
MapleMBSE 2026.0 Virtual
Features Guide

Copyright © Maplesoft, a division of Waterloo Maple Inc.
2026

MapleMBSE 2026.0 Virtual Features Guide

Contents
Preface .. xi

1 Introduction ... 1
1.1 Scope and Purpose of this Document .. 1
1.2 Prerequisite Knowledge ... 1
1.3 Motivation for Using MapleMBSE Virtual Features 1
1.4 Importing the MapleMBSE Ecore .. 3
1.5 General Syntax for the MapleMBSE Virtual Features 3

2 Stereotypes .. 5
2.1 metaclassName .. 5

Description .. 5
Syntax .. 5
Using the metaclassName Virtual Feature .. 5
Example .. 6

2.2 featureName .. 6
Description .. 6
Syntax .. 7
Using the featureName Virtual Feature .. 7
Example .. 8

2.3 stereotypeNames .. 9
Description .. 9
Syntax .. 9
Using the stereotypeNames Virtual Feature .. 9
Example .. 10

2.4 metaclass ... 10
Description ... 10
Syntax .. 10
Creating the Stereotype with metaclass in the MSE File 11
Example .. 11

3 Associations ... 15
3.1 associatedProperty .. 15

Description .. 15
Syntax .. 15
Using the associatedProperty Virtual Feature .. 16
Example .. 17

3.2 directedAssociatedProperty ... 18
Description .. 18
Syntax .. 18
Using the directAssociatedProperty Virtual Feature 18
Example .. 19

3.3 otherAssociatedEnd ... 20
Description .. 20

iii

Syntax .. 20
Using the otherAssociatedEnd Virtual Feature .. 20
Example .. 21

3.4 nestedDirectedComposition .. 23
Description .. 23
Syntax .. 23
Using the nestedDirectedComposition virtual feature 23
Example .. 24

4 Blocks ... 25
4.1 recursivePartProperties .. 25

Description .. 25
Syntax .. 25
Using the recursivePartProperties Virtual Feature .. 25
Example .. 26

4.2 propertyDefaultValue ... 26
Description .. 26
Syntax .. 26
Using the propertyDefaultValue Virtual Feature .. 26
Example .. 26

4.3 getAllProperties .. 27
Description .. 27
Syntax .. 29
Using the getAllProperties virtual feature ... 29
Example .. 30

5 Connectors ... 31
5.1 connectedPropertyOrPort ... 31

Description .. 31
Syntax .. 31
Using the connectedPropertyOrPort virtual feature 32
Example .. 32

5.2 otherConnectorEnd ... 33
Description .. 33
Syntax .. 33
Using the otherConnectorEnd Virtual Feature ... 33
Example .. 33

6 Dependencies ... 35
6.1 clientDependencies ... 35

Description .. 35
Syntax .. 35
Using the clientDependencies Virtual Feature ... 35
Example .. 35

6.2 supplierDependencies .. 36
Description .. 36

iv • Contents

Syntax .. 37
Using the supplierDependencies Virtual Feature .. 37
Example .. 38

6.3 featureImpact ... 38
Description .. 38
Syntax .. 39
Using the featureImpact Virtual Feature ... 39
Example .. 39

6.4 Multiple Dependencies Class .. 40
Introduction ... 40
Creating a Multiple Dependencies Class in an MSE file 40

6.5 Three Way Dependencies Class ... 41
Description .. 41
Creating a ThreeWayDependency Class in an MSE File 41

7 Enumeration ... 43
7.1 EnumerationName .. 43

Description .. 43
Syntax .. 43
Using the enumerationName Virtual Feature ... 43
Example .. 44

7.2 EnumerationLabel ... 44
Description .. 44
Syntax .. 44

8 TaggedValue ... 47
8.1 taggedValue ... 47

Description .. 47
Syntax .. 47
Using the taggedValue in the MSE File ... 47
Example .. 49

9 Util ... 51
9.1 multiplicityProperty .. 51

Description .. 51
Syntax .. 51
Using the multiplicityProperty Virtual Feature .. 51
Example .. 52

10 Activity Diagrams .. 53
10.1 ActivityControlFlow .. 53

Description .. 53
Syntax .. 53
Using the ActivityControlFlow Virtual Feature ... 53
Example .. 54

10.2 ActivityObjectFlow ... 55
Description .. 55

Contents • v

Syntax .. 55
Using the ActivityObjectFlow Virtual Feature .. 55
Example .. 56

11 StateMachines ... 57
11.1 VertexTransition .. 57

Description .. 57
Syntax .. 57
Using the VertexTransition Virtual Feature ... 57
Example .. 58

11.2 VerticalTransition .. 58
Description .. 58
Syntax .. 59
Using the VertexTransition Virtual Feature ... 59

12 Comments .. 61
12.1 ownedComments ... 61

Description .. 61
Syntax .. 61
Using the ownedComments Virtual Feature .. 61
Example .. 62

13 Instance Matrices ... 65
13.1 SlotValue ... 65

Description .. 65
Syntax .. 65
Using the SlotValue Virtual Feature .. 66
Example .. 67

13.2 InstanceTree ... 67
Description .. 67
Syntax .. 68
Using the InstanceTree Virtual Feature .. 68
Example .. 69

13.3 InstanceWithSlots .. 70
Description .. 70
Syntax .. 70
Using the InstanceWithSlots Virtual Feature ... 70
Example .. 71

13.4 RecursiveInstanceWithSlots .. 71
Description .. 71
Syntax .. 72
Using the RecursiveInstanceWithSlots Virtual Feature 72
Example .. 73

13.5 AttachedFile ... 73
Description .. 73
Syntax .. 73

vi • Contents

Using the attachedFile Virtual Feature ... 74
Example .. 74

13.6 Slots ... 74
Description .. 74
Syntax .. 74
Using the slots Virtual Feature ... 74
Example .. 75

13.7 ArrayName .. 75
Description .. 75
Syntax .. 75
Using the arrayName Virtual Feature .. 75
Example .. 76

13.8 MultiplicityOfInstance ... 76
Description .. 76
Syntax .. 77
Using the multiplicityOfInstance Virtual Feature ... 77
Example .. 77

14 Recursivity ... 79
14.1 getRecursively .. 79

Description .. 79
Syntax .. 79
Using the getRecursively Virtual Feature ... 80
Example .. 80

15 Constraints ... 83
15.1 durationConstraint ... 83

Description .. 83
Syntax .. 83
Using the durationConstraint Virtual Feature .. 84
Example .. 84

16 Generalization ... 87
16.1 specificClass .. 87

Description .. 87
Syntax .. 87
Using the specificClass Virtual Feature .. 87
Example .. 87

17 Working with sysML Diagrams .. 89
17.1 downloadDiagram ... 89

Description .. 89
Syntax .. 89
Using the clientDependencies Virtual Feature ... 89
Example .. 89

17.2 diagramType .. 90
Description .. 90

Contents • vii

Syntax .. 90
Using the supplierDependencies Virtual Feature .. 90
Example .. 90

18 File Attachments ... 91
18.1 AttachedFile ... 91

Description .. 91
Syntax .. 91
Using the attachedFile Virtual Feature ... 91
Example .. 91

19 Element Type .. 93
19.1 elementType ... 93

Description .. 93
Syntax .. 93
Using the elementType Virtual Feature .. 93
Example .. 93

Index .. 95

viii • Contents

List of Figures
Figure 2.1: metaclassName Example ... 6
Figure 2.2: The appliedStereotypeInstance Structure ... 7
Figure 2.3: featureName Example ... 8
Figure 2.4: stereotypeNames Example ... 10
Figure 3.1: associatedProperty Example ... 17
Figure 3.2: directAssociatedProperty Example ... 19
Figure 3.3: otherAssociatedEnd Example .. 22
Figure 5.1: connectedPropertyOrPort Example .. 32
Figure 5.2: otherConnectorEnd Example .. 34
Figure 6.1: clientDependencies Example .. 36
Figure 6.2: supplierDependencies Example ... 38
Figure 9.1: multiplicityProperty Example ... 52
Figure 10.1: ActivityControlFlow Example ... 54
Figure 10.2: ActivityObjectFlow Example .. 56
Figure 11.1: VertexTransition Example ... 58

ix

x • List of Figures

Preface
MapleMBSE Overview
MapleMBSE™ gives an intuitive, spreadsheet based user interface for entering detailed
system design definitions, which include structures, behaviors, requirements, and parametric
constraints.

Related Products
MapleMBSE 2026 requires the following products.

• Microsoft® Excel® 2016, Excel 2019 or Excel Office 365 desktop.

• Oracle® Java® SE Runtime Environment 8.

Note: MapleMBSE looks for a Java Runtime Environment in the following order:

1) If you use the -vm option specified in OSGiBridge.init (not specified by default),
MapleMBSE will use it.

2) If your environment has a system JRE (meaning either: JREs specified by the environment
variables JRE_HOME and JAVA_HOME in this order, or a JRE specified by the Windows
Registry (created by JRE installer)), MapleMBSE will use it.

3) The JRE installed in the MapleMBSE installation directory.

• Teamwork CloudTM server 2021.x, 2022.x and 2024.x

• Magic Collaboration Studio 2021.x, 2022x and 2024.x

If you are using Eclipse CapellaTM with MapleMBSE, the following version is supported:

• 6.x

If you are using EclipseTM, the following version is supported:

• 2024-3

xi

Related Resources
DescriptionResource

System requirements and installation instructions for
MapleMBSE. TheMapleMBSE Installation Guide is available
in the Install.html file located in the folder where you installed
MapleMBSE, or on the website.

https://www.maplesoft.com/documentation_center/

MapleMBSE Installation
Guide

Applications in this directory provide a hands on demonstration
of how to edit and construct models using MapleMBSE. They,
along with an accompanying guide, are located in the Application
subdirectory of your MapleMBSE installation.

MapleMBSE Applications

This guide provides detailed instructions on working with
configuration files and the configuration file language.

MapleMBSE Configuration
Guide

Instructions for using MapleMBSE software. The MapleMBSE
User Guide is available in the folder where you installed
MapleMBSE.

MapleMBSE User Guide

You can find MapleMBSE FAQs here:

https://faq.maplesoft.com

Frequently Asked
Questions

The release notes contain information about new features, known
issues and release history from previous versions. You can find
the release notes in your MapleMBSE installation directory.

Release Notes

For additional resources, visit http://www.maplesoft.com/site_resources.

Getting Help

To request customer support or technical support, visit http://www.maplesoft.com/support.

Customer Feedback

Maplesoft welcomes your feedback. For comments related to the MapleMBSE product
documentation, contact doc@maplesoft.com.

xii • Preface

https://www.maplesoft.com/documentation_center/
http://www.maplesoft.com/site_resources
http://www.maplesoft.com/support

1 Introduction
1.1 Scope and Purpose of this Document
The purpose of the MapleMBSE Virtual Features Guide is to describe MapleMBSE virtual
features and explain how to use them.

The intended audience for this document are users who are familiar with UML, SysML and
Model-based Systems Engineering concepts and who intend to create their own MapleMBSE
configuration files.

1.2 Prerequisite Knowledge
To fully understand the information presented in this document the reader should be famil-
iar with the following concepts:

• The Eclipse Modeling Framework ecore serialization. In particular, knowing how to
use any tool of your choice to track all the eReferences independently of the eSuperTypes.

• Thus, some basic concepts of Meta Object Facility like eClassifiers and eStructuralFea-
tures. A correct mse configuration file has within each qualifier a concrete UML eClas-
sifiers and each dimension should be accessed using a non-derived StructuralFeature
defined in the UML.ecore or a virtual one inside this guide.

• MapleMBSE Configuration Language elements (especially dimension and qualifiers,
and the syntax for importing the MapleMBSE ecore). For more information on the
MapleMBSE Configuration language, see the MapleMBSE Configuration Guide.

1.3 Motivation for Using MapleMBSE Virtual Features
SysML provides a high level of abstraction to cover as many modeling scenarios as possible
with the diagrams offered. It is a powerful and complex language that is extremely difficult
to master because of its complexity (there are hundreds of pages of technical specifications
for SysML).

Many different concrete and abstract Classifiers, with very specific semantics, are part of
the SysML technical specifications. These Classifiers should not be used interchangeably.
Even "linking" elements changes depending on the "linked" elements. For example, SysML
Associations are to Classes as Connectors are to Ports, or, what ControlFlows can be for
ActivityNodes. However, these elements are not interchangeable.

An end user, defined as a user who will be updating model information using the
MapleMBSE spreadsheet interface but likely will not be involved in creating or editing
configuration files, who interested in taking advantage of the modeling capabilities of
SysML, should not need to know its complexities. MapleMBSE helps to hide this complexity

1

from the end user, through virtual features. They are called virtual features because, although
they extend the capabilities of native SysML, they themselves are not part of SysML.

With the right choice of labels within an Excel template and a well designed configuration
(.mse) file that implements MapleMBSE virtual features, an end user can enter a couple of
inputs in a spreadsheet and create Blocks and the Associations linking them, or Ports and
Connectors, or other combinations of elements.

For example, consider the following code snippet from a MapleMBSE configuration file
in the figure below. This figure illustrates the scenario where a configuration file is designed
without the use of virtual features to represent SysML Associations between Blocks.

Notice in the generated Excel worksheet, the number of inputs required of the end user to
represent the Association between Customer and Product. This requires knowledge of
SysML on the part of the end user.

Now consider an example that represents the same Association between Customer and
Product, as shown in the figure below. This time, the configuration file is designed using
the MapleMBSE virtual features, specifically, the associatedProperty virtual feature. Notice,
the only inputs required of the end user are the two SysML Blocks,Customer and Product.
The cross-references need for the Association are completed automatically.

2 • 1 Introduction

1.4 Importing the MapleMBSE Ecore
Loading MapleMBSE virtual features is analogous to the way you would load UML
Structural Features using UML Ecore. The corresponding MapleMBSE Configuration lan-
guage uses import-ecore.

The general syntax is

import-ecore "URI"

For example, to specify the NoMagic ecore:

"http://www.nomagic.com/magicdraw/UML/2.5"

To specify the MapleMBSE ecore:

"http://maplembse.maplesoft.com/common/1.0"

You must create an alias for the ecore using the syntax:

import-ecore "URI" as Alias

For example, to specify an alias for the MapleMBSE ecore:

import-ecore "http://maplembse.maplesoft.com/common/1.0" as
mse

This allows you to use the short form, mse, instead of the whole syntax.

1.5 General Syntax for the MapleMBSE Virtual Features
The general syntax for the virtual features is

[./]?alias::virtualfeature

1.4 Importing the MapleMBSE Ecore • 3

The first character can be a dot, a forward slash, or a blank. There is no strict rule of thumb
for this. For specific syntax, see the Syntax subsection for each virtual feature.

alias - This is the alias for the ecore import

virtualfeature - This is the virtual feature name you want to use, for example, asso-
ciatedProperty.

4 • 1 Introduction

2 Stereotypes
SysML can be explained as a subset of elements defined in the UML specifications plus
some additional features not included in UML. One of these features is a Stereotype. Stereo-
types are applied to those elements adding extra meaning or modeling semantics.
MapleMBSE offers several virtual features to apply Stereotypes and navigate their extended
modeling capacities.

2.1 metaclassName
Description

Use the metaclassName virtual feature to apply Stereotypes while creating elements using
MapleMBSE. To use this virtual feature you need to identify the qualified name of the
Stereotype that you want to apply and whether the element is compatible with that stereotype.

Syntax

Any Element of theModel can have a list of appliedStereotype but only certain Stereotypes
should be applied to certain Element. This is one of the few virtual features that is used as
a filter inside the qualifier and it does not require a dot or slash notation prior to the alias.
ThemetaclassName virtual feature must be followed by an equals symbol and the qualified
name of the Stereotype between quotation marks.

alias::metaclassName="qualified::name"

It is important to note that this qualified name is basically a path and the name that identifies
uniquely each Stereotype, and each substring is concatenated with a double colon notation.

Using the metaclassName Virtual Feature

The following steps illustrate what you need to do to use the metaclassName virtual feature:

1. The MapleMBSE ecore is imported and its alias is mse.

2. Two data-sources are used for this example with metaclassName to filter Blocks and
Requirements. Note: both of those SysML concept are UML Classes but with different
Stereotypes.

3. Defining synctable-schemas, one for Blocks and another for Requirements. Note:
To avoid problems with MapleMBSE it is a good practice to use the same qualifier and
Stereotype filter in the data-source and the first dimension of the schema.

4. Complete the rest of the configuration as usual:worksheet-templates,synctable
and workbook.

5

Example

The following example showcases how to use metaclassName to createClasses applying
2 different Stereotypes.

Figure 2.1: metaclassName Example

2.2 featureName
Description

As mentioned in the introduction of this section, once you applied a Stereotype to any Ele-
ment, you are changing its semantics and extending it. Use featureName to access those
extended properties stored in Slots using their qualified names.

The class diagram in Figure 2.2 (page 7) shows the different EClasses that need to be
queried in order to access those Slots. Remember that Element is an abstract EClass and it
should not be used as the qualifier. Basically all elements in a Model implement Element,
thus EClasses like Class have the structural feature appliedStereotypeInstance to query In-
stanceSpecification.

6 • 2 Stereotypes

Figure 2.2: The appliedStereotypeInstance Structure

Syntax

Use featureName the same way metaclassName is used within a qualifier as a filter,
meaning that no dot or slash notations are needed before the alias. It expected, following
the virtual feature, an equal symbol and a string between quotation marks; this string is the
qualified name of the property to access.

alias::featureName="qualified::name"

This qualified name is similar to the one used to identify the Stereotype but it differs slightly
at the end with extra information concatenated to identify a single extension. As mentioned
before this virtual feature is usable while querying a Slot inside a InstanceSpecification inside
an concrete Element, but you must also know that this Element must be filtered by meta-
className with the qualified name that identifies the Stereotype.

Using the featureName Virtual Feature

To access extra Properties added after applying a Stereotype:

1. Import the MapleMBSE ecore.

2. Inside a synctable-schema navigate to a MultiplicityElement, in this case, /ownedAt-
tribute[Property] within a Class.

3. Within that dimension, define a regular column using/mse::multiplicityProp-
erty.

4. Complete the rest of the configuration as usual: worksheet-templates, synctable and
workbook.

2.2 featureName • 7

Example

The following example illustrates how to access extra Properties added after applying a
Stereotype.

1. Import MapleMBSE ecore, for this example use mse as the alias.

2. Create a data-source using the metaclassName virtual feature mentioned before to
filter Requirements.

3. Define a synctable-schema for Requirements.Note: use the same qualifier and Stereotype
for the first dimension as for the data-source.

4. To access the SysML::Requirements::Requirement::Text Property added
to a Class after applying the Requirement Stereotype you must:

1. Navigate appliedStereotypeInstance to get an InstanceSpecification.

2. Then slot to recover all the Slots within the InstanceSpecification

3. UsefeatureNamewith the Slot qualifier to filter theProperty that you want to access

Note: The qualified name of that Property is the name of the qualified Stereotype plus 2
colons and the name of the Property.
Stereotype: SysML::Requirements::Requirement
Property: SysML::Requirements::Requirement::Text

4. Complete the rest of the configuration as usual:worksheet-templates,synctable
and workbook.

Figure 2.3: featureName Example

8 • 2 Stereotypes

2.3 stereotypeNames
Description

Use the stereotypeNames virtual feature to filter and create Model Elements with the spe-
cific combination of Stereotypes. To use this virtual feature you need a complete and neces-
sary list of Stereotypes and their qualified names, and concatenate those qualified names
into a single String. Only Elements which Stereotypes match in number and in qualified
name are accepted by this filtering. The order of those Stereotypes is not important.

Syntax

This virtual feature is used as a attribute filter inside the qualifier and it does not require a
dot or slash. The stereotypeNames virtual feature must be followed by an equal symbol
and a String with Stereotypes. That String must separate the Stereotypes qualified names
with a comma to work properly.

alias::stereotypeNames="one::qualified::name,another::quali-
fied::name"

It is important to know that the order of the qualified names are not important. They can be
swapped and the same result is to be expected. On the other hand, the String must include
the exact number of Stereotypes the filter should use. Meaning if you have a model with N
Elements with Stereotypes A and B, filtering using the String "A;B;C" would not show any
of those N Elements as they do not have the same number of Stereotypes.

Using the stereotypeNames Virtual Feature

The following steps illustrate what you need to use the stereotypeNames virtual feature:

1. The MapleMBSE ecore is imported and its alias is mse.

2. A couple data-sources are used for this example with stereotypeNames to filter
Packages and Classes.

3. To use this feature to apply Stereotypes, you need to define a synctable-schema.
Note: To avoid problems with MapleMBSE it is a good practice to use the same qualifier
and Stereotypes filter in the data-source and the first dimension of the schema.

4. Complete the rest of the configuration as usual:worksheet-templates,synctable
and workbook.

2.3 stereotypeNames • 9

Example

The following example showcases how to use stereotypeNames to create and filter
Elements with different Stereotypes.

Figure 2.4: stereotypeNames Example

2.4 metaclass
Description

Use the metaclass virtual feature to create new Stereotypes and update the Stereotypes'
metaclass.

Syntax

Any Stereotype of the Model should either be empty (possible using MapleMBSE) or have
a metaclass (by default using modeling tools or this feature). This feature will return a string
that matches the name of the metaclass that limits to which elements the Stereotype can be
applied.

/alias::metaclass

This should be only used as a non-key column.

10 • 2 Stereotypes

Creating the Stereotype with metaclass in the MSE File

The following steps illustrate what you need to do to use metaclasss virtual feature:

1. The MapleMBSE ecore is imported and its alias is mse.

2. A data-source that encompasses all the desired Stereotypes.

3. Defining a synctable-schema with a dimension that queries those Stereotypes.

4. Use the virtual feature metaclass as a column in the Stereotype dimension.

5. Complete the rest of the configuration as usual: worksheet-templates, synctable and
workbook.

Notes:

To have a more useful stereotype view as shown below, synctable-schema must also include
another dimension for the properties, a reference decomposition, another synctable-schema
for those properties and a data-source that feeds into it.

While showing the properties, we recommend filtering out the base property. There is an
example of how to do that using the predicate called notBaseProperty.

Example

Step 1: The Ecore import.

import-ecore "http://www.nomagic.com/magicdraw/UML/2.5.1.1"

import-ecore "http://maplembse.maplesoft.com/common/1.0" as
mse

predicate notBaseProperty := NOT Property.association[Exten-
sion|memberEnd[ExtensionEnd|type[Stereotype]]]

data-source Root[Model]

data-source profile = Root/packagedElement[Profile|name="Cus-
tomProfile"]

Step 2: A data-source with that encompasses all the wanted desired Stereotypes

data-source stereotypes = profile/packagedElement[Stereotype]

2.4 metaclass • 11

data-source types_library * [Package|qualifiedName="SysML::Lib-
raries::PrimitiveValueTypes"]

data-source types = types_library/packagedElement[NamedEle-
ment]

synctable-schema TypeSchema {

dim [Type] {

key column /name as mName

}

}

Step 3: Defining a synctable-schema with a dimension that queries those Stereotypes

synctable-schema MainSchema(msc: TypeSchema) {

record dim [Stereotype] {

key column /name as sName

Step 4: Use the virtual feature metaclass as a column in the Stereotype dimension

column /mse::metaclass as metaclass

}

dim /ownedAttribute[Property|notBaseProperty] {
key column /name as pName
reference-query .type[Type] @ tRef
reference-decomposition tRef = msc {

foreign-key column mName as mName

}

12 • 2 Stereotypes

}

}

Step 5: Complete the rest of the configuration as usual: worksheet-templates, synctable and
workbook.

synctable typeTable = TypeSchema<types>

Synctable mainTable = MainSchema<stereotypes>(typeTable)

worksheet-template MainTemplate(msc: MainSchema) {

vertical table tab1 at (2, 1) = msc {

key field sName

field metaclass

key field pName

key field mName

sort-keys sName

}

}

workbook { worksheet MainTemplate(mainTable) {label="Steotype View"} }

2.4 metaclass • 13

14 • 2 Stereotypes

3 Associations
An Association between two Blocks creates cross references for two UML Classes with
SysML Block Stereotypes (<<block>>) to one Association using two properties and also
makes some cross references, like Type and Association, within those properties .

3.1 associatedProperty
Description

In MagicDraw, with a couple clicks from one block to another, all of these elements are
correctly created. Similarly in MapleMBSE, the associatedProperty virtual feature
provides the ability to connect two SysML Blocks, creating a bidirectional Association at
the same hierarchicallevel in the diagram as the source Block.

When MapleMBSE queries the model, the associatedProperty returns the target
Block (the Block that is related to a Property through an Association).

Syntax

The general syntax for using the associatedProperty virtual feature is as follows:

.alias::associatedProperty

Where alias is the alias you assigned to the MapleMBSE ecore. For more information
on assigning aliases, see Importing the MapleMBSE Ecore (page 3).

15

The associatedProperty virtual feature must be used when querying the Property
of a Block.

Using the associatedProperty Virtual Feature

The following example illustrates what you need to do to use AssociatedProperty virtual
feature.

1. In line two, the maplembse ecore is imported with an alias.

2. Use an ownedAttribute[Property] as the queried dimension.

3. Make a reference-query to a class using mse::associatedProperty.

4. Complete the reference-decomposition.

16 • 3 Associations

Example

Figure 3.1: associatedProperty Example

3.1 associatedProperty • 17

3.2 directedAssociatedProperty
Description

To create Associationswith navigability in one direction MapleMBSE uses directedAssoci-
atedProperty, using this virtual feature links two Classes and adds a Property to the source
Block and other Property to an Association.
Based on the aggregation value we can use this virtual feature to create Association, Ag-
gregation and Composition with direction.

Syntax

The general syntax for using the directedAssociatedProperty virtual feature is
as follows:

.alias::directedAssociatedProperty

Where alias is the alias you assigned to the MapleMBSE ecore (hyperlink to above).

The directedAssociatedProperty virtual feature must be used when querying the
Property of a Block.

Using the directAssociatedProperty Virtual Feature

The following example illustrates what you need to do to use directedAssociated-
Property.

1. In line two, the maplembse ecore is imported with an alias.

2. Use an ownedAttribute[Property] as the queried dimension.

3. Make a reference-query to a class using mse::directedAssociatedProperty.

4. Complete the reference-decomposition.

18 • 3 Associations

Example

Figure 3.2: directAssociatedProperty Example

3.2 directedAssociatedProperty • 19

3.3 otherAssociatedEnd
Description

otherAssociationEnd is used in the case when two classifiers have to be linked and the in-
formation about the properties of these classifiers are owned by the association and not the
classifiers themselves, such as in the case of UseCase diagram where association exists
between an actor and usecase and these two classifiers do not own any property that defines
the other classifier.

Syntax

The general syntax for using the otherAssociationEnd virtual feature is as follows:

.alias::otherAssociationEnd

Where alias is the alias you assigned to the MapleMBSE ecore (hyperlink to above).

The otherAssociationEnd virtual feature must always be used when querying a Class
.

Using the otherAssociatedEnd Virtual Feature

The following example illustrates what you need to do to use otherAssociationEnd.

1. In line two, the maplembse ecore is imported with an alias.

2. Use when a Class as the queried dimension.

3. Make a reference-query to a class using mse::otherAssociationEnd,unlike
other virtual features in this section otherAssociationEnd should not be used when a
property is querried.

4. Complete the reference-decomposition.

20 • 3 Associations

Example

3.3 otherAssociatedEnd • 21

Figure 3.3: otherAssociatedEnd Example

22 • 3 Associations

3.4 nestedDirectedComposition
Description

MapleMBSE is powerful enough to change any SysML feature, in particular a nestedClas-
sifier. The effort to change the model in a desired way is always related to creating the right
schemas and data sources to offer intuitive views. Unfortunately, creating a nested block
and a directed composition to it is not an easy task without this virtual feature. The creation
of composition association to non-existing nested block should be possible just by mentioning
the name of the target block in the right dimension.

Syntax

The general syntax for using the nestedDirectedComposition virtual feature is as follows:

dim /alias::nestedDirectedComposition[Association]

Where alias is the alias you assigned to the MapleMBSE ecore (hyperlink to above).

The nestedDirectedComposition virtual feature must be used when querying the Block and
Association in a dimension. It always needs to be used in conjunction with another virtual
feature to set up the target Block: targetBlockName.

The general syntax for using the targetBlockName virtual feature is as follows:

key column /alias::targetBlockName

This targetBlockName virtual feature should be the only key column for a nestedDirected-
Composition dimension.

Using the nestedDirectedComposition virtual feature

The following example illustrates what you need to do to use nestedDirectedComposition

1. In line two, the maplembse ecore is imported with an alias.

2. Use a Class or an Association qualifier in the querried dimension, as shown in line 8, 12
and 16.

3. Create a targetBlockName key column for each nestedDirectedComposition dimension

3.4 nestedDirectedComposition • 23

Example

24 • 3 Associations

4 Blocks
4.1 recursivePartProperties
Description

The recursivePartProperties virtual feature helps finds all the related blocks and sub-blocks
and part properties, recursively.

Displaying a block and related sub-blocks in the same syncview is difficult if they are in
different packages, and there is a chance that relevant blocks are missing in the syncview.
The recursivePartProperties virtual feature helps find all the related blocks, sub-blocks and
part properties, recursively. This makes it easier to create a corresponding configuration
file.

The recursivePartProperties virtual feature works in a similar fashion to recursiveInstance-
WithSlots, and a common use case is to use both of these in conjunction for instance matrices.

Syntax

The configuration file syntax for using recursivePartProperties is illustrated below.

datasource blocks = Root/packageElement[Pack-
age|name=”Test”]/packageElement[Class|name=”B1”]/mse::recurs-
ivePartProperties[Class];
synctable-schema TestSchema {
record dim[Class]{
key column /name as mainBlock
}
Dim /mse::recursivePartProperties[Class]{
Key column /name as subBlocks
}
}

Using the recursivePartProperties Virtual Feature

The following example illustrates one way to use the recursiveIPartProperties virtual feature:

1. Import the MapleMBSE ecore with an alias.

2. Create a datasource that has the context/main block for which you want to find the
properties(for example, ../packageElement[Class|name="B1"]).

3. Use recursivePartProperties[Class] to return all the classes linked to the
context/main block and sub-blocks.

25

4. Create a sync-schema and synctable and after that use that datasource in the
synctable.

Example

datasource blocks = Root/packageElement[Pack-
age|name=”Test”]/packageElement[Class|name=”B1”]/mse::recurs-
ivePartProperties[Class];

4.2 propertyDefaultValue
Description

Previously, to view or edit the default value of the value property or property without any
Stereotype, the author/editor of the configuration file editor had to write the line column
/value[LiteralReal]/value. If the property contains a value other than a real value then
MapleMBSE will not display this value in the cell. If the configuration editor were to write
the MSE file in such a way as to view the value of every type of value property, It will
complicate the MSE file and still, the end user will not able to view the values in one single
column. The propertyDefaultValue virtual feature fixes this problem and helps the config-
uration file editor and the end user to view and edit the value in one column.

Syntax

/mse::propertyDefaultValue

Using the propertyDefaultValue Virtual Feature

1.Import the MapleMBSE ecore with an alias.
2. Create a datasource that has the blocks/classes for which you want to find the properties(for
example, ../packageElement[Class]).
3. Use ownedAttribute[Property] to get properties from the block/Class
4. Use the propertyDefaultValue to get the value from the property

5. Create a sync-schema and synctable and then use that datasource in the synctable.

Example
synctable-schema Schema{
record dim [Class|mse::metaclassName="SysML::Blocks::Block] {
key column /name as BlockName
}
record dim /ownedAttribute[Property mse::metaclassName |="MD Customization
for SysML::additional_stereotypes::ValueProperty"] {

26 • 4 Blocks

key column /name as pName
column /mse::propertyDefaultValue as pvalue
}
}

4.3 getAllProperties
Description

The getAllProperties virtual feature retrieves properties under a block. These prop-
erties can be direct or indirect. If the block has generalization it can go as much as possible
in the upper direct to get the properties but for the composition it can only go one step down.

The images below show the model, MSE file, and the view in MapleMBSE. In the model
block, Comp11, and Comp2 are generalized to GenBlock using this feature MapleMBSE
can query and modify the properties that are also inherited from the GenBlock.

4.3 getAllProperties • 27

Note: This feature can be used with the recursivePartProperties to get the flat
view or can be used alone for the hierarchical view.

28 • 4 Blocks

Syntax

dim /mse::getAllProperties

Using the getAllProperties virtual feature

1.Import the MapleMBSE ecore with an alias.
2. Create a datasource that has the blocks/classes for which you want to find the properties(for
example, ../packageElement[Class]).
3. Use mse::getAllProperties[Property] to get properties from the block/Class (directly
owned properties or inherit properties)
4. Create a sync-schema and synctable and after that use that datasource in the synctable.

4.3 getAllProperties • 29

Example

30 • 4 Blocks

5 Connectors

A Connector is used to link ConnectableElements (for example, Ports or Properties) of a
Class through a ConnectorEnd. A Connector has two ConnectorEnds.

Based on the connection between Properties of a Class the connection can be of two types:
Delegation (connecting Ports or Properties from the system to Ports or Properties inside
a Class) or Assembly (connecting Ports or Properties within a Class).

5.1 connectedPropertyOrPort
Description

To achieve this connection MapleMBSE uses connectedPropertyOrPort virtual
feature.
The connectorPropertyOrPort virtual feature connects Ports or Properties of a
Class. It automatically detects the kind of relation required between the Properties being
connected and creates the appropriate connection.

When MapleMBSE queries the model, the connectedPropertyOrProt return the list
of target properties.

Syntax

The general syntax for using the connectedPropertyOrPort virtual feature is as
follows:

.alias::connectedPropertyOrPort

Where the alias is alias you assigned to MapleMBSE ecore.

31

When the connection is created through connectedPropertyOrPort, the owner of
the connected Property is determined automatically by MapleMBSE, regardless of whether
this is a Delegation or Assembly type connection.

Using the connectedPropertyOrPort virtual feature

In general, to use the connectedPropertyOrPort virtual feature:

1. First, import the MapleMBSE ecore with alias

2. Use an ownedAttribute[Property] as the queried dimension.

3. Make a reference-query to a property using mse::connectedPropertyOrPort.

4. Complete the reference-decomposition.

Example

A specific example of how to use the ConnectedPropertyOrPort virtual feature is
shown below.

Figure 5.1: connectedPropertyOrPort Example

32 • 5 Connectors

5.2 otherConnectorEnd
Description

To achieve this connection MapleMBSE also use otherConnectorEnd virtual feature.
This virtual feature can connect between ports or properties of a class, otherCon-
nectorEnd automatically create the relation required between the properties being con-
nected and creates appropriate connection.

When MapleMBSE queries the model, the otherConnectorEnd return the list of con-
nectorEnds which is associated with the property.

Syntax

The general syntax for using the otherConnectorEnd virtual feature is as follows:

.alias::otherConnectorEnd

Where the alias is the alias you assigned to the MapleMBSE ecore.

When the connection is created using otherConnectorEnd, the owner of the connected
Property is determined automatically by MapleMBSE, regardless of whether this is a Del-
egation or Assembly type connection.

Using the otherConnectorEnd Virtual Feature

How to use the otherConnectorEnd virtual feature is shown in the example below:

1. First, import the MapleMBSE ecore with an appropriate alias

2. Use an ownedAttribute[Property] as the queried dimension.

3. Make a reference-query to a property using mse::otherConnectorEnd.

4. Complete the reference-decomposition.

Example

A specific example of how to use the otherConnectorEnd virtual feature is shown
below.

5.2 otherConnectorEnd • 33

Figure 5.2: otherConnectorEnd Example

34 • 5 Connectors

6 Dependencies
A Dependency is used between two model elements to represent a relationship where a
change in one element (the supplier element) results in a change to the other element (client
element).

A Dependency relation can be created between any namedElement. Different kinds of De-
pendencies can be created between the model elements such as Refine, Realization,
Trace,Abstraction etc.

6.1 clientDependencies
Description

The clientDependencies virtual feature creates a relation between the client being
the dependent and supplier who provides further definition for the dependent.

Syntax

The general syntax for using the clientDependencies virtual feature is as follows:

/mse::clientDependencies

This virtual feature is used while querying a Class that has to be assigned as client to the
dependency that is being created and is used in a following dimension the class that is being
queried.

Where alias is the alias you assigned to the MapleMBSE ecore.

Using the clientDependencies Virtual Feature

In general, the following steps outline how to use clientDependencies:

1. It should be used when a named element is queried.

2. Information about the type of relationship is specified as [Dependency], [Abstrac-
tion] etc.

3. When querying the model element with mse::clientDependencies, the reference
decomposition should be to a supplier element.

Example

The example below is an illustration of how to use the clientDependencies virtual
feature.

35

Figure 6.1: clientDependencies Example

6.2 supplierDependencies
Description

36 • 6 Dependencies

Similar to clientDependencies, supplierDependencies is used to create a re-
lation between two named elements. The only difference between the two virtual features
is supplierDependencies is used when the relationship has to be made from supplier
to client instead of client to supplier, as in the case of clientDependencies.

Syntax

The general syntax for using the supplierDependencies virtual feature is as follows:

/mse::supplierDependencies

This virtual feature is used while querying a Class that has to be assigned as supplier to the
dependency that is being created and is used in a dimension following the class that is being
queried.

Where alias is the alias you assigned to the MapleMBSE ecore.

Using the supplierDependencies Virtual Feature

The following example illustrates what you need to do to use supplierDependencies

1. It should be used when a named element is being queried.

2. Information about the type of relationship is specified as [Dependency], [Abstraction]
etc.

3. When querying the model element with mse::supplierDependencies the reference decom-
position should be to a client element.

6.2 supplierDependencies • 37

Example

Figure 6.2: supplierDependencies Example

6.3 featureImpact
Description

The featureImpact virtual feature is used in context with the MBPLE profile. Using this
profile a user can model a 150% model and use the feature impact (Dependency) relation
to link the Existence with the Feature Model. When a feature impact relationship is created,
the tag values should also be set based on the client and supplier. Adding the relation with
real features requires the user to add additional details that complicates the user actions.

38 • 6 Dependencies

Using featureImpact, just by specifying the source and target, the tag values are updated
automatically. The featureImpact virtual feature works similar to the clientDependencies
virtual feature. The constraint is always set as client and the supplier is the feature.

Syntax

/mse::featureImpact

Using the featureImpact Virtual Feature
1. Import the MapleMBSE ecore with an alias.

2. Create a datasource for the existence (constraints with stereotypes) to which the features
has to be linked.

3. Use /mse::featureImpact and this will set the constraint as client, and to set the supplier
use the supplier feature.

Example

6.3 featureImpact • 39

6.4 Multiple Dependencies Class
Introduction

Earlier on in this guide, when the Matrix concept was introduced, the focus was on a Matrix
where you can view only one type of relation in a Matrix.

However, through the use of a virtual mse::MultipleDependencies Eclass and the mul-
tipleDependencies virtual feature, multiple types of relations can be displayed at once in a
Matrix, where the user can pass a parameter to the virtual feature to control the type of rela-
tions displayed in the matrix.

Creating a Multiple Dependencies Class in an MSE file

The syntax for creating the multiple dependencies is:

data-source deps = <previous-ds>/mse::multipleDependencies(StringFilters)[mse::Mul-
tipleDependencies]

where where <previous-ds> represents the needed navigation to all the dependencies expected
to be displayed, e.g. Root/packagedElement[Package|name="Dependencies"].

Next, mse::multipleDependencies(StringFilters) represents the virtual feature, multipleDepend-
encies. In this case, StringFilters represents the parameters passed to multipleDependencies
used to select the type of relations displayed in the matrix.

An example:

This example is taken from the TWCSysML-RelationMatrix.MSE model file from the
Application\TWCSysML\2021x directory of your MapleMBSE installation.

data-source multiDep = sysStructurePkg/mse::multipleDependencies("SysML::Require-
ments::Satisfy","SysML::Requirements::Verify")[mse::MultipleDependencies]

The data-source, multiDep is defined as a multi-relational datasource. Here sysStructurePkg
represents the Package data source where the virtual feature, multipleDependencies will
find the Dependencies. Here, the string filters provided are two dependencies, "Satisfy" and
"Verify". The [mse::MultiDependencies] part of this code represents the output from the
multiDependences virtual feature, which is a MultipleDependencies object.

Note: If you do not specify a stereotype as a parameter to multiDependencies, then all ste-
reotypes attached to the dependencies will be used and they will appear in the model
worksheet as a list of stereotypes.

40 • 6 Dependencies

6.5 Three Way Dependencies Class
Description

The ThreeWayDependency Eclass achieves three way dependencies from a single input in
a matrix, in a way similar to the MultipleDependencies feature. In this case , a three way
dependency is defined as a combination of two two way dependencies where the supplier
of the first dependency is identical to the client of the second dependency.

Creating a ThreeWayDependency Class in an MSE File

First, some definitions:
DefinitionTerm
Is a reference to the client, R, of the first two-way dependency (R->M)client
Is a reference to the common element M, i.e., the supplier of the first two-way
dependency and the client of the second two-way dependency.

common

Is a reference to the supplier, C, of the second two-way dependency (M->C)supplier
Is a reference to the first two-way dependency (R->M)toCommon
Is a reference to the second two-way dependency (M->C)fromCommon
Is a string that encodes a comma-separated list of the stereotypes for the first
two-way dependency (R->M)

toCommonStereotype

Is a string that encodes a comma-separated list of the stereotypes for the second
two-way dependency (M->C)

fromCommonStereotype

We start with a root dimension where the common element will be queried and then using
the common version of the three-way dependency feature we can navigate to the client and
the supplier.

predicate toCommonSt := mse::ThreeWayDependency/toCommonStereotype =
"SysML::Requirements::Trace"

predicate fromCommonSt := mse::ThreeWayDependency/fromCommonStereotype =
"SysML::Requirements::Verify"

synctable-schema ThreeDependecySchemaCommon(clSC: ClientThreeWayDependency-
Schema, sSC: SupplierThreeWayDependencySchema) {

dim [Class|mse::metaclassName="SysML::Requirements::Requirement"] { key column
/name as common }

dim /mse::threeWayDependencyCommon("SysML::Allocations::Allocate", "SysML::Re-
quirements::DeriveReqt") [mse::ThreeWayDependency|toCommonSt, fromCommonSt] {

6.5 Three Way Dependencies Class • 41

key reference-query .supplier @ refSupplier
reference-decomposition refSupplier = sSC {
foreign-key column supplier as supplier
}

key reference-query .client @ refClient
reference-decomposition refClient = clSC {
foreign-key column client as client
}

}

}

This MSE fragment has other essential parts needed to set the right stereotype combination
and select other possible three-way dependencies that have any of the root dimension ele-
ments as common element.

The stereotypes are passed as arguments to the three-way dependency feature. There will
be up to two encoded comma separated stereotypes; if no stereotypes are needed, the empty
string can be passed. The first string will be considered as toCommonStereotype and the
second string will be the fromCommonStereotype. This is particularly important when
creating a new three-way dependencies in this view. Matching for those stereotypes will be
done exactly, in the same way as the stereotypeNames virtual feature.

Two types of filters are needed to enforce the expected view updates (in the example, both
the stereotypes passed to the virtual feature mse::threeWayDependencyCommon, as well
as the predicates used in the qualifier of the virtual mse::ThreeWayDependency class). This
is particularly important when a three-way dependency is created in another view.

42 • 6 Dependencies

7 Enumeration
Enumeration is a special DataType that can be compared to a list of possible values, the
way that "colors" can be an enumeration and possible values can be: red, blue, green, etc.
These Enumerations are composed of EnumerationLiterals which are the different values
and the actual Elements to be referenced. MapleMBSE supports a couple virtual features
that need to be used in conjunction to access and reference any Enumeration and its Enu-
merationLiterals independently of where in the TWCloud project those values are stored
(for example, under Model or customized profile)

7.1 EnumerationName
Description

MapleMBSE, to simplify Enumeration identification, supports an enumerationName
virtual feature that allows simpler access to a specific Enumeration while creating an MSE
configuration. Note that MapleMBSE, while using this virtual feature, will by default instan-
tiate the accessed Element to the first EnumerationLiteral of the Enumeration. Nonetheless,
enumerationLabel can be used to change to anotherEnumerationLiteral. See the next section
for further details.

Syntax

The general syntax for using the enumrationName virtual feature is as follows:
alias::enumrationName="qualified::name"
Wherealias is the alias you assigned to the MapleMBSE ecore and qualified::name
is the qualifiedName of the Enumeration. For more information on assigning aliases,
see Importing the MapleMBSE Ecore (page 3).
The enumrationName virtual feature must be used while querying an Element with a
Stereotype that supports some Propertywith an Enumeration type. For more information
on how to access a Slot, see the sections in the guide on themetaclassName and featureName
virtualFeatures. Once you get the specific Slot, retrieve its value and within its Qualifier
filter use enumrationName.

Using the enumerationName Virtual Feature

The following example illustrates what you need to do to use the enumerationName
virtual feature:

1. Import the maplembse ecore with an alias.

2. Create a schema that takes an Element with a Stereotype and navigate down to its In-
stanceValue for a Property with an Enumeration type. See lines 15 to 18 in the example
code in the next section for an illustration.

43

3. Make sure you are using the right combination of qualified names for Stereotypes, Slot
Properties and Enumeration.

4. Complete the /value[InstanceValue] navigation with an enumerationLabel (see next
section for further details).

Example

7.2 EnumerationLabel
Description

As shown in the previous sections on EnumerationName, MapleMBSE allows you to make
a reference to Enumeration using a qualifiedName. However, without the right mechanism
to translate from String to EnumerationLiterals and vice versa, the end user will be forced
to deal with strange Object references or unusable Excel cells. This is exactly the problem
enumerationLabel was designed to solve. Using this virtual feature allows the end user to
see the String name of the EnumerationLiteral without forcing any reference-decomposition
and it allows also the end user to change the reference from the Slot Property using the
String name of the desired EnumerationLiteral

Syntax

The general syntax for using the enumerationLabel virtual feature is as follows:
/alias::enumerationLabel
Where alias is the alias you assigned to the MapleMBSE ecore. For more information
on assigning aliases, see Importing the MapleMBSE Ecore (page 3).
The enumerationLabel virtual feature must be used while querying an InstanceValue
with a Stereotype that supports some Property with a Enumeration type and which was

44 • 7 Enumeration

filtered with enumerationName. For more information how to access this kind of In-
stanceValue, see the previous section.

7.2 EnumerationLabel • 45

46 • 7 Enumeration

8 TaggedValue
8.1 taggedValue
Description

The TaggedValue virtual EClass, along with the taggedValue virtual feature, allows the
user to access the value of any model TaggedValue without concern about its concrete im-
plementation (e.g. StringTaggedValue, ElementTaggedValue).

Syntax

The syntax for using this feature is:

/alias::taggedValue[mse::TaggedValue]

This feature should be used to query any model element to which a stereotype has been
applied. That stereotype should have properties. The virtual feature returns a virtual EClass,
TaggedValue. Thus this should be used in a successive dimension.

Using the taggedValue in the MSE File

With the use of the taggedValue virtual feature, the end user would see all tags defined by
each stereotype’s property for each element, whether or not the corresponding tag values
exist in the model. If a tag value does not exist, the corresponding field is empty, as shown
below.

47

There is a particular case for ElementTaggedValue defined by enumerations where the
model TaggedValue’s value will be created when the user selects an enumeration value
from the pulldown menu. Similarly, the user can delete an existing tag value by selecting
the empty row in the pulldown menu. For all other primitive types (e.g. real, string, boolean),
the user should input the desired value and MapleMBSE will select the correct model im-
plementation. Similarly, deleting those values will delete the model TaggedValue.

Here is an example of a synctable-schema that produces the view shown above. Note that
this synctable-schema uses both the virtual EClass, mse::TaggedValue, and an accompanying
virtual feature, mse::taggedValue

synctable-schema TaggedValueSchema{

record dim[Class]{

key column/name as bName

}

dim /mse::taggedValue[mse::TaggedValue]{

column .stereotype[Stereotype]/name as sName

key column .tagDefinition[Property]/name as tName

column /value as tValue

}

}

It is important to mention that the value feature will be always initialized for an enumeration
in order to guarantee the appearance of the pulldown menu. In this case, the value will be
a string, encoding all the possible options of the pulldown menu, as well as the currently
selected option.

Regarding filtering, there are two possible placements at an element and tag level. Filtering
at the element level can happen either at the data-source level or the root dimension:

[Class| mse::stereotypeNames=“SysML::Blocks::Block”]

At the element level, this filter would include only blocks although other custom stereotypes
could be applied.

48 • 8 TaggedValue

At the tag level, it would be in the successive dimension that accesses the virtual Tagged-
Value:

/mse::taggedValue[mse::TaggedValue|notRequirementTags]

where the predicate notRequirementTags is defined as:

NOT mse::TaggedValue.stereotype[Stereotype|qualified-
Name="SysML::Requirements:: Requirement"]

This tag filter would exclude all TaggedValues defined by the requirement stereotype.

Example

import-ecore "http://www.nomagic.com/magicdraw/UML/2.5.1.1"

import-ecore "http://maplembse.maplesoft.com/common/1.0" as mse

predicate stereotype := mse::stereotypeNames SUPERSET
"SysML::Blocks::Block,TaggedValue::Testing Profile::Colored,TaggedValue::Testing
Profile::CarElectric"

data-source Root[Model]

data-source structure = Root/packagedElement[Package|name="TaggedValue"]/packagedEle-
ment[Package|name="Structure"]

data-source elements = structure/packagedElement[Class|stereotype]

synctable-schema MainSchema {

record dim [Class] {

key column /name as eName

}

dim /mse::taggedValue[mse::TaggedValue] {

column .stereotype[NamedElement]/name as sName

key column .tagDefinition[NamedElement]/name as tdName

8.1 taggedValue • 49

column /value as tValue

}

}

synctable mainTable = MainSchema <elements>

worksheet-template MainTemplate(msc: MainSchema) {

vertical table tab1 at (3, 1) = msc {

key field eName

field sName

key field tdName

field tValue

sort-keys eName, sName, tdName

}

}

workbook {

worksheet MainTemplate(mainTable) {label="Tagged Values"}

}

50 • 8 TaggedValue

9 Util
This section contains all other virtual features that do not create elements but offer a better
alternative to access and map model information.

9.1 multiplicityProperty
Description

The UML specification contains severalMultiplicityElements likeProperties that have upper
and lower features to describe their multiplicity. Use the multiplicityProperty
virtual feature to make a configuration that translates a string into those upper and lower
values and the other way around.
This virtual feature recognizes the UML commonly used notation for multiplicity (e.g. 0..*).
Supporting this notation makes MapleMBSE much easier to use without adding complexity
and thus the final user has less to input into Excel.

Syntax

The general syntax for using the multiplicityProperty virtual feature is as follows:

/alias::multiplicityProperty

Where the alias is the alias you assigned to the MapleMBSE ecore.

This virtual feature can only be used while querying a concrete EClass implementing a
MultiplicityElement like a Property or a Pin. A slash notation is needed prior to the alias,
the 2 colons, and multiplicityProperty.

As mention previouslymultiplicityProperty uses a string to represent the multipli-
city, meaning that this particular virtual feature cannot being used as a dimension with a
qualifier. It is intended to be used only at a column declaration.

Using the multiplicityProperty Virtual Feature

The following example shows you how to map the multiplicity of a concreteMultiplicityEle-
ment like Property and a string.

1. Import the MapleMBSE ecore, as usual the alias used is mse

2. Inside a synctable-schema navigate to a MultiplicityElement, in this case /ownedAttrib-
ute[Property] within a Class

3. Within that dimension, define a regular column using /mse::multiplicityProp-
erty

51

4. Complete the rest of the configuration as usual:worksheet-templates,synctable
and workbook

Example

Figure 9.1: multiplicityProperty Example

52 • 9 Util

10 Activity Diagrams
An Activity Diagram is a diagram with a direct connection, ActivityEdge, that connects a
node, ActivityNode, to another ActivityNode. An Activity Diagram is useful to abstract
behavioral information within a system. In order to improve MSE configurations,
MapleMBSE supports control and object flow, the 2 kind of ActivityEdges, with two distinct
virtual features.

10.1 ActivityControlFlow
Description

A ControlFlow is an ActivityEdge that is used to control the execution of ActivityNodes
within an Activity.

In MapleMBSE, the virtual feature ActivityNode is used as a reference to create Control-
Flows. Note that in MapleMBSE, abstract classes such as ActivityNode cannot be instanti-
ated. Thus, you must instantiate concrete classes such as CallActionBehavior, ActivityPara-
meterNode, or InitialNode. See the example section for further details.

Syntax

The general syntax for using the activityControlFlow virtual feature is as follows:
.alias::activityControlFlow
Where alias is the alias you assigned to the MapleMBSE ecore. For more information
on assigning aliases, see Importing the MapleMBSE Ecore (page 3).

TheactivityControlFlow virtual feature must be used when querying theActivityNode
of Activity.

Using the ActivityControlFlow Virtual Feature

The following example illustrates what you need to do to use activityControlFlow
virtual feature:

1. Import the maplembse ecore with an alias.

2. Create a schema that navigates until an ActivityNode or an element that has an ActivityN-
ode as its first dimension

3. Make a dimension reference-query to another ActivityNode using
.mse::activityControlFlow.

4. Complete the reference-decomposition.

This example has extra schema, CallBehaviorActionSchema used to create concrete
ActivityNodes. The other schemas in this example will fail to instantiate Element because

53

ActivityNode is an abstract class.

Note: Some data sources specific to a fictional project were created to simplify the refer-
ence-decomposition. In a real life scenario you might need to identify the Package,
the Activity and the ActivityNode that you want to connect to.

Example

Figure 10.1: ActivityControlFlow Example

54 • 10 Activity Diagrams

10.2 ActivityObjectFlow
Description

AnObjectFlow is an ActivityEdge that represents the flow of object data between ActivityN-
odes within an Activity. Sometimes, the ObjectFlow directly connects two ActivityNodes.
However, due to UML specifications, some ActivityNodes cannot be connected directly
using an ObjectFlow. In these cases Pins are required. Pins are objects that accept and
provide values to actions. These values represent an input to an action or output from an
action.

If an ActivityNode that requires Pins, such as CallBehaviorAction, also has a Behavior that
further describes it’s functionality, then both the ActivityNode and Behavior need to have
their Pins (specifically ActivityParameterNode and Parameters) synchronized, both in
quantity and direction.

Syntax

The general syntax for using the activityObjectFlow virtual feature is as follows:
.alias:: activityObjectFlow
Where alias is the alias you assigned to the MapleMBSE ecore. For more information on
assigning aliases, see Introduction (page 1).
The activityObjectFlow virtual feature must be used when querying theActivityNode
of Activity.

Using the ActivityObjectFlow Virtual Feature

The following example illustrates what you need to do to use activityObjectFlow
virtual feature:

1. Import the maplembse ecore with an alias.

2. Create a schema that navigates until an ActivityNode or an element which has an Activ-
ityNode as its dimension.

3. Make a dimension reference-query to another ActivityNode using .mse::
activityObjectFlow.

4. Complete the reference-decomposition.

10.2 ActivityObjectFlow • 55

Example

Figure 10.2: ActivityObjectFlow Example

56 • 10 Activity Diagrams

11 StateMachines
StateMachine diagrams are used to define the different states that a system will exist in.
This kind of diagram helps modelers to describe discrete, event-driven behaviors of the
whole system or its parts.

11.1 VertexTransition
Description

MapleMBSE, in order to simplify Transition betweenVertexes, supports a vertexTrans-
ition virtual feature that allows a better end user experience while inputting data.Note
that MapleMBSE will fail to instantiate abstract classes like Vertex and it will be required
to instantiate instead concrete classes like Pseudostate, State or FinalState. Nonetheless,
Vertex can be used as reference to create Transitions. See the example section for further
details.

Syntax

The general syntax for using the vertexTransition virtual feature is as follows:
.alias:: vertexTransition
Where alias is the alias you assigned to the MapleMBSE ecore. For more information
on assigning aliases, see Importing the MapleMBSE Ecore (page 3).
The vertexTransition virtual feature must be used when querying the any kind of
Vertex within a given Region of a StateMachine.

Using the VertexTransition Virtual Feature

The following example illustrates what you need to do to use the vertexTransition
virtual feature:

1. Import the maplembse ecore with an alias.

2. Create an schema that navigates till an Vertex or which first dimension is an Vertex.

3. Make a dimension reference-query to another Vertex using .mse:: vertexTransition.

4. Complete the reference-decomposition.

This example has some extra schema, called StateSchema, used to create concrete States.
The other schemas in this example will fail to instantiate Element because Vertex is an ab-
stract class.
Note: some data sources specific to a fictional project were create in order to simplify the
reference-decomposition, in a real life scenario you might need to identify the
Package, the StateMachine, the Region and the Vertex that you want to connect to.

57

Example

Figure 11.1: VertexTransition Example

11.2 VerticalTransition
Description

MapleMBSE, in order to simplify Transition between Vertexes, supports a vertical-
Transition virtual feature that allows a better end user experience while inputting
data.Note that MapleMBSE will fail to instantiate abstract classes like Vertex and it will be
required to instantiate instead concrete classes like Pseudostate, State or FinalState. Non-

58 • 11 StateMachines

etheless, Vertex can be used as reference to create Transitions. See the example section for
further details.

Syntax

The general syntax for using the verticalTransition virtual feature is as follows:
.alias:: verticalTransition
Where alias is the alias you assigned to the MapleMBSE ecore. For more information
on assigning aliases, see Importing the MapleMBSE Ecore (page 3).
The verticalTransition virtual feature must be used when querying the any kind
of Vertex within a given Region of a StateMachine.

Using the VertexTransition Virtual Feature

The following example illustrates what you need to do to use the vertexTransition
virtual feature:

1. Import the maplembse ecore with an alias.

2. Create an schema that navigates till an Vertex or which first dimension is an Vertex.

3. Make a dimension reference-query to another Vertex using .mse:: vertexTransition.

4. Complete the reference-decomposition.

11.2 VerticalTransition • 59

60 • 11 StateMachines

12 Comments
12.1 ownedComments
Description

A comment is an element that represents a textual annotation that can be attached to other
elements or a set of elements.
A comment can be owned by any element.
This virtual feature creates a comment and annotated it with the owner element.

Syntax

The general syntax for using the ownedComments virtual feature is as follows:
/alias:: ownedComments
Where the alias is the alias you assigned to the MapleMBSE ecore.

Using the ownedComments Virtual Feature

The following example shows you how to use the ownedComments feature.

1. Import the MapleMBSE ecore, as usual the alias used is mse

2. Inside a synctable-schema navigate to a Class

3. Within that dimension, define a regular column using /mse::ownedComments[Com-
ment]

4. Complete the rest of the configuration as usual:worksheet-templates,synctable
and workbook

61

Example

62 • 12 Comments

12.1 ownedComments • 63

64 • 12 Comments

13 Instance Matrices
SysML permits users to create an instance of the classifiers with their properties. If the
classifier is defined with some properties, the instances will own slots that contain the
properties defined. This instance allows users to create concrete elements from the more
general model. In order to simplify the task related to InstanceSpecification, MapleMBSE
proposes the following virtual features to support the creation, edition, and removal of in-
stances and their Slots.

13.1 SlotValue
Description

SysML has a complex structure to access the values within Slots. Those values change
widely depending on the type of the property defining the owing Slot. Imagine a real property
defining Slot, which, in order to contain that value, requires a LiteralReal, and then the real
value will be stored within that literal. Each type has its own literal class, and for reference
to other instances the mechanisms are another matter altogether. This is just a reminder of
how much complexity this InstanceSpecification modeling has, but thanks to this virtual
feature, MapleMBSE simplifies and hides that complexity. Using a single access point and
without caring about the concrete type of the property, SlotValue will return a string repres-
enting the value given Slot. MapleMBSE proposes an easy mechanism to display, create,
and edit that first value associated to any Slot. Emphasis in first, SysML metamodel allows
to associate several values to a single Slot, it is by design that MapleMBSE does not use
this virtual feature for a different multiplicity.

Syntax

The general syntax for using the slotValue virtual feature is as follows:

column [Slot]/alias::slotValue as column_name

Where alias is the alias you assigned to the MapleMBSE ecore. For more information on
assigning aliases, see Importing the MapleMBSE Ecore (page 3).
The slotValue virtual feature must be used while querying a Slot, and the return string can
only be used within a column.

65

Using the SlotValue Virtual Feature

The following example illustrates what you need to do to use the slotValue virtual feature:

1. Import the MapleMBSE ecore with an alias

2. Create a schema that has a dimension accessing a Slot from an InstanceSpecification,
see line 24.

3. Make sure that you are using the right combination of applied Classifier to the InstanceSpe-
cification and the Slot’s definingFeature.

4. Access that Slot’s value using the slotValue virtual feature, see line 30

66 • 13 Instance Matrices

Example

13.2 InstanceTree
Description

SysML forces each Slot to be owned by an InstanceSpecification. The regular way to nav-
igate would be from InstanceSpecification to Slot, and without any other mechanisms it

13.2 InstanceTree • 67

would be hard get a list of the InstanceSpecification tree for a given Slot. Remember that
a Slot can have, as values, references to other InstanceSpecifications, and those would be
part of tree for that given Slot. Returning this special tree list of InstanceSpecifications is
the goal of instanceTree virtual feature.

Syntax

The general syntax for using the instanceTree virtual feature is as follows:

dim .alias::instanceTree[InstanceSpecification]

Where alias is the alias you assigned to the MapleMBSE ecore.

For more information on assigning aliases, see Importing the MapleMBSE Ecore (page 3).
The instanceTree virtual feature must be used in a dimension level after querying a Slot,
the return type is a list of reference to the InstanceSpecifications which belong to the tree
of the queried Slot.

Using the InstanceTree Virtual Feature

The following example illustrates what you need to do to use the instanceTree virtual feature:

1. Import the MapleMBSE ecore with an alias

2. Create a schema that has a dimension accessing a Slot from an InstanceSpecification,
see line 24.

3. The dimension after the Slot one should use the instanceTree, see line 32

68 • 13 Instance Matrices

Example

13.2 InstanceTree • 69

13.3 InstanceWithSlots
Description

It is well known that InstanceSpecifications and their Slots are an essential part of a useful
and meaningful model. They are necessary to achieve results, but the task of instantiating,
editing, and removing those elements is slow and error prone. MapleMBSE helps to create
very complex structures using InstanceWithSlots, when you pass Class as parameter to an
InstanceSpecification using this virtual feature, you will see how:

• MapleMBSE updates the list of classifiers that are applied to a given InstanceSpecification

• For each defining property related to that applied class, MapleMBSE will create a Slot
defined by a property with its default value.

Syntax

To use instanceWithSlots virtual feature as a column within an InstanceSpecification dimen-
sion, the syntax is as follows:

reference-query .alias::instanceWithSlots @reference_name

This configuration line needs to be completed with a reference-decomposition that uses a
Class schema, see the example for further information. Also remember that alias is the alias
you assigned to the MapleMBSE ecore.

For more information on assigning aliases, see Importing the MapleMBSE Ecore (page 3).

Using the InstanceWithSlots Virtual Feature

The following example illustrates one way to use the instanceWithSlots virtual feature:

1. Import the MapleMBSE ecore with an alias

2. Create a schema that has a dimension accessing an InstanceSpecification, see line 16.

3. Reference-query instanceWithSlots, see lines 18/19

70 • 13 Instance Matrices

Example

13.4 RecursiveInstanceWithSlots
Description

The RecursiveInstanceWithSlots virtual feature does the same thing that InstanceWithSlots
does but for all possible InstanceSpecifications in the tree. If a Class A is composed by
other Class B and you use recursiveInstanceWithSlots to create an InstanceSpecification
of Class A, MapleMBSE will also create an InstanceSpecification for Class B with Slots.

13.4 RecursiveInstanceWithSlots • 71

Syntax

To use recursiveInstanceWithSlots virtual feature as a column within an InstanceSpecification
dimension, the syntax is as follows:

reference-query .alias::recursiveInstanceWithSlots @refer-
ence_name

This configuration line needs to be completed with a reference-decomposition that uses a
Class schema, see the example for further information. Also remember that alias is the alias
you assigned to the MapleMBSE ecore. For more information on assigning aliases, see
Importing the MapleMBSE Ecore (page 3).

Using the RecursiveInstanceWithSlots Virtual Feature

The following example illustrates one way to use the recursiveInstanceWithSlots virtual
feature:

1. Import the MapleMBSE ecore with an alias

2. Create a schema that has a dimension accessing an InstanceSpecification, see line 16.

3. Reference-query recursiveInstanceWithSlots, see lines 18/19

72 • 13 Instance Matrices

Example

13.5 AttachedFile
Description

The attachedFile virtual feature supports MagicDraw file attachments, which are accessible
through comments. It downloads all the relevant file attachments, and displays hyperlinks
to temporary locations in the user interface. When the user clicks on the link, the user inter-
face will open the file.

Syntax

The syntax to use attachedFile is as follows:

column /mse::attachedFile as fileName

13.5 AttachedFile • 73

Using the attachedFile Virtual Feature

The following example illustrates one way to use the recursiveInstanceWithSlots virtual
feature:

1. Import the MapleMBSE ecore with an alias

2. Create a schema that has a dimension accessing an ownedComment line 5, in the column
level call the attached VF see line 6 in the example code

Example

synctable-schema AttachedFileSchema {
record dim[Package]{
key column /name as PkgName
}
dim /ownedComment[Comment|mse::stereotypeNames="UML Standard
Profile::MagicDraw Profile::AttachedFile"]{
column /mse::attachedFile as fileName
}
}

13.6 Slots
Description

Use the slots virtual feature to add a new slot and display all the slots recursively under a
top-level instance. The slots virtual feature can also be used to delete a child slot under a
top level instance and then recreate the child slot.

Syntax

The syntax to use slots is as follows:
dim /mse::slots[Slot]

Using the slots Virtual Feature

The following example illustrates one way to use the Slots virtual feature:

1. Import the MapleMBSE ecore with an alias

2. Create a schema that has a dimension accessing slots using the slots virtual feature (shown
in line 6 in the slots VF get all the slots Recursively under a instance specification

74 • 13 Instance Matrices

Example

synctable-schema InstanceTable(blk : BlocksTable){
record dim [InstanceSpecification] {
key column /name as instanceName
}

dim /mse::slots[Slot] {
key reference-query .definingFeature[Property] @ dfRef
reference-decomposition dfRef = blk {
foreign-key column bName as bName
foreign-key column valName as valName
}
key column /mse::slotValue as cValue
}
}

13.7 ArrayName
Description

This feature is used to display the classifier of an instance along with its multiplicity. This
feature gets a list of the sub-instance values for a given instance and returns the classifier,
along with numbering, based on the list length. In the case of only one instance, numberings
are not displayed. For example, if an Instance has two sub-instances due to the properties
multiplicity, MapleMBSE will display the classifier name with array numbering i.e., Clas-
sifier[1], Classifier[2]

Syntax

/ alias::arrayName

Using the arrayName Virtual Feature

This feature works only in the context of instance specification.

The following example illustrates the use of the arrayName virtual feature.

1. Navigate to the sub-instance from a top-level instance as shown below.

2. Use the arrayName virtual feature to get the classifier name along with the sub-instance
multiplicity.

13.7 ArrayName • 75

Example

13.8 MultiplicityOfInstance
Description

This feature is used to increase or decrease the number of sub-instances of the template in-
stance (Top level instance based on which the rows of the instance matrix are displayed)
that is defined for the rows of an instance matrix. It navigates using the instance classifier
to get details of the property multiplicity, based on this value defined for the property in the
model user can update the value in the table for the template instance.

76 • 13 Instance Matrices

Syntax

The general syntax for using the multiplicityOfInstance virtual feature is as follows:
/alias::multiplicityOfInstance

Using the multiplicityOfInstance Virtual Feature
1. Multiplicity of Instance should be used in a table view that queries the InstanceSpecific-

ation and its sub-instances as shown in the example.

2. It is recommended that multiplicityOfInstance be used with the arrayName feature so
that the tables can display all the available Instances and its sub-instances.

Example

13.8 MultiplicityOfInstance • 77

78 • 13 Instance Matrices

14 Recursivity
14.1 getRecursively
Description

The getRecursively virtual feature works as a chained data source, traversing all subelements
recursively under the owner data source or QPE and then filters out elements matching the
qualifier and filter.

Syntax

The general syntax for using the getRecursively virtual feature is as follows:
data-source packages = Root/packagedElement[Pack-
age|name="C3"]/getRecursively[Package]
Where C3 is the name of the package, class, port, etc. For this example, all packages under
C3 will be retrieved.

data-source packages = Root/packagedElement[Package]/getRe-
cursively[Package]

In the above data source syntax example, all the packages under root are retrieved. After
that, all the elements (packages) under those packages are retrieved, recursively. When you
are adding a new element, in this case, it will go under one of the packages which was re-
trieved from the root.

data-source packagesC3Class = Root/mse::getRecursively[Pack-
age|name="C3"]/packagedElement[Class]

In the syntax example above, first, getRecursively finds the packages under the model. The
model may have more than one C3 package.

Note that this is maybe very inefficient when the model is big, and it would be much faster
to explicitly specify the path for each existing C3 package.

data-source packagesC3Class = Root/mse::getRecursively[Pack-
age|name="C3"]/ mse::getRecursively[Class]

This data source gets all packages recursively and then sorts them and shows the ones named
C3. After that, you get all classes under these C3 packages and any of their subpackages.

79

Using the getRecursively Virtual Feature

The following example shows you how to use the ownedComments feature.

1. Import the MapleMBSE ecore, as usual the alias used is mse

2. Inside a synctable-schema navigate to a Package

3. In the next dimension, use /mse::getRecursively[Class] to get all the class
under the top package(Previous dim/root dim) and sub packages

4. Complete the rest of the configuration as usual:worksheet-templates,synctable
and workbook

Example

In this example, the code snippet retrieves all the packages and sub packages under the
package C3

This feature can be used anywhere in a QPE or data source, but not at the start of QPE or
data source.

80 • 14 Recursivity

14.1 getRecursively • 81

82 • 14 Recursivity

15 Constraints
SysML makes it hard to accessing the minimum and maximum constraint data in SysML
can be difficult because the model is forced to use LiteralString and other elements (e.g.
TimeExpression, Constraints). The main purpose of the virtual feature in this chapter is to
allow the MSE file to access this data with ease and aggregate it into simple double period
notation (..). Another benefit to the use of a virtual feature for working with constraint data
is that the end user has fewer inputs to provide, reducing human error.

15.1 durationConstraint
Description

To display and set duration constraints, MapleMBSE provides a virtual feature that allows
the simultaneous creation and editing of the min and max limits of the constraint using a
simple double dot notation (for example, minConstraint..maxConstraint). In the case of both
minConstraint and maxConstraint representing numerical values (in decimal or scientific
notation), MapleMBSE performs a check to determine if the minConstraint value is less
than or equal to the maxConstraint value.

Syntax

The general syntax for using the durationConstraint virtual feature is as follows:

column /mse::durationConstraint as dcValue

For user input, the durationConstraint virtual feature accepts numerical values as well as
arbitrary string values.These values are joined by double periods (..). In addition, you can
use an escape character (\) to include periods as part of the minimum and maximum con-
straint values.

The table below gives specific examples of both valid and invalid syntax for use of double
periods.

83

CommentMaxim
Constraint Value

Minimum Constraint
Value

User Input
Example

Valid3.522..3.5

Valid2.3-1-1..3.2

Invalid. The upper bound is less than lower
bound

25.55.5..2

Valid. Numerical values are trimmed, and
both bounds are allowed to be equal

2.32.32.3 ..
2.3

Valid. First double dot is taken as the
separator

..311….3

Valid. String values can contain spacesfoo barabcabc..foo
bar

Invalid. No double period present1.3

Valid. Empty Min/Max is allowed..

Valid. Empty maxminmin..

Valid. Empty minmax..max

Valid. Escaping first period.dotsescape.escape\....dots

Invalid. No double period presentinvalid\..input

Valid. The min is not a valid number
because of the space.

2.42 .52 . 5 ..
2.4

Using the durationConstraint Virtual Feature

The following example shows you how to use the durationConstraint feature.

1. Import the MapleMBSE ecore, as usual the alias used is mse.

2. Inside a synctable-schema navigate to a DurationConstraint, in this case
/ownedRule[DurationConstraint] within an Activity.

3. Within that dimension, define a regular column using /mse::durationCon-
straint.

4. Complete the rest of the configuration as usual:worksheet-templates,synctable
and workbook.

Example
synctable-schema Schema {
record dim [Activity] {

84 • 15 Constraints

key column /name as aName
}
record dim /ownedRule[DurationConstraint] {
key column /name as dcName
column /mse::durationConstraint as dcValue
}
}

15.1 durationConstraint • 85

86 • 15 Constraints

16 Generalization
This section contains all other virtual features that do not create elements but offer a better
alternative to access and map model information.

16.1 specificClass
Description

The specificClass virtual feature provides a simple, more direct way of creating
generalizations between a more generalized element and a more specialized element. The
specificClass virtual feature also sets the values for the specific and general elements
and then stores the generalization relationship information in the specific class.

Syntax

The general syntax for using the specificClass virtual feature is as follows:

.mse::specificClass

Using the specificClass Virtual Feature

The following example illustrates one way to use the specificClass virtual feature:

1. Import the MapleMBSE ecore with an alias

2. Create a datasource which query the Blocks from the model ”../PackageElement-
Class|mse::metaclassName="SysML::Blocks::Block"]”

3. In the synctable schema start from the generalized block

4. For the next dimension, use the virtual feature which uses the reference decomposition
to create the generalization between the generalized block and the specific block

Example
synctable-schema BlockpropertiesTable(blocks: BlocksTable){
record dim [Class|mse::metaclassName="SysML::Blocks::Block"] {
key column /name as generalClassName
}
record dim .mse::specificClass[Class] @genname{
reference-decomposition genname = blocks{
foreign-key column BlockName as specificClassName
}

87

}
}

88 • 16 Generalization

17 Working with sysML Diagrams
This chapter describes how to work with a sysML Diagram.

17.1 downloadDiagram
Description

Use the downloadDiagram feature to download the sysML diagram associated with your
model, using the MagicDraw or Cameo.
To use this feature, first install the MapleMBSE plugin (see the MapleMBSE Installation
Guide for instructions) into MagicDraw and Cameo. Start MagicDraw or Cameo and open
the Project from which you want to download the diagram in MapleMBSE. Start
MapleMBSE.

Syntax

mse::downloadDiagram

Using the clientDependencies Virtual Feature
1. Import the ecore statement e.g “import-ecore "http://maplembse.maplesoft.com/com-

mon/1.0" as mse”

2. In the Synctable schema start the dimension from the Diagram object.

3. Inside the Diagram dimension use the downloadDiagram feature “mse::downloadDia-
gram”

Example

89

17.2 diagramType
Description

The diagramType virtual feature shows the type of diagram which was downloaded using
the downloadDiagram feature. It cannot be used individually. It can only be used after the
downloadDiagram virtual feature.

Syntax

mse::downloadDiagram

Using the supplierDependencies Virtual Feature
1. Import the ecore statement e.g “import-ecore "http://maplembse.maplesoft.com/com-

mon/1.0" as mse”

2. In the Synctable schema start the dimension from the Diagram object

3. Inside the Diagram dimension use the downloadDiagram feature “mse::downloadDia-
gram” after that use the “mse::diagramtype”

Example

90 • 17 Working with sysML Diagrams

18 File Attachments
18.1 AttachedFile
Description

The attachedFile virtual feature supports MagicDraw file attachments, which are accessible
through comments. It downloads all the relevant file attachments, and displays hyperlinks
to temporary locations in the user interface. When the user clicks on the link, the user inter-
face will open the file.

Syntax

The syntax to use attachedFile is as follows:

column /mse::attachedFile as fileName

Using the attachedFile Virtual Feature

The following example illustrates one way to use the attachedFile virtual feature:

1. Import the MapleMBSE ecore with an alias

2. Create a schema that has a dimension accessing an ownedComment line 5, in the column
level call the attached VF see line 6 in the example code

Example

synctable-schema AttachedFileSchema {
record dim[Package]{
key column /name as PkgName
}
dim /ownedComment[Comment|mse::stereotypeNames="UML Standard
Profile::MagicDraw Profile::AttachedFile"]{
column /mse::attachedFile as fileName
}
}

91

92 • 18 File Attachments

19 Element Type
This chapter describes virtual featues that can be used to find the type of model element

19.1 elementType
Description

The elementType virtual feature helps to identify the metaclass type of model element (
Class, Activity, etc) that is displayed in MapleMBSE.

Syntax

The general syntax for the elementType virtual feature is as follows:

/alias::elementType

Where:

• alias is the alias you assigned to the MapleMBSE ecore.

• elementType virtual feature is used to display the metaclass Type of an element.

Using the elementType Virtual Feature
1. Import the ecore statement e.g “import-ecore "http://maplembse.maplesoft.com/com-

mon/1.0" as mse”

2. In the data-source we add the elementType to the Qualifier sorting feature.

Example

data-source elementsNew*[NamedElement||elementFilter|mse::ele-
mentType]

Where:

• NamedElement can be any of Class, Activity, StateMachine, etc.

• elementFilter can be name, visibility, stereotype, etc.

• mse::elementType refers to the elementType virtual feature.

import-ecore "http://www.nomagic.com/magicdraw/UML/2.5.1.1"
import-ecore "http://maplembse.maplesoft.com/twc/1.0" as mse
data-source Root[Model]

93

data-source elementList = Root/packagedElement[Package|name="Structure"]
synctable-schema DifferentElementTypeSchema{

dim [NamedElement]{
key column /name as differentElementName
column /mse::elementType as typeName

}
}
synctable differentElementTypeSchema =
DifferentElementTypeSchema<elementList>
worksheet-template DifferentElements(fis : DifferentElementTypeSchema){

vertical table featureTable at (5,4) = fis {
key field differentElementName
key field typeName
sort-keys differentElementName

}
}
workbook{

worksheet DifferentElements(differentElementTypeSchema)
}

94 • 19 Element Type

Index
A
activity diagrams, 53

ActivityControlFlow, 53
description, 53
syntax, 53
using, 53

ActivityObjectFlow, 55
description, 55
syntax, 55
using, 55

associations, 15
associatedProperty, 17

description, 15
syntax, 15
using, 16

directedAssociatedProperty, 19
description, 18
syntax, 18
using, 18

nestedDirectedComposition, 23
description, 23
syntax, 23
using, 23

otherAssociatedEnd, 21
description, 20
syntax, 20
using, 20

B
blocks, 25

getAllProperties, 29
description, 27
example, 30
syntax, 29
using, 29

propertyDefaultValue, 26
recursivePartProperties, 25

description, 25
syntax, 25

using, 25

C
comments, 61

ownedComments, 63
description, 61
syntax, 61
using, 61

connectors, 31
connectedPropertyOrPort, 31

description, 31
syntax, 31
using, 32

otherConnectorEnd, 33
description, 33
syntax, 33
using, 33

constraints, 83
durationConstraint, 85

description, 83
syntax, 83
using, 84

D
dependencies, 35

clientDependencies, 35
description, 35
syntax, 35
using, 35, 41

supplierDependencies, 37
description, 36
syntax, 37
using, 37

Three Way Dependencies, 41
description, 41

E
Element Type, 93

elementType, 93
description, 93
example, 93
using, 93

95

elementType syntax, 93
enumeration, 43

enumerationLabel, 45
description, 44
syntax, 44

enumerationName, 43
description, 43
syntax, 43
using, 43

F
File Attachments, 91

attachedFile, 91
description, 91
syntax, 91
using, 91

G
Generalization, 87

specificClass, 87
description, 87
example, 87
syntax, 87
using, 87

I
Instance Matrices, 65

arrayName, 75
description, 75
syntax, 75

attachedFile, 73
description, 73
syntax, 73
using, 74

instanceTree, 69
description, 67
syntax, 68
using, 68

instanceWithSlots, 70
description, 70
syntax, 70
using, 70

multiplicityOfInstance, 77
description, 76
example, 77
syntax, 77
using, 77

RecursiveInstanceWithSlots, 71
description, 71
syntax, 72
using, 72

slots, 74
description, 74
syntax, 74
using, 74

slotValue, 65
description, 65
syntax, 65
using, 66

M
Multiple Dependencies, 40

Creating, 40
Example, 40
Introduction, 40

R
recursivity, 79

getRecursively, 81
description, 79
syntax, 79
using, 80

S
specificClass, 87
statemachines, 57

vertexTransition, 57
description, 57
syntax, 57
using, 57, 59

verticalTransition, 59
description, 58
syntax, 59

stereotypes, 5

96 • Index

featureName, 7
description, 6, 7
syntax, 7

metaclass, 13
metaclassName, 5

description, 5
syntax, 5
using, 5

stereotypeNames, 9
description, 9
syntax, 9
using, 9

sysML Diagrams, 89
diagramType, 90

description, 90
example, 90
syntax, 90
using, 90

downloadDiagram, 89
description, 89
example, 89
syntax, 89
using, 89

T
TaggedValue, 47
taggedValue, 49

description, 47
syntax, 47
using, 47

U
util, 51

multiplicityProperty, 51
description, 51
syntax, 51
using, 51

Index • 97

98 • Index

	MapleMBSE 2026.0 Virtual Features Guide
	Contents
	Preface
	1 Introduction
	1.1 Scope and Purpose of this Document
	1.2 Prerequisite Knowledge
	1.3 Motivation for Using MapleMBSE Virtual Features
	1.4 Importing the MapleMBSE Ecore
	1.5 General Syntax for the MapleMBSE Virtual Features

	2 Stereotypes
	2.1 metaclassName
	Description
	Syntax
	Using the metaclassName Virtual Feature
	Example

	2.2 featureName
	Description
	Syntax
	Using the featureName Virtual Feature
	Example

	2.3 stereotypeNames
	Description
	Syntax
	Using the stereotypeNames Virtual Feature
	Example

	2.4 metaclass
	Description
	Syntax
	Creating the Stereotype with metaclass in the MSE File
	Example

	3 Associations
	3.1 associatedProperty
	Description
	Syntax
	Using the associatedProperty Virtual Feature
	Example

	3.2 directedAssociatedProperty
	Description
	Syntax
	Using the directAssociatedProperty Virtual Feature
	Example

	3.3 otherAssociatedEnd
	Description
	Syntax
	Using the otherAssociatedEnd Virtual Feature
	Example

	3.4 nestedDirectedComposition
	Description
	Syntax
	Using the nestedDirectedComposition virtual feature
	Example

	4 Blocks
	4.1 recursivePartProperties
	Description
	Syntax
	Using the recursivePartProperties Virtual Feature
	Example

	4.2 propertyDefaultValue
	Description
	Syntax
	Using the propertyDefaultValue Virtual Feature
	Example

	4.3 getAllProperties
	Description
	Syntax
	Using the getAllProperties virtual feature
	Example

	5 Connectors
	5.1 connectedPropertyOrPort
	Description
	Syntax
	Using the connectedPropertyOrPort virtual feature
	Example

	5.2 otherConnectorEnd
	Description
	Syntax
	Using the otherConnectorEnd Virtual Feature
	Example

	6 Dependencies
	6.1 clientDependencies
	Description
	Syntax
	Using the clientDependencies Virtual Feature
	Example

	6.2 supplierDependencies
	Description
	Syntax
	Using the supplierDependencies Virtual Feature
	Example

	6.3 featureImpact
	Description
	Syntax
	Using the featureImpact Virtual Feature
	Example

	6.4 Multiple Dependencies Class
	Introduction
	Creating a Multiple Dependencies Class in an MSE file

	6.5 Three Way Dependencies Class
	Description
	Creating a ThreeWayDependency Class in an MSE File

	7 Enumeration
	7.1 EnumerationName
	Description
	Syntax
	Using the enumerationName Virtual Feature
	Example

	7.2 EnumerationLabel
	Description
	Syntax

	8 TaggedValue
	8.1 taggedValue
	Description
	Syntax
	Using the taggedValue in the MSE File
	Example

	9 Util
	9.1 multiplicityProperty
	Description
	Syntax
	Using the multiplicityProperty Virtual Feature
	Example

	10 Activity Diagrams
	10.1 ActivityControlFlow
	Description
	Syntax
	Using the ActivityControlFlow Virtual Feature
	Example

	10.2 ActivityObjectFlow
	Description
	Syntax
	Using the ActivityObjectFlow Virtual Feature
	Example

	11 StateMachines
	11.1 VertexTransition
	Description
	Syntax
	Using the VertexTransition Virtual Feature
	Example

	11.2 VerticalTransition
	Description
	Syntax
	Using the VertexTransition Virtual Feature

	12 Comments
	12.1 ownedComments
	Description
	Syntax
	Using the ownedComments Virtual Feature
	Example

	13 Instance Matrices
	13.1 SlotValue
	Description
	Syntax
	Using the SlotValue Virtual Feature
	Example

	13.2 InstanceTree
	Description
	Syntax
	Using the InstanceTree Virtual Feature
	Example

	13.3 InstanceWithSlots
	Description
	Syntax
	Using the InstanceWithSlots Virtual Feature
	Example

	13.4 RecursiveInstanceWithSlots
	Description
	Syntax
	Using the RecursiveInstanceWithSlots Virtual Feature
	Example

	13.5 AttachedFile
	Description
	Syntax
	Using the attachedFile Virtual Feature
	Example

	13.6 Slots
	Description
	Syntax
	Using the slots Virtual Feature
	Example

	13.7 ArrayName
	Description
	Syntax
	Using the arrayName Virtual Feature
	Example

	13.8 MultiplicityOfInstance
	Description
	Syntax
	Using the multiplicityOfInstance Virtual Feature
	Example

	14 Recursivity
	14.1 getRecursively
	Description
	Syntax
	Using the getRecursively Virtual Feature
	Example

	15 Constraints
	15.1 durationConstraint
	Description
	Syntax
	Using the durationConstraint Virtual Feature
	Example

	16 Generalization
	16.1 specificClass
	Description
	Syntax
	Using the specificClass Virtual Feature
	Example

	17 Working with sysML Diagrams
	17.1 downloadDiagram
	Description
	Syntax
	Using the clientDependencies Virtual Feature
	Example

	17.2 diagramType
	Description
	Syntax
	Using the supplierDependencies Virtual Feature
	Example

	18 File Attachments
	18.1 AttachedFile
	Description
	Syntax
	Using the attachedFile Virtual Feature
	Example

	19 Element Type
	19.1 elementType
	Description
	Syntax
	Using the elementType Virtual Feature
	Example

	Index

