an ObjectFlow. In these cases Pins are required. Pins are objects that accept and
provide values to actions. These values represent an input to an action or output from an
action.

If an ActivityNode that requires Pins, such as CallBehaviorAction, also has a Behavior that
further describes it’s functionality, then both the ActivityNode and Behavior need to have
their Pins (specifically ActivityParameterNode and Parameters) synchronized, both in
quantity and direction.

Syntax

The general syntax for using the activityObjectFlow virtual feature is as follows:
.alias:: activityObjectFlow

Where alias is the alias you assigned to the MapleMBSE ecore. For more information on
assigning aliases, see Introduction (page 1).

The activityObjectFlow virtual feature must be used when querying the ActivityNode
of Activity.

Using the ActivityObjectFlow Virtual Feature

The following example illustrates what you need to do to use activityObjectFlow
virtual feature:

1. Import the maplembse ecore with an alias.

2. Create a schema that navigates until an ActivityNode or an element which has an Activ-
ityNode as its dimension.

3. Make a dimension reference-query to another ActivityNode using .mse: :
activityObjectFlow.

4. Complete the reference-decomposition.

56 <« 10 Activity Diagrams

Example

1 import-ecore "http://www.nomagic.com/magicdraw/UML/2.5"

2 import-ecore “http://maplembse.maplescft.com/common/1.8" as mse

3

4 data-source Root[Model]

5 data-source pkg = Root/packagedElement[Package|name = "gbjectflow"]

& data-source activities = pkg/packagedElement[Activity|name="activity"]
7 data-source nodes = activities/node[ActivityNode]

8

9= synctable-schema ModeSchema {

Lea dim [ActivityNode] {

1 key column /name as nName

L2 ¥

13 }

L4

5= synctable-schema Schema(nsc: MNodeSchema) {

L6 dim [ActivityNode] {

L7 key column /name as nName

LB ¥

19

o= dim .mse::activityObjectFlow[ActivityNode] @ tgtNode {
18 reference-decomposition tgtNode = nsc {
12 foreign-key column nName as tgtNode
13 }

4 3

501

'6

17= worksheet-template Template (sc: Schema) {

B8 vertical table tabl at (2, 1) = sc {

19 key field nName

i@ key field tgtNode

i }

12}

i3

4 synctable nodeTable = NodeSchema<nodes:

iS5 synctable controlFlowTable = Schema<nodes:(nodeTable)
ig

i7= workbook {

18 worksheet Template(controlFlowTable)

i}
Figure 10.2: ActivityObjectFlow Example

11 StateMachines

StateMachine diagrams are used to define the different states that a system will exist in.
This kind of diagram helps modelers to describe discrete, event-driven behaviors of the
whole system or its parts.

11.1 VertexTransition

Description

MapleMBSE, in order to simplify Transition between Vertexes, supports a vertexTrans—
ition virtual feature that allows a better end user experience while inputting data.Note
that MapleMBSE will fail to instantiate abstract classes like Vertex and it will be required
to instantiate instead concrete classes like Pseudostate, State or FinalState. Nonetheless,
Vertex can be used as reference to create Transitions. See the example section for further
details.

Syntax

The general syntax for using the vertexTransition virtual feature is as follows:
.alias:: vertexTransition

Where alias is the alias you assigned to the MapleMBSE ecore. For more information
on assigning aliases, see Importing the MapleMBSE Ecore (page 3).

The vertexTransition virtual feature must be used when querying the any kind of
Vertex within a given Region of a StateMachine.

Using the VertexTransition Virtual Feature

The following example illustrates what you need to do to use the vertexTransition
virtual feature:

1. Import the maplembse ecore with an alias.
2. Create an schema that navigates till an Vertex or which first dimension is an Vertex.
3. Make a dimension reference-query to another Vertex using .mse:: vertex Transition.

4. Complete the reference-decomposition.

This example has some extra schema, called StateSchema, used to create concrete States.
The other schemas in this example will fail to instantiate Element because Vertex is an ab-
stract class.

Note: some data sources specific to a fictional project were create in order to simplify the
reference-decomposition, in areal life scenario you might need to identify the
Package, the StateMachine, the Region and the Vertex that you want to connect to.

57

58 ¢ 11 StateMachines

Example

1 import-ecore "http://ww.nomagic.com/magicdraw/UML/2.5%

2 import-ecore "http://maplembse.maplesoft.com/commen/1.8" as mse

4 data-source Root[Model]

5 data-source pkg = Root/packagedElement[Package |name="statemachine”]
6 data-source stm = pkg/packagedElement[StateMachine|name="stm"]
data-source rg = stm/region[Region|name="rg"]

data-source vertexes = rg/subvertex[Vertex]

data-source states = rg/subvertex[State]

11= synctable-schema VertexSchema {
12 dim [vertex] {

13 key column /name as wvName

1w}

15 }

17= synctable-schema StateSchema {

18 dim [State] {

19 key column /name as sName

}

21}

23% worksheet-template StateTemplate(ssc: StateSchema) {

241 wvertical table tabl at (2, 1) = ssc {

25 key field sMName

26 1

27 }

29= synctable-schema Schema(vsc: VertexSchema) {

3@ dim [Vertex] {

31 key column /name as vName

32 }

EFTE dim .mse::vertexTransition[Vertex] @ tgtRef {

35 reference-decomposition tgtRef = wsc

3 foreign-key column vName as tgtVertex
1

8 }

39 }

21= worksheet-template Template(sc: Schema) {
428 wvertical table tabl at (2, 1) = sc {

43 key field vHame

as key field tgtvertex

46 }

48 synctable vertexTable = VertexSchema<vertexes>

40 synctable stateTable = StateSchema<states:>

58 synctable transitionTable = Schema<vertexes>(vertexTable)
52¢ workbook {

53 worksheet StateTemplate(stateTable)

5 worksheet Template(transitionTable)

55 }

Figure 11.1: VertexTransition Example

11.2 VerticalTransition

Description

MapleMBSE, in order to simplify Transition between Vertexes, supports a vertical-
Transition virtual feature that allows a better end user experience while inputting
data.Note that MapleMBSE will fail to instantiate abstract classes like Vertex and it will be
required to instantiate instead concrete classes like Pseudostate, State or FinalState. Non-

11.2 VerticalTransition ¢ 59

etheless, Vertex can be used as reference to create Transitions. See the example section for
further details.

Syntax

The general syntax for using the verticalTransition virtual feature is as follows:
.alias:: verticalTransition

Where alias is the alias you assigned to the MapleMBSE ecore. For more information
on assigning aliases, see Importing the MapleMBSE Ecore (page 3).

The verticalTransition virtual feature must be used when querying the any kind
of Vertex within a given Region of a StateMachine.

Using the VertexTransition Virtual Feature

The following example illustrates what you need to do to use the vertexTransition
virtual feature:

1. Import the maplembse ecore with an alias.
2. Create an schema that navigates till an Vertex or which first dimension is an Vertex.
3. Make a dimension reference-query to another Vertex using .mse:: vertex Transition.

4. Complete the reference-decomposition.

60 < 11 StateMachines

12 Comments

12.1 ownedComments

Description

A comment is an element that represents a textual annotation that can be attached to other
elements or a set of elements.

A comment can be owned by any element.

This virtual feature creates a comment and annotated it with the owner element.

Syntax

The general syntax for using the ownedComments virtual feature is as follows:
/alias:: ownedComments
Where the alias is the alias you assigned to the MapleMBSE ecore.

Using the ownedComments Virtual Feature

The following example shows you how to use the ownedComments feature.
1. Import the MapleMBSE ecore, as usual the alias used is mse
2. Inside a synctable-schema navigate to a Class

3. Within that dimension, define a regular column using /mse : : ownedComments [Com-
ment]

4. Complete the rest of the configuration as usual: worksheet-templates, synctable
and workbook

61

62 <« 12 Comments

Example
1 import-ecore "DLtp://www pomagic,.com/magicdraw / UML/2.5"
2 imporc-ecore "http://maplembse . maplescofc.com/common/l.0" as mse
=
4 daca-source Root [Model)
= data-source blocks = Root/packagedElement [Package]
&
T synctable-schema Schema {
] record dim [Package] {
8 key column /name as packageName
10 ¥
11
12 record dim SpackagedElement[Classa] |
13 key column /name as classMame
14 column /mae: :ownedCommentcs [Commant] /body as body
15 h]
16 }
17
18 worksheec—-cemplace Template (t=s: Schema) {
159 vertical table t at (1,1) = t= {
20 key field packageHame
21 field classHame
22 field body :Scring
23 sort-keys packageName
24 }
= }
26
= synctable—-achema Schema2 ({
2B record dim [Package] {
29 key column /name as packageMName
30 }
31
32 record dim /SpackagedElement [Class] {
a3 key column /name as claasMame
34 }
35
36 record dim /mse::ownedComments [Comment] {
a7 key column /body as body
38 }
35 }
40
41 workaheet—-template Templatel (ts: Schemal) |
12 vercical table t at (l,1) = ©=s {
43 key field packageName
44 field classHName
45 field body :String
46 sorc-keys packageMName
47 ¥
48 }
449

S0 synctable Tablel = Schema<blocks>
51 aynctable Table2 = SchemaZ<blocks>

52

53 workbook |

54 worksheer Templacte (Tablel)
55 worksheet TemplateZ (Table2)

12.1 ownedComments ¢ 63

64 < 12 Comments

13 Instance Matrices

SysML permits users to create an instance of the classifiers with their properties. If the
classifier is defined with some properties, the instances will own slots that contain the
properties defined. This instance allows users to create concrete elements from the more
general model. In order to simplify the task related to InstanceSpecification, MapleMBSE
proposes the following virtual features to support the creation, edition, and removal of in-
stances and their Slots.

13.1 SlotValue

Description

SysML has a complex structure to access the values within Slots. Those values change
widely depending on the type of the property defining the owing Slot. Imagine a real property
defining Slot, which, in order to contain that value, requires a LiteralReal, and then the real
value will be stored within that literal. Each type has its own literal class, and for reference
to other instances the mechanisms are another matter altogether. This is just a reminder of
how much complexity this InstanceSpecification modeling has, but thanks to this virtual
feature, MapleMBSE simplifies and hides that complexity. Using a single access point and
without caring about the concrete type of the property, SlotValue will return a string repres-
enting the value given Slot. MapleMBSE proposes an easy mechanism to display, create,
and edit that first value associated to any Slot. Emphasis in first, SysML metamodel allows
to associate several values to a single Slot, it is by design that MapleMBSE does not use
this virtual feature for a different multiplicity.

Syntax

The general syntax for using the slotValue virtual feature is as follows:
column [Slot]/alias::slotValue as column_ name

Where alias is the alias you assigned to the MapleMBSE ecore. For more information on
assigning aliases, see Importing the MapleMBSE Ecore (page 3).

The slotValue virtual feature must be used while querying a Slot, and the return string can
only be used within a column.

65

66 < 13 Instance Matrices

Using the SlotValue Virtual Feature

The following example illustrates what you need to do to use the slotValue virtual feature:
1. Import the MapleMBSE ecore with an alias

2. Create a schema that has a dimension accessing a Slot from an InstanceSpecification,
see line 24.

3. Make sure that you are using the right combination of applied Classifier to the InstanceSpe-
cification and the Slot’s definingFeature.

4. Access that Slot’s value using the slotValue virtual feature, see line 30

13.2 InstanceTree * 67

Example

import-ecore "http://www.nomagic.com/magicdraw/UML/2.5.1"
import-ecore “http://maplembse.maplesoft.com/common/1.8" as mse

data-source Root[Model]

data-source pkg = Root/packagedElement[Package|name="Slots"]

data-source blocks = pkg/packagedElement[Class|mse: :metaclassName="5SysML::Blocks::Block"]
data-source instances = pkg/packagedElement[InstanceSpecification]

synctable-schema PropertySchema {
record dim [Class|mse::metaclassName="5SysML::Blocks::Block™] {
key column /name as bName
}
dim /fownedAttribute[Property] {
key column /name as pName

}

synctable-schema Schema*(psc: PropertySchema){
record dim [InstanceSpecification] {
key column /name as iName
}
dim /slot[Slot] {
key reference-query .definingFeature [@pRef
reference-decomposition pRef = psc {
foreign-key column bName as bName
foreign-key column pName as pName

}

column /mse::slotValue as value

}

worksheet-template Template(sc: Schema) {
vertical table tabl at*(2, 1) =
key field iName
key field bName
key field pName
field value
sort-keys iName, bName, pName

}

sC |

}

synctable propertyTable = PropertySchema<blocks:
synctable syncTable = Schema<instances»(propertyTable)

workbook {
worksheet Template(syncTable)

}

13.2 InstanceTree

Description

SysML forces each Slot to be owned by an InstanceSpecification. The regular way to nav-
igate would be from InstanceSpecification to Slot, and without any other mechanisms it

68 < 13 Instance Matrices

would be hard get a list of the InstanceSpecification tree for a given Slot. Remember that
a Slot can have, as values, references to other InstanceSpecifications, and those would be
part of tree for that given Slot. Returning this special tree list of InstanceSpecifications is
the goal of instanceTree virtual feature.

Syntax

The general syntax for using the instanceTree virtual feature is as follows:

dim .alias::instanceTree[InstanceSpecification]

Where alias is the alias you assigned to the MapleMBSE ecore.

For more information on assigning aliases, see Importing the MapleMBSE Ecore (page 3).
The instanceTree virtual feature must be used in a dimension level after querying a Slot,
the return type is a list of reference to the InstanceSpecifications which belong to the tree
of the queried Slot.

Using the InstanceTree Virtual Feature

The following example illustrates what you need to do to use the instanceTree virtual feature:
1. Import the MapleMBSE ecore with an alias

2. Create a schema that has a dimension accessing a Slot from an InstanceSpecification,
see line 24.

3. The dimension after the Slot one should use the instanceTree, see line 32

13.2 InstanceTree * 69

Example

import-ecore "http://www.nomagic.com/magicdraw/UML/2.5.1"
import-ecore "http://maplembse.maplesoft.com/common/1.8" as mse

data-source Root[Model]

data-source pkg = Root/packagedElement[Package|name="5lots"]

data-source blocks = pkg/packagedElement[Class|mse: :metaclassName="SysML: :Blocks::Block™]
data-source instances = pkg/packagedElement[InstanceSpecification]

synctable-schema PropertySchema {
record dim [Class|mse::metaclassName="SysML::Blocks::Block"] {
key column /name as bName
}

dim SfownedAttribute[Property] {
key column /name as pName
h
}

synctable-schema Schema (psc: PropertySchema){
record dim [InstanceSpecification] {
key column /name as iName
¥

record dim /slot[slot] {
key reference-guery .definingFeature {@pRef
reference-decomposition pRef = psc {
foreign-key column bName as bName
foreign-key column pName as pName

}

dim .mse::instanceTree[InstanceSpecification] {
key column /name as iNameTree
}

¥

worksheet-template Template(sc: Schema) {
vertical table tabl at (2, 1) = sc {
key field iName
key field bName
key field pName
key field iNameTree
sort-keys iName, bMName, pName

}

synctable propertyTable = PropertySchema<blocks:
synctable syncTable = Schema<instances:(propertyTable)

workbook {
worksheet Template(syncTable)
}

70 < 13 Instance Matrices

13.3 InstanceWithSlots

Description

It is well known that InstanceSpecifications and their Slots are an essential part of a useful
and meaningful model. They are necessary to achieve results, but the task of instantiating,
editing, and removing those elements is slow and error prone. MapleMBSE helps to create
very complex structures using InstanceWithSlots, when you pass Class as parameter to an
InstanceSpecification using this virtual feature, you will see how:

» MapleMBSE updates the list of classifiers that are applied to a given InstanceSpecification
» For each defining property related to that applied class, MapleMBSE will create a Slot
defined by a property with its default value.

Syntax

To use instanceWithSlots virtual feature as a column within an InstanceSpecification dimen-
sion, the syntax is as follows:

reference-query .alias::instanceWithSlots @reference name

This configuration line needs to be completed with a reference-decomposition that uses a
Class schema, see the example for further information. Also remember that alias is the alias
you assigned to the MapleMBSE ecore.

For more information on assigning aliases, see Importing the MapleMBSE Ecore (page 3).

Using the InstanceWithSlots Virtual Feature

The following example illustrates one way to use the instanceWithSlots virtual feature:
1. Import the MapleMBSE ecore with an alias
2. Create a schema that has a dimension accessing an InstanceSpecification, see line 16.

3. Reference-query instanceWithSlots, see lines 18/19

13.4 RecursivelnstanceWithSlots ¢ 71

Example

import-ecore “http://www.nomagic.com/magicdraw/UML/2.5.1"
import-ecore “http://maplembse.maplesoft.com/common/1.8" as mse

data-source Root[Model]

data-source pkg = Root/packagedElement[Package|name="Slots"]

data-source blocks = pkg/packagedElement[Class|mse: :metaclassName="SysML: :Blocks: :Block™]
data-source instances = pkg/packagedElement[InstanceSpecification]

synctable-schema BlockSchema {
record dim [Class|mse::metaclassName="5SysML::Blocks::Block"] {
key column /name as bName

}
}

synctable-schema Schema (bsc: BlockSchema){
record dim [InstanceSpecification] {
key celumn /name as iName
reference-query .mse::instanceWithSlots @ bRef
reference-decomposition bRef = bsc {
foreign-key column bName as cName

}
}

worksheet-template Template(sc: Schema) {
vertical table tabl at (2, 1) = sc {
key field iName
field cName

}

synctable blockTable = BlockSchema<blocks:
synctable syncTable = Schema<instances>(blockTable)

workbook {
worksheet Template(syncTable)
}

13.4 RecursivelnstanceWithSlots

Description

The Recursivelnstance WithSlots virtual feature does the same thing that InstanceWithSlots
does but for all possible InstanceSpecifications in the tree. If a Class A is composed by
other Class B and you use recursivelnstanceWithSlots to create an InstanceSpecification
of Class A, MapleMBSE will also create an InstanceSpecification for Class B with Slots.

72 13 Instance Matrices

Syntax

To use recursivelnstance WithSlots virtual feature as a column within an InstanceSpecification
dimension, the syntax is as follows:

reference-query .alias::recursivelInstanceWithSlots @refer-
ence name

This configuration line needs to be completed with a reference-decomposition that uses a
Class schema, see the example for further information. Also remember that alias is the alias
you assigned to the MapleMBSE ecore. For more information on assigning aliases, see
Importing the MapleMBSE Ecore (page 3).

Using the RecursivelnstanceWithSlots Virtual Feature

The following example illustrates one way to use the recursivelnstanceWithSlots virtual
feature:

1. Import the MapleMBSE ecore with an alias
2. Create a schema that has a dimension accessing an InstanceSpecification, see line 16.

3. Reference-query recursivelnstanceWithSlots, see lines 18/19

13.5 AttachedFile < 73

Example

import-ecore "http://www.nomagic.com/magicdraw/UML/2.5.1"
import-ecore "http://maplembse.maplesoft.com/common/1.8" as mse

data-source Root[Model]

data-source pkg = Root/packagedElement[Package |name="5lots"]

data-source blocks = pkg/packagedElement[Class|mse::metaclassName="5ysML::Blocks::Block"]
data-source instances = pkg/packagedElement[InstanceSpecification]

synctable-schema BlockSchema {
record dim [Class|mse::metaclassName="5SysML::Blocks::Black™] {
key column fname as bName
}

}

synctable-schema Schema (bsc: BlockSchema){
record dim [InstanceSpecification] {
key column fname as iName
reference-query .mse::recursiveInstanceWithSlots @ bRef
reference-decomposition bRef = bsc {
foreign-key column bName as cMame
}

}

worksheet-template Template(sc: Schema) {
vertical table tabl at (2, 1) = sc {
key field iName
field cName

}

synctable blockTable = BlockSchema<blocks:>
synctable syncTable = Schema<instances:(blockTable)

workbook {
worksheet Template(syncTable)
}

13.5 AttachedFile

Description

The attachedFile virtual feature supports MagicDraw file attachments, which are accessible
through comments. It downloads all the relevant file attachments, and displays hyperlinks
to temporary locations in the user interface. When the user clicks on the link, the user inter-
face will open the file.

Syntax
The syntax to use attachedFile is as follows:

column /mse::attachedFile as fileName

74 13 Instance Matrices

Using the attachedFile Virtual Feature

The following example illustrates one way to use the recursivelnstanceWithSlots virtual
feature:

1. Import the MapleMBSE ecore with an alias

2. Create a schema that has a dimension accessing an ownedComment line 5, in the column
level call the attached VF see line 6 in the example code

Example

synctable-schema AttachedFileSchema ({

record dim[Package] {

key column /name as PkgName

}

dim /ownedComment [Comment |[mse: :stereotypeNames="UML Standard
Profile::MagicDraw Profile::AttachedFile"]{

column /mse::attachedFile as fileName

}

}

13.6 Slots

Description

Use the slots virtual feature to add a new slot and display all the slots recursively under a
top-level instance. The slots virtual feature can also be used to delete a child slot under a
top level instance and then recreate the child slot.

Syntax

The syntax to use slots is as follows:
dim /mse::slots[Slot]

Using the slots Virtual Feature

The following example illustrates one way to use the Slots virtual feature:
1. Import the MapleMBSE ecore with an alias

2. Create a schema that has a dimension accessing slots using the slots virtual feature (shown
in line 6 in the slots VF get all the slots Recursively under a instance specification

13.7 ArrayName + 75

Example

synctable-schema InstanceTable (blk : BlocksTable) {
record dim [InstanceSpecification] {
key column /name as instanceName

}

dim /mse::slots[Slot] {

key reference-query .definingFeature[Property] @ dfRef
reference-decomposition dfRef = blk {

foreign-key column bName as bName

foreign-key column valName as valName

}

key column /mse::slotValue as cValue
}
}

13.7 ArrayName

Description

This feature is used to display the classifier of an instance along with its multiplicity. This
feature gets a list of the sub-instance values for a given instance and returns the classifier,

along with numbering, based on the list length. In the case of only one instance, numberings
are not displayed. For example, if an Instance has two sub-instances due to the properties

multiplicity, MapleMBSE will display the classifier name with array numbering i.e., Clas-
sifier[1], Classifier[2]

Syntax

/ alias::arrayName

Using the arrayName Virtual Feature
This feature works only in the context of instance specification.

The following example illustrates the use of the arrayName virtual feature.
1. Navigate to the sub-instance from a top-level instance as shown below.

2. Use the arrayName virtual feature to get the classifier name along with the sub-instance
multiplicity.

76 < 13 Instance Matrices

Example

import-ecore "http://www.nomagic.com/magicdraw/UML/2.5.1"
import-ecore "http://maplembse.maplesoft.com/common/1.0" as mse

workbook {
worksheet InstanceMultiTable (instanceMultiplicitySchema)

}

data-source Root[Model]

data-source pkg = Root/packagedElement [Package|name="InstanceView"]

data-source instan = pkg/packagedElement [Package|name="Instances"]

data-source instance = instan/packagedElement[InstanceSpecification
|classifier=[Class|gualifiedName="SysML-Sample::InstanceView: :Vehicle"]]

synctable-schema InstanceMultiplicitySchema {
dim [InstanceSpecification|name = "vehicle instancel"] |
key column .classifier[Class]/name as blockName
}
optional {
allow-empty dim /slot[Slot|definingFeature=[Property|
mse: :stereotypeNames="MD Customization for SysML::additional_ stereotypes::
PartProperty"]]Vvalue[lnstanceValue].instance[InstanceSpecification] {
key column /mse::arrayName as propName

}
dim ._instanceValueOfInstance[InstanceValue] |
key column /mse::multiplicityOfInstance as multiVal

}

synctable instanceMultiplicitySchema = InstanceMultiplicitySchema<instance>

worksheet-template InstanceMultiTable (ay : InstanceMultiplicitySchema) {
vertical table tabl at (4,5) = ay{
key field blockName
key field propName
key field multival
unmapped-field
sort-keys blockName,propName,multival

13.8 MultiplicityOfinstance

Description

This feature is used to increase or decrease the number of sub-instances of the template in-
stance (Top level instance based on which the rows of the instance matrix are displayed)
that is defined for the rows of an instance matrix. It navigates using the instance classifier
to get details of the property multiplicity, based on this value defined for the property in the
model user can update the value in the table for the template instance.

13.8 MultiplicityOflnstance <+ 77

Syntax

The general syntax for using the multiplicityOfInstance virtual feature is as follows:
/alias::multiplicityOflnstance
Using the multiplicityOfinstance Virtual Feature

1. Multiplicity of Instance should be used in a table view that queries the InstanceSpecific-
ation and its sub-instances as shown in the example.

2. It is recommended that multiplicityOfInstance be used with the arrayName feature so
that the tables can display all the available Instances and its sub-instances.

Example

import-ecore "http://www.nomagic.com/magicdraw/UML/2.5.1"

import-ecore "http://maplembse.maplesoft.com/common/1.0" as mse

workbook {
worksheet InstanceMultiTable (instanceMultiplicitySchema)

}

data-source Root [Model]

data-source pkg = Root/packagedElement [Package|name="InstanceView"]

data-source instan = pkg/packagedElement [Package |name="Instances"]

data-source instance = instan/packagedElement[InstanceSpecification
|classifier=[Class|qualifiedName="SysML-Sample::InstanceView::Vehicle"]]

synctable-schema InstanceMultiplicitySchema ({
dim [InstanceSpecification|name = "vehicle_instancel™] {
key column .classifier([Class]/name as blockName
}
optional ({
allow-empty dim /slot[Slot|definingFeature=[Property|
mse::stereotypeNames="MD Customization for SysML::additional_stereotypes::
PartProperty"]]Vvalue[lnstanceValue].instance[InstanceSpecification] {
key column /mse::arrayName as propName

}
dim ._instanceValueOfInstance[InstanceValue] {
key column /mse::multiplicityOfInstance as multival

synctable instanceMultiplicitySchema = InstanceMultiplicitySchema<instance>

worksheet-template InstanceMultiTable(ay : InstanceMultiplicitySchema) {
vertical table tabl at (4,5) = ay{
key field blockName
key field propName
key field multivVal
unmapped-field
sort-keys blockName,propName,multivVal

78 13 Instance Matrices

14 Recursivity

14.1 getRecursively

Description

The getRecursively virtual feature works as a chained data source, traversing all subelements
recursively under the owner data source or QPE and then filters out elements matching the
qualifier and filter.

Syntax

The general syntax for using the getRecursively virtual feature is as follows:
data-source packages = Root/packagedElement [Pack-

age |name="C3"] /getRecursively[Package]

Where C3 is the name of the package, class, port, etc. For this example, all packages under
C3 will be retrieved.

data-source packages = Root/packagedElement [Package]/getRe-
cursively[Package]

In the above data source syntax example, all the packages under root are retrieved. After
that, all the elements (packages) under those packages are retrieved, recursively. When you
are adding a new element, in this case, it will go under one of the packages which was re-
trieved from the root.

data-source packagesC3Class = Root/mse::getRecursively[Pack-
age |name="C3"] /packagedElement [Class]

In the syntax example above, first, getRecursively finds the packages under the model. The
model may have more than one C3 package.

Note that this is maybe very inefficient when the model is big, and it would be much faster
to explicitly specify the path for each existing C3 package.

data-source packagesC3Class = Root/mse::getRecursively[Pack-
age|name="C3"]/ mse::getRecursively[Class]

This data source gets all packages recursively and then sorts them and shows the ones named
C3. After that, you get all classes under these C3 packages and any of their subpackages.

79

80 < 14 Recursivity

Using the getRecursively Virtual Feature

The following example shows you how to use the ownedComments feature.
1. Import the MapleMBSE ecore, as usual the alias used is mse
2. Inside a synctable-schema navigate to a Package

3. In the next dimension, use /mse: :getRecursively[Class] to getall the class
under the top package(Previous dim/root dim) and sub packages

4. Complete the rest of the configuration as usual: worksheet-templates, synctable
and workbook

Example

In this example, the code snippet retrieves all the packages and sub packages under the
package C3

synctable-schema PackageTable E]
record dim [Package] {
key column /name as pMName
¥
record dim / mse:: getRecursively[Class] {
key column /name as chName

This feature can be used anywhere in a QPE or data source, but not at the start of QPE or
data source.

14.1 getRecursively < 81

synctable-schema PackageTable @
record dim [Package] {
key column /name as Name
¥
record dim / mse:: getRecursively[Package] {
key column /name as Namel

82 « 14 Recursivity

15 Constraints

SysML makes it hard to accessing the minimum and maximum constraint data in SysML
can be difficult because the model is forced to use LiteralString and other elements (e.g.
TimeExpression, Constraints). The main purpose of the virtual feature in this chapter is to
allow the MSE file to access this data with ease and aggregate it into simple double period
notation (..). Another benefit to the use of a virtual feature for working with constraint data
is that the end user has fewer inputs to provide, reducing human error.

15.1 durationConstraint

Description

To display and set duration constraints, MapleMBSE provides a virtual feature that allows
the simultaneous creation and editing of the min and max limits of the constraint using a
simple double dot notation (for example, minConstraint..maxConstraint). In the case of both
minConstraint and maxConstraint representing numerical values (in decimal or scientific
notation), MapleMBSE performs a check to determine if the minConstraint value is less
than or equal to the maxConstraint value.

Syntax
The general syntax for using the durationConstraint virtual feature is as follows:
column /mse::durationConstraint as dcValue

For user input, the durationConstraint virtual feature accepts numerical values as well as
arbitrary string values.These values are joined by double periods (..). In addition, you can
use an escape character (\) to include periods as part of the minimum and maximum con-
straint values.

A £

Constraint Name Value
Minor
Voter 18..99
TimeConfTx 10..60
Temp cold..hot

The table below gives specific examples of both valid and invalid syntax for use of double
periods.

83

84 « 15 Constraints

User Input | Minimum Constraint | Maxim Comment

Example |Value Constraint Value

2..3.5 2 3.5 Valid

-1..3.2 |-1 2.3 Valid

5.5..2 5.5 2 Invalid. The upper bound is less than lower
bound

. 2.3 2.3 Valid. Numerical values are trimmed, and

2.3 both bounds are allowed to be equal

1...3 1 ..3 Valid. First double dot is taken as the
separator

abc..foo |abc foo bar Valid. String values can contain spaces

bar
1.3 Invalid. No double period present

Valid. Empty Min/Max is allowed

min. . min Valid. Empty max

. .max max Valid. Empty min

esg®\... dos|escape . .dots Valid. Escaping first period

irnelid\. .irpt Invalid. No double period present

2.5 ..12 .5 2.4 Valid. The min is not a valid number
2.4 because of the space.

Using the durationConstraint Virtual Feature

The following example shows you how to use the durationConstraint feature.
1. Import the MapleMBSE ecore, as usual the alias used is mse .

2. Inside a synctable-schema navigate to a DurationConstraint, in this case
/ownedRule [DurationConstraint] within an Activity.

3. Within that dimension, define a regular column using /mse: :durationCon-
straint.

4. Complete the rest of the configuration as usual: worksheet-templates, synctable
and workbook.

Example

synctable-schema Schema {
record dim [Activity] {

15.1 durationConstraint ¢ 85

key column /name as aName

}
record dim /ownedRule[DurationConstraint] {
key column /name as dcName

column /mse::durationConstraint as dcValue

}

86 < 15 Constraints

16 Generalization

This section contains all other virtual features that do not create elements but offer a better
alternative to access and map model information.

16.1 specificClass

Description

The specificClass virtual feature provides a simple, more direct way of creating
generalizations between a more generalized element and a more specialized element. The
specificClass virtual feature also sets the values for the specific and general elements
and then stores the generalization relationship information in the specific class.

Syntax
The general syntax for using the specificClass virtual feature is as follows:

.mse: :specificClass

Using the specificClass Virtual Feature

The following example illustrates one way to use the specificClass virtual feature:
1. Import the MapleMBSE ecore with an alias

2. Create a datasource which query the Blocks from the model ”. . /PackageElement—
Class|mse: :metaclassName="SysML: :Blocks::Block"]”

3. In the synctable schema start from the generalized block

4. For the next dimension, use the virtual feature which uses the reference decomposition
to create the generalization between the generalized block and the specific block

Example

synctable-schema BlockpropertiesTable (blocks: BlocksTable) {
record dim [Class|mse::metaclassName="SysML::Blocks::Block"] {
key column /name as generalClassName
}
record dim .mse::specificClass[Class] @genname{
reference-decomposition genname = blocks{
foreign-key column BlockName as specificClassName

}

87

88 « 16 Generalization

17 Working with sysML Diagrams

This chapter describes how to work with a sysML Diagram.
17.1 downloadDiagram

Description

Use the downloadDiagram feature to download the sysML diagram associated with your
model, using the MagicDraw or Cameo.

To use this feature, first install the MapleMBSE plugin (see the MapleMBSE Installation
Guide for instructions) into MagicDraw and Cameo. Start MagicDraw or Cameo and open
the Project from which you want to download the diagram in MapleMBSE. Start
MapleMBSE.

Syntax

mse::downloadDiagram

Using the clientDependencies Virtual Feature

1. Import the ecore statement e.g “import-ecore "http://maplembse.maplesoft.com/com-
mon/1.0" as mse”

2. In the Synctable schema start the dimension from the Diagram object.

3. Inside the Diagram dimension use the downloadDiagram feature “mse::downloadDia-
gram”

Example

synctable-schema Schema {
dim[Package] {
key column /name as Pkg

1
:

dim /ownedDiagram[Diagram] {
key column /mse::downloadDiagram as diagraName
column /mse::diagramIype as diagramIype

89

90 < 17 Working with sysML Diagrams

17.2 diagramType

Description

The diagramType virtual feature shows the type of diagram which was downloaded using
the downloadDiagram feature. It cannot be used individually. It can only be used after the
downloadDiagram virtual feature.

Syntax

mse::downloadDiagram

Using the supplierDependencies Virtual Feature

1. Import the ecore statement e.g “import-ecore "http://maplembse.maplesoft.com/com-
mon/1.0" as mse”

2. In the Synctable schema start the dimension from the Diagram object

3. Inside the Diagram dimension use the downloadDiagram feature “mse::downloadDia-
gram” after that use the “mse::diagramtype”

Example

synctable—-schema Schema {
dim[Package] {
key column /name as Pkg

dim /ownedDiagram[Diagram] {
key column /mse::downloadDiagram as diagraName
column /mse::diagramIype as diagramIype

18 File Attachments
18.1 AttachedFile

Description

The attachedFile virtual feature supports MagicDraw file attachments, which are accessible
through comments. It downloads all the relevant file attachments, and displays hyperlinks
to temporary locations in the user interface. When the user clicks on the link, the user inter-
face will open the file.

Syntax
The syntax to use attachedFile is as follows:

column /mse::attachedFile as fileName

Using the attachedFile Virtual Feature

The following example illustrates one way to use the attachedFile virtual feature:
1. Import the MapleMBSE ecore with an alias

2. Create a schema that has a dimension accessing an ownedComment line 5, in the column
level call the attached VF see line 6 in the example code

Example

synctable-schema AttachedFileSchema ({

record dim[Package] {

key column /name as PkgName

}

dim /ownedComment [Comment |mse: :stereotypeNames="UML Standard
Profile::MagicDraw Profile::AttachedFile"]{

column /mse::attachedFile as fileName

}

}

91

92 -« 18 File Attachments

19 Element Type

This chapter describes virtual featues that can be used to find the type of model element
19.1 elementType

Description

The elementType virtual feature helps to identify the metaclass type of model element (
Class, Activity, etc) that is displayed in MapleMBSE.

Syntax

The general syntax for the elementType virtual feature is as follows:
/alias::elementType

Where:

* alias is the alias you assigned to the MapleMBSE ecore.

* elementType virtual feature is used to display the metaclass Type of an element.

Using the elementType Virtual Feature

1. Import the ecore statement e.g “import-ecore "http://maplembse.maplesoft.com/com-
mon/1.0" as mse”

2. In the data-source we add the elementType to the Qualifier sorting feature.

Example

data-source elementsNew* [NamedElement | |elementFilter|mse::ele-
mentType]

Where:
* NamedElement can be any of Class, Activity, StateMachine, etc.
* elementFilter can be name, visibility, stereotype, etc.

* mse: :elementType refers to the elementType virtual feature.

import-ecore "http://www.nomagic.com/magicdraw/UML/2.5.1.1"
import-ecore "http://maplembse.maplesoft.com/twc/1.0" as mse
data-source Root [Model]

93

94 <+ 19 Element Type

Root/packagedElement [Package | name="Structure"]

data-source elementList
synctable-schema DifferentElementTypeSchema {
dim [NamedElement] {

key column /name as differentElementName

column /mse::elementType as typeName

}
synctable differentElementTypeSchema

DifferentElementTypeSchema<elementList>

worksheet-template DifferentElements (fis

vertical table featureTable at (5,4) = fis {
key field differentElementName

key field typeName
sort-keys differentElementName

DifferentElementTypeSchema) {

}

workbook{
worksheet DifferentElements (differentElementTypeSchema)

Index
A

activity diagrams, 53
ActivityControlFlow, 53
description, 53
syntax, 53
using, 53
ActivityObjectFlow, 55
description, 55
syntax, 55
using, 55
associations, 15
associatedProperty, 17
description, 15
syntax, 15
using, 16

directedAssociatedProperty, 19

description, 18
syntax, 18
using, 18

nestedDirectedComposition, 23

description, 23

syntax, 23

using, 23
otherAssociatedEnd, 21

description, 20

syntax, 20

using, 20

blocks, 25
getAllProperties, 29
description, 27
example, 30
syntax, 29
using, 29
propertyDefaultValue, 26
recursivePartProperties, 25
description, 25
syntax, 25

using, 25

C

C

omments, 61
ownedComments, 63
description, 61
syntax, 61
using, 61

connectors, 31

connectedPropertyOrPort, 31
description, 31
syntax, 31
using, 32
otherConnectorEnd, 33
description, 33
syntax, 33
using, 33

constraints, 83

durationConstraint, 85
description, 83
syntax, 83
using, 84

D

dependencies, 35

95

clientDependencies, 35
description, 35
syntax, 35
using, 35, 41
supplierDependencies, 37
description, 36
syntax, 37
using, 37
Three Way Dependencies, 41
description, 41

E

Element Type, 93
elementType, 93
description, 93
example, 93
using, 93

96 < Index

elementType syntax, 93
enumeration, 43
enumerationLabel, 45
description, 44
syntax, 44
enumerationName, 43
description, 43
syntax, 43
using, 43

F

File Attachments, 91
attachedFile, 91
description, 91
syntax, 91
using, 91

G

Generalization, 87
specificClass, 87
description, 87
example, 87
syntax, 87
using, 87

Instance Matrices, 65
arrayName, 75
description, 75
syntax, 75
attachedFile, 73
description, 73
syntax, 73
using, 74
instanceTree, 69
description, 67
syntax, 68
using, 68
instanceWithSlots, 70
description, 70
syntax, 70
using, 70

multiplicityOfInstance, 77

description, 76
example, 77
syntax, 77
using, 77

RecursivelnstanceWithSlots, 71

description, 71
syntax, 72
using, 72
slots, 74
description, 74
syntax, 74
using, 74
slotValue, 65
description, 65
syntax, 65
using, 66

Multiple Dependencies, 40
Creating, 40
Example, 40
Introduction, 40

R

recursivity, 79
getRecursively, 81
description, 79
syntax, 79
using, 80

S

specificClass, 87
statemachines, 57
vertexTransition, 57
description, 57
syntax, 57
using, 57, 59
vertical Transition, 59
description, 58
syntax, 59
stereotypes, 5

Index < 97

featureName, 7
description, 6, 7
syntax, 7

metaclass, 13

metaclassName, 5
description, 5
syntax, 5
using, 5

stereotypeNames, 9
description, 9
syntax, 9
using, 9

sysML Diagrams, 89

diagramType, 90
description, 90
example, 90
syntax, 90
using, 90

downloadDiagram, 89
description, 89
example, 89
syntax, 89
using, 89

T

TaggedValue, 47

taggedValue, 49
description, 47
syntax, 47
using, 47

U
util, 51
multiplicityProperty, 51
description, 51
syntax, 51
using, 51

98 + Index

	MapleMBSE 2026.0 Virtual Features Guide
	Contents
	Preface
	1 Introduction
	1.1 Scope and Purpose of this Document
	1.2 Prerequisite Knowledge
	1.3 Motivation for Using MapleMBSE Virtual Features
	1.4 Importing the MapleMBSE Ecore
	1.5 General Syntax for the MapleMBSE Virtual Features

	2 Stereotypes
	2.1 metaclassName
	Description
	Syntax
	Using the metaclassName Virtual Feature
	Example

	2.2 featureName
	Description
	Syntax
	Using the featureName Virtual Feature
	Example

	2.3 stereotypeNames
	Description
	Syntax
	Using the stereotypeNames Virtual Feature
	Example

	2.4 metaclass
	Description
	Syntax
	Creating the Stereotype with metaclass in the MSE File
	Example

	3 Associations
	3.1 associatedProperty
	Description
	Syntax
	Using the associatedProperty Virtual Feature
	Example

	3.2 directedAssociatedProperty
	Description
	Syntax
	Using the directAssociatedProperty Virtual Feature
	Example

	3.3 otherAssociatedEnd
	Description
	Syntax
	Using the otherAssociatedEnd Virtual Feature
	Example

	3.4 nestedDirectedComposition
	Description
	Syntax
	Using the nestedDirectedComposition virtual feature
	Example

	4 Blocks
	4.1 recursivePartProperties
	Description
	Syntax
	Using the recursivePartProperties Virtual Feature
	Example

	4.2 propertyDefaultValue
	Description
	Syntax
	Using the propertyDefaultValue Virtual Feature
	Example

	4.3 getAllProperties
	Description
	Syntax
	Using the getAllProperties virtual feature
	Example

	5 Connectors
	5.1 connectedPropertyOrPort
	Description
	Syntax
	Using the connectedPropertyOrPort virtual feature
	Example

	5.2 otherConnectorEnd
	Description
	Syntax
	Using the otherConnectorEnd Virtual Feature
	Example

	6 Dependencies
	6.1 clientDependencies
	Description
	Syntax
	Using the clientDependencies Virtual Feature
	Example

	6.2 supplierDependencies
	Description
	Syntax
	Using the supplierDependencies Virtual Feature
	Example

	6.3 featureImpact
	Description
	Syntax
	Using the featureImpact Virtual Feature
	Example

	6.4 Multiple Dependencies Class
	Introduction
	Creating a Multiple Dependencies Class in an MSE file

	6.5 Three Way Dependencies Class
	Description
	Creating a ThreeWayDependency Class in an MSE File

	7 Enumeration
	7.1 EnumerationName
	Description
	Syntax
	Using the enumerationName Virtual Feature
	Example

	7.2 EnumerationLabel
	Description
	Syntax

	8 TaggedValue
	8.1 taggedValue
	Description
	Syntax
	Using the taggedValue in the MSE File
	Example

	9 Util
	9.1 multiplicityProperty
	Description
	Syntax
	Using the multiplicityProperty Virtual Feature
	Example

	10 Activity Diagrams
	10.1 ActivityControlFlow
	Description
	Syntax
	Using the ActivityControlFlow Virtual Feature
	Example

	10.2 ActivityObjectFlow
	Description
	Syntax
	Using the ActivityObjectFlow Virtual Feature
	Example

	11 StateMachines
	11.1 VertexTransition
	Description
	Syntax
	Using the VertexTransition Virtual Feature
	Example

	11.2 VerticalTransition
	Description
	Syntax
	Using the VertexTransition Virtual Feature

	12 Comments
	12.1 ownedComments
	Description
	Syntax
	Using the ownedComments Virtual Feature
	Example

	13 Instance Matrices
	13.1 SlotValue
	Description
	Syntax
	Using the SlotValue Virtual Feature
	Example

	13.2 InstanceTree
	Description
	Syntax
	Using the InstanceTree Virtual Feature
	Example

	13.3 InstanceWithSlots
	Description
	Syntax
	Using the InstanceWithSlots Virtual Feature
	Example

	13.4 RecursiveInstanceWithSlots
	Description
	Syntax
	Using the RecursiveInstanceWithSlots Virtual Feature
	Example

	13.5 AttachedFile
	Description
	Syntax
	Using the attachedFile Virtual Feature
	Example

	13.6 Slots
	Description
	Syntax
	Using the slots Virtual Feature
	Example

	13.7 ArrayName
	Description
	Syntax
	Using the arrayName Virtual Feature
	Example

	13.8 MultiplicityOfInstance
	Description
	Syntax
	Using the multiplicityOfInstance Virtual Feature
	Example

	14 Recursivity
	14.1 getRecursively
	Description
	Syntax
	Using the getRecursively Virtual Feature
	Example

	15 Constraints
	15.1 durationConstraint
	Description
	Syntax
	Using the durationConstraint Virtual Feature
	Example

	16 Generalization
	16.1 specificClass
	Description
	Syntax
	Using the specificClass Virtual Feature
	Example

	17 Working with sysML Diagrams
	17.1 downloadDiagram
	Description
	Syntax
	Using the clientDependencies Virtual Feature
	Example

	17.2 diagramType
	Description
	Syntax
	Using the supplierDependencies Virtual Feature
	Example

	18 File Attachments
	18.1 AttachedFile
	Description
	Syntax
	Using the attachedFile Virtual Feature
	Example

	19 Element Type
	19.1 elementType
	Description
	Syntax
	Using the elementType Virtual Feature
	Example

	Index

