MapleMBSE 2026.0 Application
Guide

Copyright © Maplesoft, a division of Waterloo Maple Inc.
2026

MapleMBSE 2026.0 Application Guide

Contents

INErOAUCLION ..ottt vii
1 Blocks in MapleMBSEoiiniiiiiiiii e 1
1.1 BIOCKS TabBIC ..vvniieiiieiieie e e e e e e ees 1
Creating a BIOCKoouiiiiiiii e 2

1.2 Creating Association, Aggregation and COmpOSItionccceueevneernerenennnnns 3
1.3 Creating Direct Association, Aggregation and Composition 4
1.4 Block Generalization, Values and Operationcoeevveivneiineiineinneinnnnenns 6
1.5 Constraint BIOCKScivuiiiniiieeiiiie e e e e e e 8
1.6 BIoCkS HICTarChyccouiiuniiiiiiiiiiii et e e 9
1.7 Nested HICrarcChyoivuiiieiiiiiiiie e e 10

2 The Fitness Tracker Modelooiviiiiiiiiiiiiie e 13
2.1 PACKAZES .vviiniiieie e 13
2.2 Requirements Tableoivuiiiniiiiiiie e 14
Creating REqUITEMENTSivviiniiieiieie e e e e e e e e e aaneeans 14

2.3 USE Case TabIe ...c.uuiiiiieii e 16
Creating a Use Case Tablec.coeviiiiiiiiiiiiiei e 17

2.4 BIOCKS Table ...cvuiiiiiiiiei e e 18
BIOCKS TTE ...ttt ettt 18
Block Satisfaction MatriXevveeiineiineiieeieiieei e e eee e e eaeeens 25

2.5 Internal BIocks Tableoivniiiniiiiiiiiie e e 25
Block Property Tableoivuiiiiiiiiiiei e 26
Property Connector Tablec.ooiiviiiiiiiiiie e 27

2.6 ACtIVItY DIQZIAMivniiiiiiiie e e e e e e e eans 28
Creating Actions for an ACHIVITYviveiiineiineiieeiee e e e 28

3 State Machine DIaGramooeiuiiiniiiieiieii et e et e e e e e e e e eaeaes 35
3.1 How to Create a State Machine Diagramcoovvvviiiiieiiiniineiineeinnn. 36
3.2 How to Create States and Transitionsoeeueiveinieinniinnrierineiieennenn 36
3.3 How to Create Transitions with Signal Eventscccoeeiiiiiiiiiniinninnnnn. 37
3.4 How to Create Triggers with Signal Eventsc.ccoviiiiiiiiiiiiiniiieinn, 38

4 Countdown Timer Modelooiuiiiiiiiiiiiie e 41
4.1 Requirements Tablecoouiiiniiiiii e 42
4.2 USECASE TaDIE .. cevieiii et 42
4.3 CountDownTimer Tablecccviiiiiiiiiiiieii e 43
Signal TabIE ...uuiiniinii e 44

Time Event Tableccouoiiiiiiiiiie e 45

4.4 Timer Behavior Tablecccooeiiiiiiiiiiiiiie e 46
4.5 StateMachine Properties Tableccooviiiiiiiiiiiiiiieiieeie e 47
Transition Tableccooiiiiiiiiii e 48

4.6 ActiVityNOdeTableccvuiiiiiiiiiiie e 49
Opaque Behavior Tableccc.oviiiiiiiiiiiiiieiie e 49
Activity ObjectFlow Tablecccoviiiiiiiiiiiiiii e, 51

il

iv ¢ Contents

Activity ControlFIow Tablecccooviiiiiiiiiiiiiiie e 51

4.7 State Behavior Tablecccooiiiiiiiiiiie e 53
State Behavior ControlFlow Tableccccoiiiiiiiiiiiiiiiiiiiiiieceeeeeene 54

State ControlFlow Condition Tablecocoviiiiiiiiiiiiiiiiiieeeeane 55

5 Turbofan Engine Modelccoiiiiiiiiiiiiiii e 57
oI B 615 oY L o3 o) | R TP 57
5.2 Turbofan Modelcooiviiiiii e 57
5.3 REQUITEIMEILS ...eevuiiiiiiiieiii et ettt ettt et e e e 57
54 ValUCTYPE vt 58
5.5 Constraint BIOCKScuuiiniiiiiiie e 58
5.6 System MOdelooouuiiiiiiiiiiii e 58
5.7 RESUILS L.ttt 58
5.8 RETCICNCES ..ottt 59

6 UAV MOGEL ...eiiiiiiiiii e 61
6.1 INErOAUCTION ..ovuiniitie e et e e e e e e e e e e 61
6.2 Analyze Stakeholder Needsc..ooouuiiiiiiiiiiiiiiiii e 61
6.3 Mission ReqUIrEMENtcouuuiiiiniiiiiniiiniiiin e 62
6.4 System ReqUIreMENtSsc..veeuuniiiiiiiiiiniii e 62
System Behavioriiiuiiiiiiiiiiii 62
Weight EStIMationc...couuiiiiiiiiiiii e 62

Wing Area EStIMationccouiiiiiiiiiiiiiii e iee e e e e 63

6.5 ReCIONCES ..uivniiiii e 63
TEMEA TemPIateccouniiiiiiiiiiii et e 65
A B 615 oY L o3 o) | R TP 65
T2 FMEA oo 65
7.3 Recommended ACIONouuiiriiniiieiiie e ea e 66
T4 RETCIENCES ..ot 66

8 Interface Definition Templateoooouiiiiiiiiiiiiiiin e 67
8.1 INIrOAUCTION ..ovuiviitit e e et e e 67
8.2 The InterfaceRequirements MatriXcc.viiuineiiiniiiiniiiiiniiin e, 68
8.3 ComponentsInteractionTableccooviiiiiiiiiiiiiiinii e 68
84 RETCIONCES ...t 69

O COSt ANALYSIS ..ovueiineiieiiee ettt aas 71
9.1 INErOAUCTION ..evnitiitit it e e e e e eae e e 71
0.2 RESUILS .. ovnititii it 71
9.3 VISUAIIZATION ...uiuiieitiiie it e e e e e et e e e et e e e e e ans 71

10 Variant Management Templatecoviiuviiiiiiiiiniiiiniie e 73
101 INtrodUCTIONvniiniteie e e e e e e e e e et e e eaaa e 73
10.2 FEAtUIEIMALIIX ...vviiriineitiiteit et e et e e et et et et e et e et e e e eaeeeeraeeneeneanns 73
10.3 VariantCheckTableoouiiiiiiiii e 74
10.4 RETEIENCES . .uininiiiiii et et e e e ees 74

11 Default Value Generationceeuiiuiiniineiniiieineieieie e ie e eeeieeneeeenaaans 75

) I 605 (oY L 1o 5 o) s N PPN 75

Contents ¢ v

11.2 Generating the Default Valuesccoooeeiiiiiiiiiiiiiii e, 75
11.3 Requirement ID geNeTationcc.oveeuuneiiiniiiiineiiiniiiieeiieeiie e 76

12 INSTANCE VIBW ..ootiniiiiiiiiiiiii e 77
12,1 INErOAUCHION ...eviiiiiiie it 77
12.2 The MatrixTemplate Worksheetccooeiiiiiiiiniiiiniiiiiincee 77
12.3 Instance Multiplicity Tableccoviiiiiiiiiiiiiiiniiini e 80

13 Spacecraft Modelcoouiiiiiiiiiiii e 81
131 INrOAUCHION ...eiiiiiiie ittt 81
13.2 SPCUseCase Templateeveueiineiiiiieieiie e eens 81
13.3 SPCValueType Templatec.uveeuiieiiiiiiiiiineiineii e 81
13.4 SPCStructure tempPlateovuuviineiieiieiee e e e e e e e eanees 82
14 Telescope MOdElcouuiiiiiiiieiii e 85
14,1 INtrOUCHION ...eivtnieiin ettt 85
14.2 TMT Predicate Templatec..oeeuuiiiiniiiiineiineiiineiiie e 85
14.3 TMT Activity TemMPIatec..veeuniiiiiiiiieiiieii e e 86
14.4 Signal INterfaceocouuiiiiiiiin e 87
14.5 TMT OBSE Templatecccuuiiiiiiiiiniiieiineei et 87
14.6 TMTINSEANCEoovnniiiiiiiiiiii e 87

15 Turbojet Model: Formula Evaluationccceceuiiiiiiiiiiiiiiiniiiniinecieeenn, &9
15,1 INrOAUCHION ...eiiiiiiii it 89
15.2 Instance Specifications and Constraint Propertiescccoccevvieiieennnen. 90
15.3 INStANCE MALTIX . eevueiiineiiieiii ettt e e e 91

16 Variant Management:MBPLE with MapleMBSEc...ccooiiiiiinnnn. 93
16.1 INtrOUCTION ...evvtniiiieiii e et 93
16.2 Feature Modelcouuiiiiiiiiiii e 93
16.3 CONAIGUIALIONSueiiieiiie ittt e e e e 95
16.4 Variation POINtSoiiiiiiiiiiiii e 96
16.5 Vehicle ANALYSIS .o.uuiiiiniiiiieiiiee et 98

17 Downloading sysML DIagramsceeuuiiiuiiiiiiniiiiniiiineiineeineciie e 101
17,1 INEPOAUCHION «eteeiiee it et 101
17.2 TWCSYSML EXampleccuiviniiiiiieiie e 101

18 ReElationNs MALTTX ...ccvunerineiiiieiii ettt et ettt et et eeai e eaieeees 103
18.1 Verify Matrix with Hierarchyc...ccoooiiiiiiiiin e, 103
Verify Matrix with Hierarchyccooviiiiiiiiiiiii e, 103

18.2 Multiple Relations in MatriXceuuneeiiniiiiineiiieiiineeiieeiie e eaene 103

19 PrediCatescoouuniiiiiiee e 107
19.1 TNErOAUCTION «vueiiieiii e e e 107

20 Matrices With Different Element Typesc..cvcevuiiiiniiiniiiiiiiiiiincciiecnnn, 109
20.1 INErOAUCTION «..ueiiiieiii et eaen e 109

vi ¢ Contents

Introduction

MapleMBSE Application Guide Overview

MapleMBSE™ gives an intuitive, spread-sheet based user interface for entering detailed
system design definitions, which include structures, behaviors, requirements, and parametric
constraints.

The Application directory of your MapleMBSE installation contains six applications. Each
of the chapters in this guide corresponds to one of the applications:

Chapter

Application Name

Description

1

Working With Blocks in MapleMBSE

The first application uses the
TWCSysML-Structure.mse file to demonstrate
the use of blocks in MapleMBSE

Creating a Model in MapleMBSE (Fitness
Tracker Model)

This model uses the TWCSysML-Model.mse
and TWCSysML-ModelActivity.mse files to
demonstrate how to create a model in
MapleMBSE which can be exported to the No
Magic server.

Working With State Machine Diagrams in
MapleMBSE

The example in this chapter defines how to
create states, define their transitions and the
events that trigger these transitions using
MapleMBSE.

Count Down Timer Model

This chapter contains a model of Countdown
Timer that uses TWCSysML-Timer.mse to
create a simulatable Timer model.

Turbofan Engine Model

This example model is used to identify design
points of a turbofan engine. MapleMBSE and
Cameo Systems Modeler™ were used to create
a turbofan example model

UAV Model

This model uses Object Oriented System
Engineering Methodology (OOSEM) to design
a conceptual model of an Unmanned Aerial
Vehicle (UAV).

FMEA Template

This model is used to perform FMEA analysis
by accessing SysML model elements from the
No Magic server.

Interface Definition Template

This template is used to show details on the
interfaces between the systems

Cost Analysis

This example illustrates cost analysis applied
to materials used in a turbofan engine.

vii

viii

Introduction

10

Variant Management Template

This example illustrates how to identify the
multiple variants in the product line and their
dependencies, to manage complexity.

11

Default Value Generation

The model in this chapter is used to illustrate
the use of the Default Value Generation feature.

12

Instance Table Template

This example illustrates how the InstanceTable
template makes it easier to filter and review
information on instances, gained from the
MatrixTemplate worksheet.

13

Spacecraft Model

This example illustrates the use of MapleMBSE
to explore this SysML-based model.

14

Telescope Model

This example provides a different view of the
model and illustrates the use of Predicate
Filtering.

15

Turbojet Model

This example illustrates the use of the Formula
Evaluation feature in the context of an instance
matrix.

16

Variant Management

Using the Model-Based Product Line
Engineering profile and MapleMBSE to create
a variant of a model.

17

Downloading sysML Diagrams

Configuring the MapleMBSE sysML Diagrams
plugin to view sysML model diagrams in a
MapleMBSE worksheet.

18

Relations Matrix

This example displays the Verify relation
between Component Value property and
Requirements.

19

Predicates

Predicates defined with stereotypes allow you
to add new elements to the model.

Related Products

MapleMBSE 2026 requires the following products:
* Microsoft® Excel® 2016, Excel 2019 or Excel Office 365 desktop..

* QOracle® Java® SE Runtime Environment 8.

Note: MapleMBSE looks for a Java Runtime Environment in the following order:

1) If you use the -vm option specified in OSGiBridge.init (not specified by default)

2) If your environment has a system JRE (meaning either: JREs specified by the environment
variables JRE HOME and JAVA HOME in this order, or a JRE specified by the Windows
Registry (created by JRE installer)), MapleMBSE will use it.

3) The JRE installed in the MapleMBSE installation directory.

Introduction * ix

Teamwork Cloud™ server 2021.x, 2022.x and 2024.x
» Magic Collaboration Studio 2021.x, 2022x and 2024.x

If you are using Eclipse CapellaTM with MapleMBSE, the following version is supported:
+ 6.X

If you are using EclipseTM, the following version is supported:

* 2024-3

Related Resources

Resource Description

System requirements and installation instructions for
MapleMBSE. The MapleMBSE Installation Guide is available
MapleMBSE Installation |in the Installhtml file located in the folder where you installed
Guide MapleMBSE, or on the website.

https://www.maplesoft.com/documentation_center/
MapleMBSE User Guide |Instructions for using MapleMBSE software. The MapleMBSE
User Guide is available in the folder where you installed

MapleMBSE.
MapleMBSE Configuration | This guide provides detailed instructions on working with
Guide configuration files and the configuration file language.
Frequently Asked You can find MapleMBSE FAQs here:
Questions

https://fag.maplesoft.com
Release Notes The release notes contain information about new features, known

issues and release history from previous versions. You can find
the release notes in your MapleMBSE installation directory.

For additional resources, visit http://www.maplesoft.com/site_resources.

Getting Help

To request customer support or technical support, visit http://www.maplesoft.com/support.
Customer Feedback

Maplesoft welcomes your feedback. For comments related to the MapleMBSE product

documentation, contact doc@maplesoft.com.
Copyrights

* Microsoft, Windows, and Excel are registered trademarks of Microsoft Corporation.

https://www.maplesoft.com/documentation_center/
http://www.maplesoft.com/site_resources
http://www.maplesoft.com/support

X

¢ Introduction

No Magic Server, Cameo Systems Modeler, and MagicDraw are registered trademarks
of No Magic, Inc.

Eclipse and Eclipse Capella are trademarks of Eclipse Foundation, Inc.

UML is a registered trademark or trademark of Object Management Group, Inc. in the
United States and/or other countries.

Java is a registered trademark of Oracle and/or its affiliates.

IBM, Rational, and Rhapsody are registered trademarks of IBM Corporation.

1 Blocks in MapleMBSE
1.1 Blocks Table

The block diagram shown below is created using MapleMBSE and syncing it to the Team-
work Cloud. This chapter will explain how to work with blocks in MapleMBSE.

bdd [Package] Structure [Structure]

‘aconsirants
o Fundamental Design Parameter
Aeroplane + Span ta Lenginid)
oz Vimex
Electrical Systems. Vervise
Emergency Systers -
Fuel System fing Loading
Hydraulc System Aspect Ratio(4R]
I = Thrust Loading
Wiotal
Range
wing spen
Vimax

Veruise

T

. L.

0.1

eblock «blacks ablocks «blacks
Emphanage Engine Control System Avionics System Wings ontrol Systems
k T
1 r 1] Jo.r los
eblocks ebiocks ebiocks ebiocks “blocks biocks
Rudder Flight Control System Engine Aileron Flaps Slats

This example is created with the following package structure:
Model
+ Structure

The list of features available in MapleMBSE to define blocks are:
* Association

* Aggregation

» Composition

* Generalization

* OwnedEnd Multiplicty

 Constraint

» Property

e Value

2 « 1 Blocks in MapleMBSE

* Operations

e Redefine Value

"BlocksTree BlocksTreeDrect BlockProperties ‘Redefines ConstraintTable ~ BlockConstraintTable ParamefricTable
The configuration file, TWCSysML-Structure.mse defines seven worksheet templates to
work with blocks:

¢ The BlocksTree and BlocksTreeDirect worksheets are used to create blocks and their
relationships.

» The BlockProperties worksheet is used to create generalizations, values and operations.
» The Redefines worksheet is used to specify values and redefine values to blocks.

» The ConstraintTable worksheet is used to create parameters, opaque expressions and
define constraint blocks.

¢ BlockConstraintTable is used to create a direct association between Blocks and Con-
straint Blocks.

» Parametric Table is used to create a binding connector between the constraint parameters.

Creating a Block

To create a block, enter a name for the block in the column C insertion area (the Block Top
Level column) as shown below. A block called Aeroplane is created.

= -]

A B c D E A
1

2

3 [Block Top level* [Block 2nd Level* |Aggregation]

5

6 el

= = Enter block name

B

ﬂ J

A B C D E

[Block Top level* [Block 2nd Level* [Aggregation |
IAeropIane] | |

on W (=

To create a relation between blocks, they must first be created in the Block Top Level
column before they can be added in the second level.

Blocks can be created in all worksheets except for the ConstraintTable worksheet.

1.2 Creating Association, Aggregation and Composition * 3

1.2 Creating Association, Aggregation and Composition

Association
wblocks

zblocks
Engine Control System

Flight Control System

e 1 Aggregation ; :m ::::
Engine Control System L= i
sblocks - [ablocks
Aeroplane ‘ Composition Engine

To create relations without direction, use the BlocksTree worksheet. The blocks need to
be created as shown below.

To create Association relations:

1. Enter the block name in the Block Top Level column.

[Block Top level* |Block 2nd Level*

Aeroplane

|Aggregation

Engine
Engine Control System
Flight Control System

2. The row is highlighted as a duplicate key to indicate the block already exists. Enter the
related block name in the Block 2nd Level column, in the same row.

4 « 1 Blocks in MapleMBSE

[Block Top level® Block 2nd Level* Aggregation

Aeroplane

Engine

Engine Control System _ADuplicated Key

Flight Control System /
ngine Control System

3. MapleMBSE checks if the entry is valid by comparing it with existing blocks and will
add none in the Aggregation column by default.

|Block Top level* |Block 2nd Level* |Aggregation |
Aeroplane

Engine

Engine Control System
Flight Control System
Engine Control System Flight Control System none

To create Aggregation and Composition relations, follow the previous steps by entering the
owned end block (the class that has an association owned by another class) in column C,
replace none with composite in the Aggregation column to create a composition relation
and shared to create an aggregation relation.

B E ' D ' E
[Block Top level*® [Block 2nd Level* | Aggregation
Aeroplane
Engine

Engine Control System
Flight Control System
Aeroplane Engine composite —> Composition
Engine Control System Engine shared — Aggregation

Flight Control System Engine Control System none — Association
Al Tree . " “BlockProperties Redefines “Constrantrable U 14

1.3 Creating Direct Association, Aggregation and
Composition

Use the BlocksTreeDirect worksheet to create relations with direction. Both tables are
similar in defining relations, the type of relation differs based on the entry in the Aggregation
column. Enter the class name in the Block Top Level column and enter the name of the
Attribute class in the Block 2nd Level column and specify the aggregation type. The figure
below shows relations between blocks with navigability.

1.3 Creating Direct Association, Aggregation and Composition * 5

A B C D E
=
i Block Top level* Block 2nd Level* |Aggregation
6 Aeroplane
7 Avionics System
8 Aeroplane Avionics System composite—> Direct Composition
= Cockpit Display System
10 Cockpit Display System Avionics System shared —> Direct Aggregation
11 Crew
12 Aeroplane none—> Direct Association

@] BlocksTreeDirect

eblocks
Aeroplane

~'Redefnes ~ ConstrantTable ~ .

«blocks
Crew

blocks

Avionics System

ablocks

Cockpit Display System

The following table shows the necessary information needed to create a relation between
blocks and their corresponding worksheet. The Class and Attribute Class columns imply
that the class and its related class should be created first and then the respective aggregation

type.

Worksheet Type Class Attribute Class Aggregation

Association X X Mone

BlocksTree Aggregation X X shared
Composition X X composite

Direct Association X X None

BlocksTreeDirect | Direct Aggregation X X shared
Direct Compaosition X X composite

To represent multiplicity, at the Association level, enter a value for the respective blocks
in the Multiplicity column as shown below.

6 < 1 Blocks in MapleMBSE

Multiplicity

1.4 Block Generalization, Values and Operation

To generalize a block, enter the name of the generalizing block in the Block Top Level
column of the BlockProperties worksheet and a corresponding value in the Generalization

Block column.

A B C D F
I
2
Generalization
Block Top Level Value Operation
3 Block
5 Aeroplane
[Boeing 747
7 | Boeing 747 Aeroplane

Use the same worksheet to add a value property to a block. Enter the block name in the

Block Top Level column and then enter the value in the Value column.

A B C D F
T
2
Generalization
Block Top Level Value Operation
3 Block
5 Aeroplane
6 Aeroplane Wtotal
7 Aeroplane wing span
8 Aeroplane Vmax
9 Aeroplane Veruise
10 Aeroplane Range

Similarly, to add operations to the blocks, enter the block name in the Block Top Level
column and the operation name in the Operation column.

1.4 Block Generalization, Values and Operation ¢ 7

A B C D E F
1
2
Generalization
Block Top Level Value Operation
3 Block
3 Engine Control System
6 Engine Control System monitor engine temperature
7 Engine Control System monitor engine pressure
8 Engine Control System control fuel flow

In the Redefines worksheet, to enter a numerical value for Value Property use the Value
column, as shown below.

A B C D E F G
il
2 Block Value Property Value - =
3 Block Property
5 Aeroplane
6 Aeroplane Range
7 Aeroplane Veruise
8 Aeroplane Vmax
9 Aeroplane wing span
10 Aeroplane Wrtotal
18l Boeing 747
12 Boeing 747 Range 10800|Aeroplane Range
13 Boeing 747 Vcruise 907|Aeroplane Veruise
14 Boeing 747 Vmax 939|Aeroplane Vmax
15 Boeing 747 wing span 60|{Aeroplane wing span
16 Boeing 747 Wrtotal 333400|Aeroplane Wtotal

To redefine a property of an existing block, type a new value in the Value column along
with information about the block from which the value is redefined. For example, Aeroplane
has value properties: Range, Veruise, Vmax, wing span and Wtotal. These properties are
not defined with numerical values, as shown above (these fields can hold numerical values).
The Boeing 747 block is generalized to Aeroplane. To redefine the values from Aeroplane
to Boeing 747, enter the same value for Boeing 747 properties as that of Aeroplane. In the
Value column, enter the desired values. Now to redefine, enter the block from which the
value is redefined and the name of the value being redefined as shown below.

8 < 1 Blocks in MapleMBSE

A B C D E F G
1
- Block Value Propert Value il
3 Bl | Property |
5 Aeroplane
6 Aeroplane Range Values to be
7 Aeroplane Veruise _ redefined from
8 Aeroplane Vmax Aeroplane Redefined Value jand
9 Aeroplane wing span Values redefined to Block name
10 Aeroplane Wtotal 7' Boeing 747 R
11 Boeing 747 / \
12 Boeing 747 Range 10800 peroplane Range
13 Boeing 747 Veruise 907 Peroplane Veruise
14 Boeing 747 Vmax 939 Beroplane Vmax
15 Boeing 747 wing span 60 peroplane wing span
16 Boeing 747 Wtotal 333400 Beroplane Wtotal

1.5 Constraint Blocks

The process for creating constraint blocks, relations and parameters is similar to that of
working with blocks in the previous section.

Constraint Block 2nd | Ct Ce C Specification
R Level* Parameters |Name Block Name CragieEseiession
Aspect Ratio
Aspect Ratio AR
Aspect Ratio ratio Aspect Ratio
Aspect Ratio ratio Aspect Ratio |eq b"2/s
Fundamental Design Parameter
Fundamental Design Parameter Aspect Ratio

In the Constraint Block Top Level column, enter a constraint block and its breakdown in
the Constraint Block 2nd Level column. This creates a direct composition relation between
the blocks. In order to create different relations between the constraint blocks the configur-
ation file has to be edited. To create parameters, enter the respective block in the Constraint
Block Top Level column and the parameter name in the Constraint Parameters column.
To add an equation to a constraint block, enter the block name followed by the name of the
constraint in the Constraint Name column, as shown above. Enter the constraint block
name in the Constraint Block Top Level column and a name for the specification equation
in the Specification column. MapleMBSE accepts the entry. The corresponding field in the
Opaque Expression column is empty. Enter an expression, as shown in the figure.

To create a direct association between the blocks and Constraint Blocks select the Block-
ConstraintTable worksheet. Next, enter the block name in the Block Name column and
Constraint Block in the Constraint Block Name column, as shown below.

1.6 Blocks Hierarchy * 9

[Block Name | Constraint Block Name |

Analysis Context

Fundamental Design Parameter
Fnalysis Context Fundamental Design Parameter

To create a binding connector between the parameters of the Constraint Blocks, you must
first open the ParametricTable worksheet. Enter the Constraint Block and the parameter of
the constraint that has to be connected in the Constraint Parameter Column, followed by
the Constraint Block name and the target parameter in the respective column. MapleMBSE
will automatically create a binding connector between the two parameters of the constraint
blocks specified.

Binding Connector
Constraint Block Constraint Parameter |Constraint Block Constraint Parameter
Aspect Ratio
Aspect Ratio AR
Fundamental Design Parameter
Fundamental Design Parameter AR
IAspect Ratio AR Fundamental Design Parameter AR
Fundamental Design Parameter AR Aspect Ratio AR

1.6 Blocks Hierarchy

This template is used to create hierarchies with a direct composition relationship. In previous
sections, the sub-blocks(subcomponents) should be created first before you add a relation
between the blocks. This specific worksheet will allow you to create a new component and
relations without the need to create the subblocks(subcomponents) first. To create a new
component in the hierarchy enter the top-level component in the Components column and
add the subcomponent name in the Sub-Components L.1 column. The top-level block and
the sub-blocks will be added to the same package in the model.

- ~

B
B E

48 Pockage] erarchy Ferarcny 1)
G [bad Pactage] erachy [erarchy |

i k [eblocks
e Spocecratt
ste
1 ¥
£ I [ebiacka
F F <boci
<blocks <blocks B it i tars Power Subs ystem
Computer Storage (SRS ion Subeyst:
| T 1 <blocks
— . — . <blocks <bhocks
blocks <blacks GN& C Subsystem e e e tor: |Payload Subsys tem
|58 M Subsystem | Tenk 1 i
i 1
L—’ Ll abiacka «blacks “blacks <blocka

avlocke I eblocks I Tracker GPS Unit Antenna Ampiitier

- Ralations

it 1

LY

-

Panel Frame

DEDDODboOOoDODDA0:

10 + 1 Blocks in MapleMBSE

Components - |Sub-Components L1 - |Sub-Components L2 - |Sub-Components L3 %
Amplifier

Antenna

Avionics Subsystem

Avionics Subsystem Computer

Avionics Subsystem Storage

Communications Subsystem

Communications Subsystem Amplifier

Communications Subsystem Antenna

Computer

Frame

GN & C Subsystem

GN & C Subsystem GPS Unit

GN & C Subsystem Tracker

GPS Unit

Panel

Payload Subsystem

Power Subsystem

Propulsion Subsystem

Propulsion Subsystem Tank

S & M Subsystem

S & M Subsystem Frame

S & M Subsystem Panel

Spacecraft

Spacecraft Avionics Subsystem

Spacecraft Avionics Subsystem Computer
Spacecraft Avionics Subsystem Storage
Spacecraft Communications Subsystem
Spacecraft Communications Subsystem |Amplifier
Spacecraft Communications Subsystem |Antenna
Spacecraft GN & C Subsystem

Spacecraft GN & C Subsystem GPS Unit
Spacecraft GN & C Subsystem Tracker

1.7 Nested Hierarchy

This template will also create the hierarchy with the direct composition relationship but it
differs from the previous template by adding the new blocks with a nested structure in the
model. As shown in the image below.

1.7 Nested Hierarchy + 11

Components -|Sub-Components L1 ~|Sub-Components L2 - |Sub-Components L3 -
Vehicle

Vehicle Alternator

Vehicle Battery

Vehicle Brakes

Vehicle Brakes Brake pads
Vehicle Brakes Calipers
Vehicle Engine

Vehicle Engine Camshaft
Vehicle Engine Crankshaft
Vehicle Engine Cylinder heads
Vehicle Engine Pistons
Vehicle Engine Valves
Vehicle Front Axle

Vehicle Front Axle Wheel hubs
Vehicle Front Steering

Vehicle Fuel Tank

Vehicle Muffler

Vehicle Radiator

Vehicle Rear Axle

Vehicle Rear Axle Wheel hubs
Vehicle Rear Suspension

Vehicle Suspension

Vehicle Tailpipe

Vehicle

Transmission

12 + 1 Blocks in MapleMBSE

%/ Relations

D
E NestedHlerarchy

—E Crankshaft

& erankshaft

& jlinder heads

- Cylinder heads

B pistons

u pistons

- Q Valves

n valves

-2 ylinder heads

k= [F) Camshaft : SysML-Sample: :NestedHierarchy::Vi
=B Crankshaft : SysML-Sample::NestedHierarchy::)
+ [P Cylinder heads : SysML-Sample::NestedHierarc]
I CB Pistons : SysML-Sample::NestedHierarchy::Vehi
L[F] Valves : SysML-Sample::NestedHierarchy::Veh!
& Front Ade

|:Q wheel hubs

-] Wheel hubs

(7 Wheel hubs : SysML-Sample::NestedHierarchy
-—-D Front Steering

— Front Steering

B £uel Tank

-~ Muffler

(- Radiator

D Rear Aude

Q Rear Suspension

bdd [Package] NestedHierarchy [NestedHierarchy | J

Cylinder heads

«blocks
Vehicle

Battery : Battery

Brakes : Brakes

Muffler : Muffler

paris
Transmission : Transmssion

Alternator : Alternator
Radiator : Radiator

Front Axle : Front Axle

Front Steering : Front Steering

Fuel Tank : Fuel Tank
Rear Suspension : Rear Suspension

ag-nej_'

sblocks
Engine

parts
Camshaft : Camshait
Crankshaft : Crankshaft
Fstons : Pistons

Tailpipe

Rear Axle

eblocks
Rear Axle

parts
Wheel hubs : Wheel hubs

Suspension l

blocks
Tailpipe

ablocks
Sus pens ion

Vales

«blocks
Cylinder heads Valves

2 The Fitness Tracker Model

The Excel Workbook template, TWCSysML-Model.xlsx, arranges the display of the ele-
ments in worksheets as defined in the configuration files.

The Package structure of the model is displayed in the Packages worksheet.

The Requirements packages are defined hierarchically; defining a top-level requirement,
decomposing the requirements into groups and finally stating the requirements.

Once the requirements are defined, actors and their interactions with the system are created
in the Actors and UseCases worksheets.

The BlockTree and BlockProperties worksheets are used to display information about the
system context, specifications and relations.

The BlockConnectorTable and BlockPropertyTable worksheets create connections
between block properties.

Once the structural aspects are defined, the system's behavior are defined by using the
TWCSysML-ModelActivity.mse configuration file.

This example was created with the following package structure:
Model

- Requirements

- Use Case

- Structure

- Behavior

|| Packages -~ RequirementsTree Vet oAl e /BlocksTree" < BlockProperties 4l a Corie Sirm rer

2.1 Packages

The Packages worksheet is used to organize the model elements into respective Packages.
The user can create packages by specifying a name for the package under the Name column
in the Packages worksheet. Packages are created as shown in the figure below. The config-
uration (.mse) file is configured in such as way so that when a user begins working directly
in a worksheet, without creating any packages beforehand, the packages are automatically
created and elements are displayed under the packages corresponding to the worksheet.

13

14 + 2 The Fitness Tracker Model

2.2 Requirements Table

The requirements defined for a system are used to identify the behavior, constraints, system
specifications, etc. for which the system is modeled. Requirements can be categorized or
grouped based on their definition of the system such as: performance, functional, constraints,

etc.

This example was created with requirements in three levels, as shown in the Excel file below.
The number of levels and appearance of the Requirements worksheet is controlled by the
configuration (.mse) file and can be changed by editing the configuration file.

_Requirements |

'-I
Requirement 1
(

Semend L Reiencn 2|
_ Requirement 2

'
Requirement B

Requirement 4

E—

Creating Requirements

Requirements contain a unique ID, Name and Specification field to identify and name each

requirement with a brief description.

2.2 Requirements Table + 15

Requirement Reguirement 2nd Level
Regpirement Reguirene , D¢ Name 0* Name n* .
N ‘ -
Mson Requirements Fiess L
Wission Requiremeats Fitness Trackes b fl Trakr :
INision RequiementsFnes |
1 1 [Tracker RL1 |Compatiblty
8
R1 Mission Requirements Fitness
Tracker Rl Mlssmni%requ;rementsfltuess RSl R e T e ea R FIeas
ot Gy Tracker
R1.1 Compatibility L R1.1 Compatibility

L R1.1.1 SmartPhone Connect
with smartphone toview
activity and track records

To enter a new requirement:

1. Enter an ID for a top level requirement in the ID column, as shown above. MapleMBSE
checks for duplicate entries and adds a row for the corresponding ID, enabling the user
to enter a name and specification for the requirement.

2. To create a second level requirement, use the same ID and name as for the top-level re-
quirement. MapleMBSE will detect it as a duplicate entry and highlight it as a duplicate
key. Type an ID for the requirement in the ID column, of the Requirement 2nd Level
section (column E), as shown above. MapleMBSE considers this to be a unique entry
and enables the corresponding row to accept a name and description for the requirement.

3. To create a third-level Requirement, follow step 2, then enter a new ID in column H.
Follow the above steps to create any number of requirements. Excel identifies the ID columns

as text format fields. The figure below shows the requirements created for the Fitness
Tracker model, using the steps above.

16 + 2 The Fitness Tracker Model

A B G E F H]
1
2
3 Requirement Requirement 2nd Level Requirement 2nd Level
a ID* |Name ID* |Name 1D* Name Specification
5
6 R1 Mission Requirements Fitness Tracker
7 R1 Mission Requirements Fitness Tracker [R1.1 Compatibility
Connect with smart phone to view activity
8 R1 Mission Requirements Fitness Tracker [R1.1 Compatibility R1.1.1 [SmartPhone and track records
9 R1 Mission Requirements Fitness Tracker [R1.1 Compatibility R1.1.2 |WaterProof 5 ft water resistance
10 R1 Mission Requirements Fitness Tracker [R1.1 Compatibility R1.1.3 |Message Notification |Notify of any incoming message or calls
Device features and settings should be
11 R1 Mission Requirements Fitness Tracker [R1.1 Compatibility R1.14 |Ease of Use easier to understand and use.
12 R1 Mission Requirements Fitness Tracker [R1.1 Compatibility R1.1.5 |Alarm Notification Notify alarm through vibration
13 R1 Mission Requirements Fitness Tracker [R1.1 Compatibility RL.1.6 [Style available in different colors and compact
14 R1 Mission Requirements Fitness Tracker [R1.2 Performace
risk factor of wearing band should be less
15 R1 Mission Requirements Fitness Tracker [R1.2 Performace R1.2.1 |Safety [than .0001%
16 R1 Mission Requirements Fitness Tracker |R1.2 Performace R1.2.2 |Accurate of tracking should be +/- 2%
17 R1 Mission Requirements Fitness Tracker [R1.2 Performace R1.2.3 |Battery Life Minimum 15 days with one charge
18 R1 Mission Requirements Fitness Tracker [R1.2 Performace R1.2.4 |Store Data Keep record of everyday activity
19 R1 Mission Requirements Fitness Tracker [R1.2 Performace R1.2.5 |Activity Find activity type
20 R1 Mission Requirements Fitness Tracker [R1.3 Features
should track deep sleep cycle and sync
21 R1 Mission Requirements Fitness Tracker [R1.3 Features R1.3.1 |Track Sleep Cycle with phone
22 R1 Mission Requirements Fitness Tracker [R1.3 Features R1.3.2 (Track Steps monitor every day average walking steps
monitor heart rate during fitness activity
23 R1 Mission Requirements Fitness Tracker [R1.3 Features R1.3.3 Heart Rate Monitor and regular activity
24 R1 Mission Requirements Fitness Tracker [R1.3 Features R1.3.4 |Calorie count display calories burnt
25 R1 Mission Requirements Fitness Tracker |R1.3 [Features R1.3.5 |[Time display time
26 R1 Mission Requirements Fitness Tracker [R1.4 [Display
27 R1 Mission Requirements Fitness Tracker [R1.4 [Display R14.1 [Selection have a touch sensitive display
28 R1 Mission Requirements Fitness Tracker [R1.4 [Display R1.4.2 |Display options customizable display

2.3 Use Case Table

The Use Case table describes the goals and interactions of the system model with external
users (stakeholders).

To create a use case table, the actors of the system are identified, then the goals of the system
and other functionality expected by the user.

Als < o € ;
1
Use Case | ;
N 3 [Adtor UseCasel
5 o
Use Case 1] User [connect with phone
7 sar [conmect win smone e data
____————'___-__ 2] User |connect with phone e data jconnect with phone
1) sar Track and meeitor daly stiviy | |

; — Frockand o by vty I |

1 iar Track and moerior Gailyactvty |1 Reack and monitor aily sttty

u user brew time

1 [Smart Bhare e data 1 1 |
4 [smanomee e s Jconnecwithpone | |

5 lsmart Phone. Jsyme dara [zonmect wih ghone Joyedata
Use Case Actor2 6 [ronser Updae Scftware | I]
3 1 srovder Track and moniter dally activity | |
1 pravider Tackandm sty 5

2.3 Use Case Table « 17

Creating a Use Case Table

Use cases and actors are identified by unique names. The configuration file is created in
such a way that two different tables are needed to create the use case table. The Actors
worksheet is used to list the identified actors of the system. The UseCases worksheet is
then used to create the interaction between actors and use cases.

To create a Use Case table:

1. Create actors in the Actors worksheet as shown below.

e ; I

3 I

2 | |

3 Actors . I o S

=B - - = - e B [| e ‘ etz
I er | I ALy .

P | =l R I . - —y

: | [?z'ﬂ"-: o] |

) el ket e} et e, 1 |

] ! i [’} oz | Azt el Aoz el
o e =
o P S ot (::I A
nariFore i | i " _———

e £ it weh phore I ™ —— — I

Trta's ikl =2k ook ivs i .

final o L]
2 — s Case — Tse Case 2 — %
s

2. In the UseCases worksheet, type the name of the actor to create a use case or select a
name from the list. Type the use case in the UseCasel column as shown above.

3. To relate use cases, enter the actor name and corresponding use case in columns C and
D respectively. MapleMBSE will highlight this as a duplicate key. Enter the other use
case in the Associated UseCase2 column (column E). This entry is considered valid and
rows are automatically created to show that the association is bidirectional.

The Use Case table created for the Fitness Tracker is shown below. The Associated
UseCase3 column is automatically generated by MapleMBSE based on the input in the
other columns. To associate use cases, they must already exist in the UseCasel column.

18 ¢ 2 The Fitness Tracker Model

AlB C D E F
1
2
3 Actor UseCasel Associated UseCase2 Associated UseCase3
5 User check phone notification
6 User connect with phone
7 User connect with phone sync data
8 User connect with phone sync data connect with phone
9 User Track and monitor daily activity
10 User Track and monitor daily activity |Update Software
1 User Track and monitor daily activity |Update Software Track and monitor daily activity
12 User view time
13 Smart Phone sync data
14 Smart Phone sync data connect with phone
15 Smart Phone sync data connect with phone sync data
16 Provider Update Software
17 Provider Update Software Track and monitor daily activity
18 Provider Update Software Track and monitor daily activity Update Software

2.4 Blocks Table

Blocks are created in a predefined package named Structure. From the configuration file,
three worksheets are created:

* BlockTree to create blocks and parts,

* BlockProperties to create operations, generalizations and to create values for the blocks,
and

» BlockSatisfiesMatrix to validate the model against the requirements to identify if all
requirements have been met.

To make the example model simpler, only direct composition and generalization relations
between blocks are used.

Blocks Tree

Blocks are identified uniquely by their names and can be accessed between worksheets. To
identify the scope and working environment of the system, the mission context table is
created using the BlockTree and BlockProperties worksheets.

Once the system scope is defined, a black-box specification for the system of interest is
created in terms of values and operations. These operations defined for the system are used
to work with the behavior of the system defined in a different configuration file.

On defining activities of the system using the behavior configuration file, logical blocks
are defined in the same table using BlocksTree. Finally, parts of the system are defined at

2.4 Blocks Table ¢ 19

a physical level to meet the requirements specifications and also to satisfy the behavioral
aspect of the system modeled.

1. To create a block, enter a name for the block in the Block Top Level column (column
C), as shown below. Every unique entry in this column creates a block. Text entered is
case sensitive so to create properties for a block in the second level, the block name
should be accessed with the same case.

20 <+ 2 The Fitness Tracker Model

A {

- e [e =

BN =

[alals 3 D £ . 4
1 2
2

3
) s
5 6

7
b s
7 [
i sion Content 10
9w 1
0 e 12
-
L [hysed e 15
1 [y Envnnen foym 16
U [phyialEeonment [Water 17|
i h.m 18
5 [&
0 e Lncivity Trackes =
B lndod 2
bt} Luctrey Tracker 2
" 2

25

2. To create a direct compostion between blocks or to assign a block as part of another
block type, enter the name of the block for which a part has to be created in the Block
Top Level column followed by the part name in Block 2nd Level, as shown above. Now
a direct association is created between Mission Context and Activity Tracker.

3. Blocks can be created at a third level in two ways: similar to adding blocks at the second
level, specify the top level block, then the second level block, and finally the third level

2.4 Blocks Table ¢ 21

block name. The figure below illustrates this way of adding a third level block. Since
Screen is already a part property of Activity Tracker, physically adding a part to Screen,
as shown in row 9, will automatically create row 6 and vice versa.

A B C D E
1
2
3 Block Top level* Block 2nd Level* Block 3rd Level*
5 Activity Tracker - Physical Screen
6 Activity Tracker - Physical Screen Capacitive touch Screen
7 Capacitive touch Screen
8 Screen
9 Screen Capacitive touch Screen
10

a4

To create generalizations, the BlockProperties worksheet is used. Similar to the above step,
once blocks are created in the top level column, enter the block name in Block Top Level
and the generalizing block in the Generalization Block column (cell D6). In the table,

Android and I0S are generalized to Smartphone.

AR IS D E F
1
1
. WockToplevel |GeneralzatonBlock Vol Operaton
§ [Genart Phane
] Smart Phone Andioid
7 Smart Phone s
8 1M|5so-|(o-1[e|:
3 Water
10 \Jzer
il 105
12 Physical Envingnment
13 Physital Envinanment [Gym
u Physical Environment [Water
15 (ym
16 Watch
17 Wakth Activity Tracker
18 Andraid
18 Activity Tracker

To create the value and operation property of a block, in the BlockProperties worksheet
enter the name of the block that you want to assign a value. Since the block already exists,
the row is highlighted as a duplicate key. Type the value in the Value column (column E),

22 + 2 The Fitness Tracker Model

as shown below, to add a value to the block, Activity Tracker for this example. Notice
cells E6 to E12 have values assigned to Activity Tracker.

5

[} Activity Tracker wer

7 Activity Tracker reliability

8 Activity Tracker accuracy

= Activity Tracker calories

10 Activity Tracker hours

11 Activity Tracker bmp

12

13 Activity Tracker i vibration

14 Activity Tracker get heart rate

15 Activity Tracker calculate calories

16 Activity Tracker et steps data
E Activity Tracker get BMR data

18 Activity Tracker display notification

12 Activity Tracker compare send/receive signal
20 Activity Tracker send processed data
21 Activity Tracker continugus movement
22 Activity Tracker receive incoming data
23 Activity Tracker record time

24 Activity Tracker save data locally

25 L

In a single row for the block, either value or operation can be assigned to it. To assign oper-
ation to a block, a similar procedure is followed. Enter the block to which an operation has
to be created in the Block Top Level column and enter the operation name in the Operation
column (column F), as shown below.

2.4 Blocks Table

23

Al a B c | b E F

1

2

o [mocktoprevel [C%[vae [operation |
s 4

6 Activity Tracker r

7 Activity Tracker reliability

& Activity Tracker accuracy

3 Activity Tracker calories

10 Activity Tracker hours.

11| Activity Tracker bmp

u o

13| Activity Tracker i vibration

14 Activity Tracker [get heart rate

15 | Activity Tracker calculate calories

16 Activity Tracker get steps data
17| Activity Tracker et BMR data

18 Activity Tracker display notification
13| Activity Tracker compare send/receive signal
20 Activity Tracker send processed data
21| Activity Tracker continuous movement
2 Activity Tracker receive incoming data
3| Activity Tracker record time
. Activity Tracker save data locally

5 1

Using the steps mentioned above, the Activity Tracker is created and the block table at
the physical level is shown while the rest of the inputs are filtered.

24 + 2 The Fitness Tracker Model

Block Top level*

Block 2nd Level™*

Block 3rd Level™*

3 axis accelerometer

32-bit microcontroller CPU

Activity Tracker - Physical

Activity Tracker - Physical

Power Subsystem

Activity Tracker - Physical

Power Subsystem

Battery

Activity Tracker - Physical

Power Subsystem

Power Management Unit

Activity Tracker - Physical

Processor Subsystem

Activity Tracker - Physical

Processor Subsystem

32-bit microcontroller CPU

Activity Tracker - Physical

Processor Subsystem

Bluetooth IC

Activity Tracker - Physical

Processor Subsystem

PCB board

Activity Tracker - Physical

Processor Subsystem

ProcessorApplication

Activity Tracker - Physical

Processor Subsystem

Vibration Motor

Activity Tracker - Physical

Processor Subsystem

Wireless Chipset

Activity Tracker - Physical

Screen

Activity Tracker - Physical

Screen

Capacitive touch Screen

Activity Tracker - Physical

Tracker Subsystem

Activity Tracker - Physical

Tracker Subsystem

3 axis accelerometer

Activity Tracker - Physical

Tracker Subsystem

Ambient Light Sensor

Activity Tracker - Physical

Tracker Subsystem

Barometeric Pressure Sensor

Activity Tracker - Physical

Tracker Subsystem

Galvanic 5kin Response Sensor

Activity Tracker - Physical

Tracker Subsystem

Optical Heart Rate Monitor

Ambient Light Sensor

Barometeric Pressure Sensor

Battery

Bluetooth IC

Capacitive touch Screen

Galvanic Skin Response Sensor

Optical Heart Rate Monitor

PCB board

PCB board

Storage unit

Power Management Unit

Power Subsystem

Power Subsystem

Battery

Power Subsystem

Power Management Unit

Processor Subsystem

Processor Subsystem

32-bit microcontroller CPU

Processor Subsystem

Bluetooth IC

Processor Subsystem

PCB board

Processor Subsystem

PCB board

Storage unit

Processor Subsystem

ProcessorApplication

Processor Subsystem

ProcessorApplication

32-bit microcontroller CPU

Processor Subsystem

Vibration Motor

Processor Subsystem

Wireless Chipset

ProcessorApplication

ProcessorApplication

32-bit microcontroller CPU

Screen

Screen

Capacitive touch Screen

Storage unit

Tracker Subsystem

Tracker Subsystem

3 axis accelerometer

Tracker Subsystem

Ambient Light Sensor

Tracker Subsystem

Barometeric Pressure Sensor

Tracker Subsystem

Galvanic Skin Response Sensor

Tracker Subsystem

Optical Heart Rate Monitor

Vibration Motor

Wireless Chipset

2.5 Internal Blocks Table ¢ 25

Block Satisfaction Matrix

The Block Satisfaction Matrix is used to verify whether the blocks created satisfy the re-
quirements. The matrix template is created automatically using the information from the
Blocks and Requirements worksheets.

v | z AAABACAD

A
-
g
2
0
2]
0
a
0
4
c
¢
X

A = D E F| G| H 1|1

AR I
©o = — N I) S
SEEE fEEEEREISIEE
EXES =, BleEEBlz=EIRIZIEE
ENE = I EFERIEIEIEI® IS =
ENENEES = |& 2= s = E]
s = <

a

6 B 3 axis accelerometer

7 | 1 [22-bit microcontroller CPU

8 o |Activity Tracker

E) e |Activity Tracker - Physical

10 "3 Ambient Light Sensor

11 = Android

12 Barometeric Pressure Sensor

13 Battery

14 Bluetooth IC

s Capacitive touch Screen

16 Galvanic Skin Response Sensor

17 GPS

s Gym

1s 10s

20 Mission Context

21 Optical Heart Rate Monitor

22 PCB board

23 Physical Environment

2a Power Management Unit

25 Power Subsystem

26 Processor Subsystem

27 ProcessorApplication

28 Screen

29 Smart Phone

30 Storage unit

31 Tracker Subsystem

32 User

33 Vibration Motor

34 ‘Watch

35 ‘Water

36 Wireless Chioset

To create a satisfy relation between the blocks and requirements, identify the block that
satisfies a requirement and in their intersection of row and column, enter 'x' to indicate that
the corresponding requirement has been met. This creates a satisfy relation between block
and requirement.

2.5 Internal Blocks Table

In the previous sections the system of interest has been defined with operations, values, and
by different parts of the system. In this section, we will define how these parts of the system
and its properties, will interact with each other.

To define ports through which the system interacts with other parts and subsystems, we
create ports to blocks and then represent how these ports are connected. As shown in the
diagram below, we can represent the interaction of block properties using ports and connect-

ors.

26 2 The Fitness Tracker Model

[plockmame — eropertyName [Porteropeny
3 axis v
3 axis accelerometer fnotionsensonp
3 axis accelerometer Jtrackerinfoout
3 axis accelerometer 7 ltrackerpowerin
32-bit microcontroller CPU //
32-bit mi cPu Proc: ation
oy Tescper i s e, ___[uoitns____[ownime
oIt Tracker~FRyTol yi Activity Tracker - Physical __|light sensorip Tracker Subsystem ig Activity Tracker Subsystem
[Activity Tracker - Physical __|Power Actity Tracker - Physical | mation sensorip
[Activity Tracker - Physical Activity Tracker - Physical Tracker Subsystem Activity Tracker Subsystem
[Activity Tracker - Physical Screen eyl lpcocus concrip
Activity Tracker - Physical lTra # ¥ Physical g I [Tracker Subsystem ity Subsystem
[Activity Tracker - Physical Vi - - -
[Activity Tracker - Physical 7 Y Prysical__[Usbin
[Activity Tracker - Physical 7 Actvity Tracker - Physical __|UsBin Power Subsysten Jusb ip Activity Tracker - Physical Power Subsystem
| Activity Tracker - Physical i Activity Tracker - Physical user dispay op, _f
j:-v-:v:m::"—::r:m: I/ Tracker - Physical m:}py(p screen luserdisplayon activty Tracker - Physical| screen
A:lnut: Tracker - Physical ya i Pl user
[activity Traq 7 activity Tracker - Physical ip screen Juserip activity Trackes - Physical |screen
activity Trac Block A ya Activity Tracker - Physical [vibration out
[Activity Tratme ey Vd ™ f = - - B
[Activity Tragker - ehiysical 7 Block B | Property Connector
v opr - Physical
Activity Trackdr - Physical Power Subsystem
- Physical Power Subsystem [Activity Tracker - Physical _|Tracker Subsystem
Agivity Tacde - Physical wersubsiem Wity Tracker- Physical IprocessorSubsyster
| Activity Trackdr - Physical Power Subsystem [Activity Tracker - Physical __|Screen
Activity Track§r - Physical Processor subsystem __|astrerty Tracker - Physical __|Power Subsystem
(Activity Trackde - Physical Proces: Em__|Activity Tracker - Physical __|Tracker Subsystem
[Activity Trackdr - Physical ——{Processor Subsystem __|Activity Tracker - Physical _[screen
Activity Leadefr—Physical scraen
e Etiuiti Trackde - Physical screen [Activity Tracker - Physical __|Power Subsystem
Part f fackdr - Physical screen |Activity Tracker - Physical _|Processor Subsystem
fackdr - Physical Tracker Subsystem
abtivity Trackde - Physical Tracker Subsystem __|Activity Tracker - Physical __|Power Subsystem
Aftivity Trackqr - Physical Tracker Subsystem Activity Tracker - Physical Processor subsystem
2l

Block Property Table

This worksheet displays the blocks and their part properties based on how they are defined
in previous worksheets. In addition to the part properties, you can create ports by using the
PortProperty column.

Creating an entry is similar to entries discussed in other sections:
1. Specify the block to which a port has to be created

2. In the PortProperty column, enter a name for the port.

In the example below for the Activity Tracker- Physical block, the PropertyName column
displays the existing part properties from previous worksheets. To create ports, enter the
block name in the Block Name column (column D) and the port name in the PortProperty
column (column G).

2.5 Internal Blocks Table

. 27

Activity Tracker -

pary penty

Power Subsystem

Processor Subsystem

Screen

Tracker Subsystem

ﬁghtsensor ip

bluetooth out

= |pressure sensor ip

motion sensor ip

Physical
A B|c ‘ D
Power pess B __[BlockName

Subsystern—a 13 Activity Tracker - Physical
/ 14 Activity Tracker - Physical
P2 15 Activity Tracker - Physical
Processor 16 ——lActivity Tracker - Physical

Subsystem ™ pp; w A Vracker~
—_ 18 Activity Tracker - Physical
19 Activity Tracker - Physical
Tracker 20 Activity Tracker - Physical
SUb5ystem 21 Activity Tracker - Physical

Property Connector Table

user ip

The Property Connector Table is used to connect part properties within the block, as shown

below.

To create a connector between the ports of the different system example between Activity
Tracker — Physical’s port Bluetooth out to the Process Subsystem bluetoothout port, in the
Block Name column enter the name of the block in this case it is the Activity Tracker —
Physical and the port details in the Port Name column this entry will be highlighted as du-
plicate by MapleMBSE cause this relation already exist in the model now in the Property
Connector columns enter the Block and port to which the connector has to be created.

Property Connector
BlockName Port Name BlockNama Block Port
Activity Tracker - Physical |galvanic sensor ip Tracker Subsystem galvanic sensor ip
Activity Tracker - Physical heart sensor ip Tracker Subsystem heartsensorip
Activity Tracker - Physical light sensor ip Tracker Subsystem lightsensorip
Property Connector
BlockName Port Name lockNEE I Bock Port
Activity Tracker - Physical _|galvanic sensor ip Tracker Subsystem Igalvanic sensor ip
Activity Tracker - Physical heart sensor ip Tracker Subsystem heartsensorip
Activity Tracker - Physical light sensor ip Tracker Subsystem lightsensor ip
Activity Tracker - Physical bluetooth out
Property Connector
SlockName Fortfame BlockName [Block Port
Activity Tracker - Physical |galvanic sensor ip Tracker Subsystem Lgalvanic sensor ip
Activity Tracker - Physical heart sensorip Tracker Subsystem heartsensorip
Activity Tracker - Physical light sensor ip Tracker Subsystem lightsensor ip
Activity Tracker - Physical bluetooth out Processor Subsystem bluetoothout

28 ¢ 2 The Fitness Tracker Model

Activity Tracker -

Physical
\
[|
Property Connector
BlockName Port Name: T T
tivity Tracker - Physical bluetooth out Processor Subsystem bluetoothout l
Activity Tracker - Physical galvanic sensor ip Tracker Subsystem galvanic sensor ip
Activity Tracker - Physical heart sensor ip Tracker Subsystem heartsensorip
Activity Tracker - Physical light sensor ip Tracker Subsystem lightsensor ip
Processor Activity Tracker - Physical motion sensor ip Tracker Subsystem motionsensorip
Subsystem Activity Tracker - Physical pressure sensor ip Tracker Subsystem pressuresensorip
L Activity Tracker - Physical US8 in Power Subsystem usb ip
Activity Tracker - Physical user dispay op Screen userdisplayop
Activity Tracker - Physical user ip Screen userip
Activity Tracker - Physical |vibration out Processor Subsystem vibrationout
Power Activity Tracker - Physical wireless connect Processor Subsystem wirelessconnect
Subsystem [Sprocessor Subsystem displayop ProcessorApplication displayop.

2.6 Activity Diagram

An Activity Diagram is used to define system behavior. The top level system functionality
is initially defined and these defined actions are further decomposed to show the logical
behavior of the system.

Only call behavior actions with pins are used in this model.

Creating Actions for an Activity

Using the Use Case diagram, we have identified that the basic use case for the model is to
track daily activity.

The ActivityTable worksheet is used to create activities, action, control flow and object
flows. To create an activity diagram named track daily activity, enter the name in the
ActivityName column, as shown below. Once we create the actions for the activity, we
need to now create flow between the actions. In this model, control flows are used only to
represent the start and end of an activity.

To create control flows to denote the start and end of the activity, use the ControlFlowName
column. Following the creation of the control flows, object flows can be created in the same
worksheet.

2.6 Activity Diagram « 29

Enter a name for the object flow in the ObjectFlowName column. As shown in the diagram
below, control flows and object flows are created for the activity diagram, track daily
activity. Linking these flows with actions is discussed in the following section.

Creating Actions for an Activity

Using the Use Case diagram we have identified the basic use case for our model is to track
daily activity. The ActivityTable worksheet is used to create activities, action, control flow
and object

alajc o 3 F G H]
alslc) E G G H [
1
2
3
4 [ctivityname initial Node Final Node [ActionName Behavior
s [ActivityName initial Node [Final Node [ActionName [Behavior| track daily activity
B (T R) R track daily activity wack heartrate ack heartrate
0 track daily activity rracksteps ack steps
5 track doily activity E sieepcycle ack sleepoycle
. track doily activity show calories
2 track doily activity v data v data
3 track doily activity provide pavrer ovide power
" track doily activity act
15 track doily activity X end
16 track heartrate [
7 track steps [
8 track sleepcycle
9 [show calories [
20 |display observagioh data |
n |provide powér |
act start \ \

track steps)
P act end

display
track sleep cycle ————= ghservation data

Track daily activity — / \
show calories

track heartrate

provide power

-

To create an Activity Diagram, first create an activity and its elements in ActivityTable.
Enter the name of the activity in column D (ActivityName) as shown above. Once an
activity is created we can create its initial node, final node and its actions in the respective
column as shown. Use column H (Behavior) to allocate a behavior to the actions we created.
In order to allocate a behavior, it should exist as an activity in the ActivityName Column.

Adding New Duration Constraints

The DurationConstraint worksheet is used to define the constraints in terms of durations
for the activities. The Activities column displays the list of all the activities defined for the
model.

To add a new duration constraint, enter the activity in the first column followed by the name
of the duration in the Duration column. This will create a duration for the activity but does

30 < 2 The Fitness Tracker Model

not add the duration specification. Use the Specification column to add the duration spe-
cification in the format min..max where min is the minimum constraint value and max is
the maximum constraint value. The min and max value are joined by the double period (..).

Activities Duration Specification
track daily activity
display notification
connect smartphone
connect smartphone durationConnect 5..10
provide power

display observation data
track sleepcycle

track heartrate

track heartrate durationHRt 45 .. 60
display time
display time responseTime 0.1..1

track steps

Creating Flows

Using the ObjectFlow and ControlFlow Table we can now complete the activity diagram.
To create an object flow between two actions in the ObjectFlow Table, Enter the activity
under which the action was created in ActivityTable under Column D and the action name
in Column E(Action Name Column) and the other action to be link with in Column G and
its activity in Column F. Now MapleMBSE will create the input and output pins for the re-
spective actions. In the case of Behavior being allocated to the action being links,
MapleMBSE will automatically create parameters.

2.6 Activity Diagram « 31

A|B|C D E F G
1
2 [Object Flow]
4 [Activity Name Action Name: [Activity Name Jaction Name]
6 track daily activity
7 track daily activity track heartrate
8 track daily activity track steps
9 track daily activity track sleepcycle
10 track daily activity show calories
1 track daily activity display observation data
12 track daily activity act
13 track daily activity end
14 track daily activity provide power
A |B C D E F G
1
2 | Object Flow |
4 [Activity Name: [Action Name [Activity Name Action Name: |
6 track daily activity
7 track daily activity track heartrate
8 track daily activity track steps
9 track daily activity track sleepcycle
10 track daily activity show calories
11 track daily activity display observation data
12 track daily activity act
13 track daily activity end
14 track daily activity provide power
15 track daily activity track heartrate track daily activity display observation data
=
A|B C D E F G
1
2 [Object Flow |
4 [Activity Name [Action Name [activity Name JAction Name |
6 [track daily activity
7 |track daily activity track heartrate
8 Igack daily activity track steps
9 track daily activity track sleepcycle
10 track daily activity show calories
11 track daily activity display observation data
12 track daily activity act
13 track daily activity end
14 track daily activity provide power
15 track daily activity track heartrate track daily activity display observation data
16 track daily activity track steps track daily activity display observation data
17 track daily activity track sleepcycle track daily activity display observation data
18 track daily activity show calories track daily activity display ocbservation data
19 |track daily activity provide power track daily activity display observation data
an

To create control flow between nodes we follow the same steps we used for creating object
flow, In ControlFlow Table, enter the activity name in Column C(ActivityName) and the
node in Column D(Activity Node) and the action node to be linked with in Column F and
its activity in Column E. Similarly we can link nodes and actions with Control or object
flows.

32 2 The Fitness Tracker Model

ABCD E F G H | J
1
2 ActivityPartition Allocation
4 Activity Name Swim Lane Representing Block Activity Name Action Name
6 connect smartphone
7 display notification
8 display observation data
9 display time
10 provide power
1 track daily activity
n track heartrate
13 track sleepcycle
u track steps
A|B|C 2] E F G
1
2 [Control Flow |
4 [Activity Name JAction Name |activity Name |Action Name: |
6 track daily activity
7 track daily activity track heartrate
8 track daily activity track steps
9 track daily activity track sleepcycle
10 track daily activity show calories
11 track daily activity display observation data
12 track daily activity act
13 track daily activity end
14 track daily activity provide power
15 track daily activity act track daily activity display observation data
16 track daily activity display observation data track daily activity end

To create an object flow between parameter and an action we use the same method we used
for creating object flow between actions, MapleMBSE will automatically identify the element
type and create the corresponding links.

Allocate Actions to Swim Lanes

2.6 Activity Diagram + 33

ActivityPartition Allocation

Activity Name Swim Lane HEEMMI!‘BM Activity Name Action Name
connect smartphone
display notification
display observation data
display time
provide power
track daily activity
track heartrate

track sleepeycle

track steps.

display observation data PA ProcessorApplication
il

ActivityPartition Allocation

Activity Name Swim Lane Representing Block Activity Name Action Name
connect smartphone
display notification
|display observation data
display time
provide power
track daily activity
track heartrate
track sleepcycle

track steps
display observation data PA Proc
display observation data PA Proo lication display observation data get sleep rate

Before we can allocate actions to a swim lane. We first create swim lanes and assign a block
to the swim lane. BlocksTable tab displays the list of available blocks that can be assigned
to a swim lane. In SwimLanesTable tab ActivityName column displays the activities created
using previous tables. To create a swim lane enter a name in Column G (Swim Lane) and
the block it represents in Column H(Representing Block). Now we have created the swim
lanes with the respective blocks it represents. To allocate an action enter the name of the
activity in column F(Activity Name) and the swim lane name in column G. MapleMBSE
will highlight this record as duplicate field, enter the action to be allocated in column J and
the activity in column I to complete the allocation. MapleMBSE will now accept this as a
valid record and remove the error. Similar we can access different activities we created and
allocate the actions to swim lanes.

34 < 2 The Fitness Tracker Model

3 State Machine Diagram

This section defines how to create states, define their transitions and the events that trigger
these transitions using MapleMBSE. The configuration file, TWCSysML-StateMa-
chines.MSE defines four worksheets that can be used to create states and define their
transitions. The TWCSysML-StateMachines.MSE file is located in the Application sub-
directory of your MapleMBSE installation directory. This example only covers the case
where a transition is triggered by a signal event. The following package structure is followed:

- Model
-Package
+StateMachine
+Region
+SignalEvent

"l | StateMachines :

=N

35

36 < 3 State Machine Diagram

3.1 How to Create a State Machine Diagram

In the StateMachines worksheet enter Package name as Package, and StateMachine name
as StateMachine. These naming conventions can be changed by modifying the configuration
file.

|Paclcage StateMachine ISignaIEvem
Package StateMachine
Package touch

Once the state machine is created, we have to define a region in which states will be created.
To create a region, use the Pseudo State Properties worksheet. Enter a name for the region,
as shown in the table below (Regionl is used as default as defined in configuration file).
This table is also used to create the pseudo state (PseudoState column) and final state (Fi-
nalState column) that defines the start and end of the state machine. Enter a name for the
states, as shown below. We define the transition from the pseudo state in this worksheet,
once we have created other states, and its transition in the Transition Matrix Table work-
sheet.

IstateMachine_[Region |Pseudostate [rinalstate [scomestate [Transition [Targetstate
HateMaching
$tateMachine Regionl

[stateMachine [Region |Pseudostate [Final State [source state Transition [Target State
StateMaching

StateMachine Regionl

StateMaching Regionl off

StateMaching Regionl On

3.2 How to Create States and Transitions

To create a transition between states in the State Transition Table, enter the source state
in the SourceState column and the target in the TargetState column, as shown below.
Once we create these transitions between the states, we can edit the properties of these
transitions in TransitionProperties worksheet.

3.3 How to Create Transitions with Signal Events < 37

|Sourcestate

[targetstate |

Charging

DisplayData

Off

on

SleepMode

Tra Ckiﬂg

|sourcestate

|Targetstate |

Charging

DisplayData

Off

On

SleepMode

Tracking

On

Tracki ng

Tracking

DisplayData

Tracking

Charging

Charﬂ

SleepMode

Trar:king

Off

3.3 How to Create Transitions with Signal Events

To tackle the complexity of working with multiple worksheets to create a transition with
the signal event, the TWCSysML-SignalTransitionMatrix has a feature that can add a
transition between the states based on the signal that a user adds. In the SignalTransition-
Matrix worksheet, the rows and columns display the states. The transition is between the
source states in the rows of the matrix and the target states in the columns.

38 < 3 State Machine Diagram

A
Target State ﬁ
= |
=]
_g c
2
3 ko
=] o i}
v o a o 3 =)
= £ = 5] b3 <
=]) = =l -+
2 ol =3 w @ 2 n
£ - = L1 @ i
Source State o =] a [e] = o =
Battery Save Maode Charge
Charging Sleep
DisplayData
Off
Restrict Background usage
SleepMode
Tracking Idle GetData

The signals are shown in the intersecting cells, the GetData signal represents a transition
from state Tracking to the state DisplayData.

3.4 How to Create Triggers with Signal Events

Initially, the Transition Name column will be displayed as a blank column since we haven’t
named the transitions. Enter a name for the transitions so they can be identified to create a
trigger and assign a signal event. Enter the Transition name in the Transition Name column
followed by the Signal Event name we created in StateMachine Table. MapleMBSE will
accept this as a valid input and automatically populate the other fields.

3.4 How to Create Triggers with Signal Events

39

Trangition Name Source State Target State Signal Event
Tracking off
On Tracking
Tracking DisplayData
Tracking Charging
Charging SleepMade
Transition Name Source State Target State Signal Event
usercommand,power Tracking Off
powerQn on Trad(lns
touch Tracking DisplayData
usb connect Tracking Charging
Charge/Non-Tracking Charging SleepMode
-4
Transition Name Source Siate Target State Signal Event
usercommand/power Tracking off
poWEron on Tracking
touch Tracking DisplayData
il connect Tracking [Charging
Charge,/Non-Tracking [Charging SleepMode
touth Tracking DisplayData touch
wsl connect Tracking [Charging wsb connect

40 + 3 State Machine Diagram

4 Countdown Timer Model

The example is create with the following package structure
Model

-Requirements

-Use Case

-Timer

To create a Timer model we define the simplest requirements that is expected of the Timer.
The model is required to have functions that enable the user to start, reset, pause, and stop
the timer. When Timer reaches zero, the user must be notified and the timer should continue
counting down. Keeping these as the only requirements, a Requirements table is initially
created. From these requirements we identify the actors and use cases. We create a Timer
block to define its behavior based on these identified Use Cases.

To define the Timer properties, we create operations and properties to the Timer block. To
enable the user to reset, stop, pause, etc., we create these as signals so the user can command
the system when it is being executed. State Machine and Activities are used to define the
system behavior and its different states of operation.

|_RequirementsTree = RequirementsSatisfyTable ATl e T CoUntDoWn Timer SignalTable TimeEventTable .

The RequirementsTree and UseCases worksheets are used to define the requirements that
should be met by the model and its use cases. The CountDownTimer, SignalTable, and
TimeEventTable worksheets are used to create blocks and events that will trigger the system
to transition to a different state.

TimerBehavior StateMachineProperties TransitionTable <

The TimerBehavior worksheet is used to create a StateMachine that will define the states
at which the system will exist and its behavior at different states. It is also used to create
operations and activities that will define system behavior. The StateMachineProperties
worksheet is used to create the states and the TransitionTable worksheet is used to define
their transition and events that triggered them.

“ActvityNodeTable ~ OpaqueBehaviorTable ~ ~ ActiityObjectFlowTable ~ ActivityControlTable

ActivityNode Table and OpaqueBehavior Table are used to create activity nodes and beha-
viors. ActivityObjectFlow table and ActivityControlTable are used to create flows between
the actions and nodes created in previous tables.

41

42 + 4 Countdown Timer Model

The StateBehaviorTable, StateBehaviorFlowTable and StateControlFlowCondtionTable
worksheets are similar to that of previously mentioned worksheets. The only difference
being that they are used to create activity flows that define states entry behavior.

4.1 Requirements Table

The Requirements Table worksheet is used to create Requirements. The configuration file
is defined in a way that this table can be use to create two levels of requirements. As shown
below, requirements for the system are created.

RequirementsSatisfy Table worksheet is used to create a Satisfy relation between the Re-
quirements, Blocks and its properties. This table will be used to verify if the requirements
are met once the system has been created.

Requirements Table

Requirement Requirement 2nd Level

ID* Name ID* |Name Specification
1|Timer
1[Timer 1.1|Accurate The timer should count down every 1 second.
1[Timer 1.2|Functions The timer must have functions to start, reset, pause and notify user.
1[Timer 1.3|Working The timer should continue counting even after 0, until user signals to stop.
1|Timer 1.4|Notify The timer should notify the user at 0.

4.2 UseCase Table

The Actors tab is used to identify the actors, while the UseCases tab is used to associate
these Actors with UseCases.

To create an association between Actor and UseCase, enter the Actor Name in the Actor
column, followed by the UseCase in UseCasel column.

To create an association between UseCases, Enter the Actor name in Actor column followed
by the UseCase name in the UseCasel column and associating UseCase in the Associated-
UseCase2 column.

4.3 CountDownTimer Table « 43

The UseCases table is created as shown below:

Use Case Actors

| Actors]
| User I
Actor UseCasel Associated UseCase2 Associated UseCase3

User count down
User count down notified
User count down notified count down
User count down pause
User count down pause count down
User count down reset
User count down reset count down
User notified
User notified count down
User notified count down notified
User notified count down pause
User notified count down reset
User pause
User pause count down
User pause count down notified
User pause count down pause
User pause count down reset
User reset
User reset count down
User reset count down notified
User reset count down pause
User reset count down reset

4.3 CountDownTimer Table

This table is used to create the Timer block, signals, and events that will be used later in
creating the model.

To create a block, enter the name in the Block Name column.

To create signals, enter a name for the signal in the Signals column, and its package name
in the PackageName column.

44 < 4 Countdown Timer Model

Note: Two kinds of events can be created in this worksheet, Signal events and Time events.

These events are created based on the signals that are being used.

Timer Events & Signals

s Events Timed Event Instances
[CountDownTimer
= imer Timer
(CountDownTimer instance
CountDownTimer reset
CountDownTimer notified
CountDownTimer timeup
CountDownTimer start
[CountDownTimer ause
[CountDownTimer stop
[CountDownTimer resume
i imer startEvent
(CountDownTimer stopEventA
C imer auseEvent
CountDownTimer
[CountDownTimer stopEventd
[CountDownTimer
[CountDownTimer resetEvent
= imer notifyEvent
(CountDownTimer timeupEvent
[imer TimeEvent
Signal Table

The Signal table is an extension of the previous section. Here, we relate the signals that
were created with the SignalEvent. Later in the model, we will use these signal events as
triggers to define transition between states.

To assign a signal to SignalEvent, enter the SignalEvent name from the previous table and
its corresponding signal in the Signals column.

4.3 CountDownTimer Table ¢ 45

ﬂgnaIEvent Signals
notifyEvent

pauseEvent
resetEvent
resumeEvent
startEvent
stopEvent
stopEventA
stopEventB
timeupEvent

ﬂnaIEvent Signals

notifyEvent notified
pauseEvent
resetEvent
resumeEvent
startEvent
stopEvent
stopEventA
stopEventB
timeupEvent

Time Event Table
The Time Event table is used to create the duration for the timed event.

Enter the event name in the Timed Event column, followed by a name for the duration in
the Expression Name column.

Next, enter the required time duration in the Duration column. Assign the duration to the
TimeEvent by entering the event and expression name in their respective columns.

46 + 4 Countdown Timer Model

Time Event & Duration

Timed Event Expression Name Duration

TimeEvent
Time Event & Duration

Timed Event Expression Name Duration
TimeEvent
TimeEvent time

4

Time Event & Duration

Timed Event Expression Name Duration
TimeEvent

TimeEvent time

TimeEvent time 1s

Now we have created the necessary Events and Signal that will be used to define the State
and Transition for the system.

4.4 Timer Behavior Table

Using the Timer Behavior table, we will define properties, operations and the behavior aspect
of the system using State Machines and Activities.

To create a property, enter the block in the Block Name column and its property in the
Block Property column.

Based on the use case, we will create the operations expected of the system: restart, count-
down and notify.

To create operations, enter a name for the operation and the block in the respective columns.
Next, we will create a StateMachine to define the system.

Enter the block name in the Block Name column and, in the same row, enter a name for
the StateMachine in the StateMachine column. This will create a StateMachine for the
Timer Block as shown below.

To make sure that the Timer Block exhibits the behavior of the StateMachine entered in the
previous step, enter the StateMachine in the Block StateMachine Behavior column. In
doing this, we are defining the state machine as a classified behavior.

Next, we create activities based on the operations created for the block.

4.5 StateMachine Properties Table + 47

Enter the block name in the Block Name column and the activity name in the Activities
column, we have now created activities for the block Timer. In the Block Operations Be-
havior column, enter the respective operations for the activities created.

Block Behavior Properties

[Timers
Trimers
[rimers
Trimers
TTimers
Trimers
Trimers
[Timers

4.5 StateMachine Properties Table

Next, we define the states and region for the TimerState we created previously.
Enter the StateMachine name followed by the region name in the Region column.

Create the Initial and Final states and the states at which the system will exist in respective
columns, as shown below.

StateMachine Properties

State Machine Region Initial State States Final State
TimerState

TimerState Region

TimerState Region

TimerState Region

TimerState Region

TimerState Region

TimerState Region

TimerState Region

TimerState Region

TimerState Region

48 « 4 Countdown Timer Model

Transition Table

To create a transition between states with triggers, enter a name for the transition in the
Transitions column (a row will be added with Source and Target state cells highlighted).

Enter the source state in the Source State column and the target state in the Target State
column to create a transition between them.

To add a trigger that starts the transition, enter the transition name and trigger name. The
source and target state fields will be updated automatically. To add an event to the trigger,
enter the event name in the appropriate column. For example, to assign startEvent as a
trigger between the start and ready states, enter the transition name, then provide a name
for the trigger. Since startEvent is a signal event, it is populated in the Signal Event column,
as shown.

Transitions |Source State "~ [Target State - [Trigger |Ehmt "~ [Time Event
[ready I I

1

State Transition Properties

Transitions T Source State - [Target State - | Trigger -|§ﬂw - [Time Event 0|
st-rey stan [reacy | |
storty Jstart [ready [rety_sig [|

1

State Transition Properties

Transitions. 1| Source State - |Target State. %l‘_rlng' - [Signal Event - [Time Event =]
st-rdy start |reacy | |
|sa-rdy start |reacy Jrdy_sig |startEvent | |

State Transition Properties

Transitions - |Source State - |T: State - | Trigger r Event - | Time Event
mtferun notify runining
rt-run notity Trunning natify_time notifyEvent
-fun paused rurni
run used runnis pausa_run resumaeEvent
- paused 1
paw-stp |paused stopped pause_stp stopEwent
rdy-run [ready rurni
Fdy-run :eﬂr Fusning e, i stanEvent
runntf running natify
[rurntf running Inotify run_notify timeupEvent
- pa nanning used
run-pau running used jready_pause usaEvant
ru-nan nanning rurning
|rurrran running |rurning run Tirmegvent
ru running 5%
funnang 54 e, Sop stopEventa
stopped end i
end lgp end EM‘-":B
e
r

rur-stp
stp-end
stp-end stopped 1
stp-r sto)
s stopped lgm resetEvent
s-rdy |start ready
- |rev_2ig

4.6 ActivityNodeTable + 49

4.6 ActivityNodeTable

Next, we define the activity created in the TimerBehavior table.

To create actions and flow for an activity, enter the name of activity to which the above
mentioned elements will be created.

In the Call Behavior Actions column, enter a name to create call behavior actions.

Similarly, this table is used to create initial and final nodes, forks, opaque behaviors, decision
nodes, and send signal actions. Each of which can be created by providing a name for the
node and its activity.

To assign the signal that will be sent when a signal action is invoked, enter the name in the
Send Signal Action column and the signal that will be sent in the Signal column (signals
that were created in CountDownTimer table).

Name [Call Behavior Actions. Initial Node [Final Node [Fork Node gnal
oo

own |evaluate_Expression

Block Activity Behavior

Call Behavior Actions Initial Node Final Node. Fork Node [Flow Final Node__|Send Signal Action [Signal

fsendsignal imevp

sendNotfication | | I | | 1
[Start | 1 1 | 1

[notified notified

Opaque Behavior Table

This sheet is used to assign OpaqueBehavior to an action and define its parameter and
equation.

50 ¢ 4 Countdown Timer Model

To assign OpaqueBehavior to an action, enter the Opaque Behavior created in previous
table in the Opaque Behavior column.

Note: The available actions will be automatically listed in Opaque Action column, as shown
below.

4.6 ActivityNodeTable « 51

To create an equation, enter it in the Opaque Equation column.

Opaque Behavior Properties

Opaque Behavior Name Parameters Direction Opaque Equation
Opq_behavior

Opaque Behavior Properties

Opaque Behavior Name Parameters Direction Opaque Equation
Opq_behavior time_out=t_in-1

To manipulate the parameters and direction, we first need to create links between the actions.

Activity ObjectFlow Table
This table is used to create object flow between activities.

To create object flow between actions, enter the source action name in column E (Activity
Node column) and its activity in the ActivityName column followed by the target action
information in column G(ActivityNode column) and its activity in the Activity Name
column.

The object flows between the actions are created, as shown below.

ObjectFlow Table
Activity Name Activity Node Activity Name Activity Node
countDown
countDown |get_updatedvalue countDown Fork
countDown Fork countDown read_time
countDown Fork countDown update_time
countDown read_time countDown ForkN
countDown evaluate Expression countDown update_time
countDown ForkN countDown evaluate_Expression
countDown ForkN countDown Decision
notifyUser
resetTime
resetTime Fork resetTime update_newValue
resetTime Fork resetTime new_Input
resetTime |get_oldValue resetTime reset_oldValue
resetTime reset_oldvalue resetTime update_newValue
resetTime new_Input resetTime update_newValue
resetTime reset_toZero resetTime reset_oldValue
resetTime |get_newValue resetTime Fork

Activity ControlFlow Table

The Activity Control Flow table works similar to the Object Flow table,

52 + 4 Countdown Timer Model

Enter the source action and activity name in the first two columns, followed by the target

activity and action name.

Actvty Hode
countDown
countDown |eet_updatedvalue
countDown Fork
countDown Start
countDown Start countDown read_time
countDown End
countDown read_time
countDown read_time countDown evaluate_Expression
countDown update_time
countDown update_time countDown Decision
countDown evaluate_Expression
countDown evaluate_Expression countDown update_time
countDown ForkN
countDown Decision
countDown Decision countDown Fin
countDown Decision countDown sendSignal
countDown Fin
countDown sendSignal
countDown sendSignal countDown End
notifyUser
notifyUser sendMotification
notifyUser sendMotification notifyUser notified
notifyUser Start
notifylser Start notifylser sendNotification
notifyUser End
notifylUser notified
notifyUser notified notifyUser End
resetTime
resetTime Fork
resetTime Start
resetTime Start resetTime reset_oldvalue
resetTime End
resetTime |eet_oldvalue
resetTime reset_oldValue
resetTime reset_ocldValue resetTime update_newValue
resetTime new_Input
resetTime reset_toZero
resetTime get_nevValue
resetTime hjpdalg_neWalug
resetTime]update_newvalue resetTime End

Once we have completed the Behavior flow tables, we have to sync the input and output
flow of Opaque Behavior and its call action. To do this, go back to the Opaque Behavior

table.

The Input and Output pins will be displayed as argument and result by default. We change
this value based on the Opaque Equation parameter. Rename the argument in both tables

to time_in and time_out instead of result and argument for the Opq_behavior.

4.7 State Behavior Table -«

53

Opaque Action->OpaqueBehavior

Opaque Behavior Name |Parameters Direction Opague Equation Opague Action Opague Behavior Input Pin Output Pin
Opg_behavior time_out=time_in-1 evaluate_Expression Opg_behavior

Opg_behavior result out time_out=time_in-1 evaluate_Expression Opg_behavior argument

Opg_behavior argument in time_out=time_in-1 evaluate_Expression Opg_behavior result

Opaque Behavior Properties

l

Opaque Action-->0paqueBehavior

(Opaque Behavior Name |Parameters Direction Opague Equation Opague Action (Opaque Behavior Input Pin Output Pin
Opg_behavior time_out=time_in-1 evaluate_Expression Opq_behavior

Opg_behavior time_out out time_out=time_in-1 evaluate_Expression 0pq_behavior time_in

Opg_behavior time_in in time_out=time_in-1 evaluate_Expression 0pg_behavior time_out

We have created state machines and activities to define the behavior of the system. As of
now StateMachine and the activities are defined as separate behaviors of the same system.
In the following section, we will define how the system behaves at each state using the
activities we created.

4.7 State Behavior Table

The State Behavior table will list the states created in the StateMachine Properties work-
sheet.

Next, we will assign an entry behavior to the system.

In the example, we will create an entry behavior to the running state. Enter the state name
in the State Name column.

In the State Entry Behavior column, enter a name to create an entry behavior (decrease
in this example).

Next, we will define nodes and actions to the entry behavior, as shown below.

To assign a behavior to the call actions we created in an earlier section, enter the behavior
you want to assign in the Behavior column adjacent to the call actions.

54 .

4 Countdown Timer Model

State Name State Entry Behavioir Initial Node Final Node Call Behavior Actions |Behavior

end

notify

paused

ready

running

stopped

State Name

end

State Entry Behavioir

[

State Entry Behavior Table

Initial Node

Final Node

Call Behavior Actions |Behavior

notify

paused

ready

running

stopped

running

decrease

State Name

State Entry Behavioir

Initial Node

l

Final Node

Call

Behavior

end

notify

paused

ready

running

stopped

running

decrease

running

decrease

start

running

decrease

end

decrease

running

{

State Entry Behavior Table

State Name State Entry Behavioir Initial Node Final Node Call Behavior Actions |Behavior
end

notify

paused

ready

running

stopped

running decrease

running decrease start

running decrease 1_ end

running decrease ‘ decrease countDown

State Behavior ControlFlow Table

Creating behavior control flows is similar to creating activity control flows.

Enter the source action and activity in the first two columns and target action and activity

in the next column.

4.7 State Behavior Table <« 55

State Activity State Activity Node | State Activity State Activity Node
decrease

decrease end

decrease start

decrease start decrease decrease
decrease decrease

decrease decrease decrease end
notify

notify start

notify start notify notify
notify end

notify notify

notify notify notify end
reset

reset start

reset start reset reset
reset end

reset reset

reset reset reset end

test

We have now created the control flows. When we defined a requirement initially, we stated
that the system should notify the user when time reaches zero and should continue counting
down even after reaching zero. To achieve this, we will set a guard condition to the control
flow of the merge node created in earlier sections. In a previous section, we have already
create a notify behavior to the state and to send a signal to user.

State ControlFlow Condition Table

In the ControlFlow Condition table, existing control flows will be listed based on previous
inputs.

To create a guard condition, enter the state activity name in the State Activity column fol-
lowed by the source and target activity node information and enter a guard condition.

56 ¢ 4 Countdown Timer Model

resetTime

countDown

notifyUser

countDown Decision Fin
countDown Decision sendsignal
countbown evaluate_Expression update_time
countDown read time evaluate
countbown sendsignal End

countDown Start read_time
countbown update_time Decision
notifyUser notified End

notifyuser sendnNotification notified
notifyUser Start sendNotification
resetTime reset_oldvalue update newvalue
resettime Start reset_oldvalue

update_newValue

End

[countbown
[countDown start read_time
read_time evaluate
tDown update_time. Decision

[evaluate_expression

update_time

Decision Fin
Decision sendSignal
sendsignal

icatic notified
[start ¥
notified End

reset_oldvalue

reset_oldvalue

update_newvalue

countbown

update_newvalue
Decision

[time=01 | time<d]

countDown
Start read_time
read_time xpression
update_time Decision
e update _time
Decision Fin
Decision

End

notifyuser

notifyuser notified

notifyUsar start send

notifyusar notifisa Ena

resetTime

resetTime start reset_oldvalue

reset_oldvalue

update_newValue

resetTime

update_newValue

lFim

time>0]| |time<0

Decision
State State Node (Source State Node Control Guard Condition
countDown
countDown read_time
countDown evaluate Expression
countDown Decision
countbown evaluate_Expression update_time
countDown Decision Fin
countDown Decision Fin time>0| | time<0
countDown sendsignal
countDown sendsignal time=0
countDown End
notifyUser
notifyuser sendNotification notified
notifyUser Start sendNotification
notifyUser notified End

resettime

resetTime

it

reset_oldvalue

resettime

rt
reset_oldvalue

update_newvalue

resetTime

update_newvalue

Ena

5 Turbofan Engine Model

5.1 Introduction

This example model is used to identify design points of a turbofan engine. MapleMBSE
and Cameo Systems Modeler™ were used to create a turbofan example model. The design
point calculations are based on ideal gas turbine cycle analysis.

Initially, a mission statement is defined to specify the scope of the model and to identify
design points at Mach number 0.8 and operating altitude between 350001t to 45000ft with
a bypass ratio between 6-8.

5.2 Turbofan Model

ey

I
LpCompressar
sulgsndy

J

The turbofan system is defined as shown in the diagram above. The system consists of a
twin-spool configuration, with a high pressure turbine driving a high pressure compressor,
a low pressure turbine driving a low pressure compressor, and a fan. Temperature and
pressure are identified at the design points, as shown in the figure. The primary goal is to
identify the design points with optimum SFC (specific fuel consumption) value.

5.3 Requirements

Once the mission statement is defined, system requirements for the turbofan are also stated
for each subcomponent in terms of target efficiency, pressure ratio etc., which have to be
satisfied. The SystemRequirements worksheet in MapleMBSE is used to define the spe-
cifications and target values that have to be achieved. In addition to the system specifications,

57

58 ¢ 5 Turbofan Engine Model

analysis requirements are created to define the input values which will be used to analyze
the model.

To maintain traceability between system level requirements and mission level requirements,
the DeriveRequirements worksheet in MapleMBSE is used to create derived relationships
between requirements.

5.4 ValueType

The ValueTypesTable and UnitQuantityKind Table worksheets are used to define units
and type of values that will be used to define the system. These valuetypes are used to specify
the type of value properties of the system to be modeled.

5.5 Constraint Blocks

Constraint blocks are created and constraints that will be used in the system are captured
using the ConstraintProperties worksheet. Similar to value types, these blocks are used
to specify the type the constraint property of the system that will be defined.

5.6 System Model

The Turbofan Blackbox is used to specify the properties of the turbofan in terms of values,
subcomponents and ports through with the system will interact.

Once the subcomponents are created we now define the values and constraint properties,
then type them to valuetypes and the constraint block created. A specific worksheet view
is created in MapleMBSE to show components values, constraints and their types.

An Analysis block is created to provide value exchange between the subcomponents. The
Analysis block provides the default values with which the analysis is performed and also
receives the results of analysis.

5.7 Results

The InstanceResults table is used to display the results of analysis performed in the model
using simulation toolkit in Cameo Systems modeller. In MapleMBSE the results are mapped
to Excel graph for visualization. This results worksheet is treated as read-only and used to
only visualize the results of analysis at different altitudes.

5.8 References * 59

To create a new instance:

1. Create a new instance specification by providing a name in the Instance Specification
column in InstanceTable worksheet and type “Analysis Block” as the name of the block
in the Instance of Block column.

2. Define the feature and corresponding value with which the new analysis has to be per-
formed, required input values to be created are ByPassRatioA and targetEfficiency hp-
Turbine.

3. Once the analysis block is defined, specify the inlet properties by creating a new instance
for the InletConditions block, similar to the above method. The required values in this
case are Ta(inlet static temperature in K) and Pa (inlet static pressure in bar).

4. Commit the changes to the No Magic Server.

5. Open the model in Cameo or Magic Draw, then create a new block diagram in the
Newlnstance package, drag and drop the analysis block instance.

6. Drop the inletConditions instance into the analysis instance to create a new feature instance
for the Analysis block.

7. Right-click the analysis instance and select simulate to run the analysis.

8. Export the results of analysis as new instance into the Result package under NewlInstance
then commit to the No Magic Server.

9. Reload MapleMBSE to see the results in the NewInstanceResults worksheet.

To maintain the traceability between the requirements and the modeled system modeled,
use VerifyRequirementsMatrix to have a verify relationship between system requirements
and value properties of the block. By creating this verify relation, now we have traceability
from system values to system requirements and from system requirements to mission re-
quirements.

The RequirementsTraceability worksheet displays all the requirements from the model
and its relationships such as trace, verify, derived with other model elements.

5.8 References

1. Cohen, H. Rogers. G. and Saravanamuttoo, H. (1996). Gas turbine theory. Harlow:
Pearson education.

2. Sanford Friedenthal. (2015). A Practical Guide to SysML, 3rd Edition. Morgan Kaufmann
Publishers.

60 < 5 Turbofan Engine Model

6 UAV Model

6.1 Introduction

This model uses the Object Oriented System Engineering Method (OOSEM) to design a
conceptual model of an Unmanned Aerial Vehicle (UAV). The primary use of UAV in
consideration is to assist forest fire fighting operations in remote areas. The sample model
shows a part of the OOSEM workflow to identify system requirements.

Identify current
[Analyse Stakeholder Needs]

Find current limitations Find stakeholdar
of the existing system needs

Define the mission —
requirements

Identity mos and

Identify the scope of
sysem to be designed

Identify oparating Create system
domain use cases

Define system Blackbox Identify systen states
Define mission scenarios

SHE SR

6.2 Analyze Stakeholder Needs

To identify the needs of stakeholders, in this case the fire department, the current operating
domain is modeled to find the existing limitations and expectations of the fire department.
The existing domain is captured using the block definition diagram represented in a table
format in the OperatingDomain worksheet. A causal analysis is performed to identify the
factors that are of interest to the fire department operation [6]. This causal analysis also re-
veals the present limitations in the fire department operation. At this stage, we have identified
the needs of stakeholder based on which we will derive the mission requirements.

Identify System
Requirements

61

62 <+ 6 UAV Model

6.3 Mission Requirement

To determine the scope and mission of the UAV model, we first identify the measure of
effectiveness based on the stakeholder needs analysis. Secondly, we define the operating
domain in which the system to be modeled will operate. The operating domain is represented
using a block diagram and shown in table format using the OperatingDomainUAV work-
sheet. We identify the use cases to determine the high level behavior of the system and its
interaction. Next, from the measure of effectiveness and the operating domain, we can define
the Mission Requirements and stakeholder requirements from the stakeholder needs that
we identified.

6.4 System Requirements

Before identifying the system requirements, we define units, and interfaces that will be used
by the system of interest. A separate package called Interface is create using the Interfa-
ceTable to contain the flows and signals that will be used in the model.

System Behavior

To find the system requirements, we initially define the UAV blackbox that displays: ports
through which the system interacts, its parts, and its values. In addition, we also define the
operations that are expected of the system, and the method to achieve it in terms of activities.
The UAVBIlackBox worksheet displays the model elements mentioned above. Now we
define the system behavior and represent states at which the system will operate and its
events. On identifying the mission profile of UAV, we create detailed states at which the
system should operate. Following this, we use activities to define system behavior. Based
on the use cases, we create the activities since our mission is to control forest fires and we
are still in the conceptual phase. We define system behavior based on this activity.

Weight Estimation

Once we have defined the system behavior we need to determine the system specification
in order to create the system requirements. To identify the general design requirements the
weight of the UAV is first estimated followed by sizing and identifying critical parameters.
The WeightEstimationTable worksheet displays the value properties and constraint prop-
erties need to estimate the weight of UAV. This worksheet also has tables created in excel
that displays specifications of similar aircraft and estimation constants from historical data
[1]. Based on the mission profile the parameter values can be altered based on payload,
range, endurance, etc. when satisfactory values are determined the values are updated to
WeightEstimationBlock and saved to the model in the No Magic Server.

6.5 References * 63

Wing Area Estimation

To determine the sizing we initially create the constraints using the WingAreaConstraint
worksheet. Similar to the weight estimation worksheet, the WingAreaEstimation worksheet
is used to find wing area by iterating key parameters. Using the matching plot technique
[2] Wing loading vs Thrust loading is plotted from which we identify the wing area.

We have estimated the weight and wing area based on which other design parameters can
be further evaluated. This example model covers the conceptual phase from stakeholder
need analysis to identify system requirements.

6.5 References

1.

Austin, R. (2010). Unmanned air vehicles: UAVS design, development, and deployment.
Chichester, West Sussex, and U.K.: Wiley.

. Raymer, D. P. (1992). Aircraft design: A conceptual approach. Washington, D.C.: ATAA.
. Sadraey, M. H. (2017). Unmanned aircraft design: A review of fundamentals. San Rafael,

CA: Morgan & Claypool.

. Sadraey, M. H. (2013). Aircraft design: A systems engineering approach. Hoboken, NJ:

Wiley.

. Simard, A. J., & Forster, R. B. (1972). A survey of air tankers and their use. Ottawa:

Forest Fire Research Institute.

Sanford Friedenthal. (2015). A Practical Guide to SysML, 3rd Edition. Morgan Kaufmann
Publishers.

. GLOBAL HAWK SYSTEMS ENGINEERING CASE STUDY.pdf. (n.d.). Retrieved

from https://www.scribd.com/document/409826283/GLOBAL-HAWK-SYSTEMS-
ENGINEERING-CASE-STUDY -pdf

Firefighting Aircraft Recognition Guide - California - PDF Free Download. (n.d.). Re-
trieved from https://docobook.com/-firefighting-aircraft-recognition-guide-california.html

64 <+ 6 UAV Model

7 FMEA Template

7.1 Introduction

This model is used to perform FMEA analysis by accessing SysML model elements from
a No Magic server. This example shows a FMEA process to identify possible failure modes
of system functions defined in conceptual design of a UAV; however this template can be
used to perform FMEA on different model elements by specifying appropriate path and
elements in the configuration file.

Custom
Create identified stereotyped
failure modes as

SysML model

elements

model elements

iterative Create a FMEA
process

Update model to Add mitigating actions
meet the new for failure modes as

Calculate RPN

The FMEA process is performed as shown in the figure, system functions from the model
are accessed and failure modes are identified. Further we identify severity, occurrence and
detection for the failure modes and calculate the RPN (Risk Priority Number). Mitigating
actions for identified failures are created as new requirements. The complete process is
saved back to the teamwork cloud model.

7.2 FMEA

The FMEAMatrix worksheet is used to identify new failure modes for the system function
and to create a dependency (identifiedFM). Once we create new failure modes, we use the
FMEATable worksheet to provide a detailed analysis of the potential failure by specifying
S, O and D from which RPN is calculated.

requirements Requirementsinto the
SysML model

65

66 <+ 7 FMEA Template

7.3 Recommended Action

In this process, recommended actions are captured as requirements that can be saved back
to the model. The RequirementFMEAMatrix worksheet is used to create a custom depend-
ency (deriveFMEA) between identified FMEA and recommended actions. The FMEARe-
quirementTable worksheet is used to add specification to the new requirements created as
a result of this analysis.

To use the custom FMEA template:

1.
2.

4.

Add the TWCSysML.mdzip model to the No Magic server.

In Cameo Systems Modeler or Magic Draw, Right-click CustomStereotypes profile—
Project Usage —Export Packages to New Server project.

. In desired project File— Project Usage —Server Project select the exported profile from

previous step.

Update path in the MSE file to get model elements.

7.4 References

1.

Kratzke, R. (2018). Failure Modes Effects Analysis in MBSE. [ebook] Available at: ht-
tps://www.incose.org/docs/default-source/texas-gulf-coast/tgcc-conference-2018/2018-
papers/kratzke-2018-incose-presentation-(for-public-distribution).pdf?sfvrsn=db4796c6 2
[Accessed 22 May 2019].

. Publishing, R. (2019). Failure Mode and Effect Analysis - FMEA - and Criticality Ana-

lysis - FMECA. [online] Weibull.com. Available at: https://www.weibull.com/ba-
sics/fmea.htm [Accessed 22 May 2019].

8 Interface Definition Template

8.1 Introduction

This template is used to show details regarding the interfaces between the systems. ICD
templates in MapleMBSE can be customized to display information that is relevant to the
end users. This example shows different worksheets that can be used to update or review
interfaces and add documentation/comments.

The InterfaceTable worksheet shows the components of a simple Tablet structure, its ports
and interface type. This is a review only sheet and not to be updated.

Component | interface Port | PortKind | Conjugated| Interface_Port | Port Kind | Conjugated | Interface Type
Audio Output audios ProxyPort FALSE it audioOut
Tablet System buttoniN FullPort FALSE
Tablet System buttoniN FullPort FALSE PCB Button
Tablet System hdmi_in FullPort FALSE
Tablet System hdmi_in FullPort FALSE HDMI
Tablet System touchinterface ProxyPort FALSE it Touch
Tablet System inCharger ProxyPart FALSE if Charger
Tahlet System MiC ProxyPart FALSE if_inMic
Tablet System blueToothinterface |ProxyPort TRUE if_Bluetooth
Tablet System headPhonejack ProxyPort FALSE it HeadPhone
Tablet System wifilnterface ProxyPort FALSE in_WiFi
Tablet System light_in ProxyPart FALSE if camera
Camera System light ProxyPort FALSE if camera
Input System touchinterface ProxyPort FALSE it Touch
Input System tscreen ProxyPart TRUE if Touch
Controller System Tscreen ProxyPart FALSE it Touch
Controller System inCharger ProxyPort FALSE if Charger
Controller System hdmi ProxyPort FALSE it HDMI
Controller System bitM ProxyPort TRUE if Bluetooth
Controller System hP ProxyPort FALSE if HeadPhone
Controller System audioM ProxyPort FALSE it audioOut
Controller System michk ProxyPort FALSE it_inMic
Controller System b ProxyPort FALSE if powerBacklight
Controller System wifi ProxyPart FALSE in_WiFi
Controller System CpWr ProxyPort FALSE VIN
Powar System pwr FullPort FALSE
Power System T FullPort FALSE PCB Button
Power System upwr ProxyPort FALSE VIN
Display Device pblS ProxyPort TRUE if_ powerBacklight
Receiver wifiln ProxyPort FALSE in_WiFi
Receiver wifi ProxyPart TRUE in WiFi

The InterfaceClasses worksheet shows the interface definitions that are used in the previous
worksheet and can be used to add description or comments to the interfaces.

The ItemFlow worksheet is also a review only sheet that displays a list of all the item flows
in the project and their related components.

67

68 <+ 8 Interface Definition Template

8.2 The InterfaceRequirements Matrix

The InterfaceRequirements matrix shows the relation between the interface requirements
and the interfaces of the components of the tablet

E E E E E E E
@ @ @ @ @ @ @
Component " w w w w w w
p = = =) ==))
" " " " " o "
e - -t -t -t - -
2 2 a a2 a2 a a
= a a a a a a
m m m m m m m
— — — — — — —
@
@
Interface Name o £ v
aQ [
i 2 & o
h= . = @ s}
b = c o
frar a = o +
= o 2 é @ c
e a: 5] =
Specification 5 & 5 = E o
S gl 2] 3| 8| E| &
ID |[~|Namé~ - B | =| B| | =T| =

The device must be capable of using
IREQ1 [(HDMI HDMI cables to connect with TV.
The device should have a capacitive
IREQ2 |Touch S|touch screen X
The device should have back light with
IREQ3 |Back Ligladjustable brightness

The device must have means to
extend internal storage with external
IREQ4 |SD Card|storage

The device should have 3.5MM jack
and bluetooth to connect with audio
IREQ5 |Head Phdevices X
IREQ6 |LCD DisjThe display should be LCD

8.3 ComponentsinteractionTable

The ComponentsInteractionTable displays the list of components of an Arduino controlled
robot and its interfaces, this worksheet shows a list of columns that can be updated by the
user to add the new interface in terms of ports and define its direction.

8.4 References

69

Component | - | Port Direction
Battery -veBattery inout
Battery +veBattery inout
Motor Driver 2Y inout
Motor Driver 2A inout
Motor Driver a4y inout
Motor Driver 1A inout
Motor Driver GND inout
Motor Driver 44 inout
Motor Driver VCC1 inout
Motor Driver WCC2 inout
Motor Driver GND?2 inout
Motor Driver 1Y inout
Motor Driver 1.2EN inout
Motor Driver GND4 inout
Motor Driver 3Y inout
Motor Driver GND3 inout
Motor Driver 3A inout
Motor Driver 3.4EN inout
Servo motor +veservo 1 inout
Servo motor -veservol inout
Microcontroller GND inout
Microcontroller AOQ inout
Microcontroller A3 inout
Microcontroller A2 inout
Microcontroller SV inout
Microcontroller 3.3V inout
Microcontroller AL inout
Microcontroller Al inout

8.4 References

1. Karban, R., Troy, M., Brack, G. L., Dekens, F. G., Michaels, S. B., & Herzig, S. (2018).
Verifying Interfaces and generating interface control documents for the alignment and
phasing subsystem of the Thirty Meter Telescope from a system model in SysML.

Modeling, Systems Engineering, and Project Management for Astronomy VIII. doi:

10.1117/12.2310184

2. Model-based Interface Control Documents (icd) Donatas Mazeika- Saulius - ht-
tps://blog.nomagic.com/model-based-interface-control-documents-icd/

70 « 8 Interface Definition Template

9 Cost Analysis

9.1 Introduction

This example shows how MapleMBSE can be used to access key parameters of a turbofan
engine from a SysML model and do a trade-off with different material types.

9.2 Results

The Cost Analysis worksheet has two different tables displayed in worksheet: results from
the preliminary analysis table shows value properties and its value based on which the cost
estimations are done, and the other table displays material properties and cost.

Results from preliminary Analysis Quote From Supplier
Turbofan_A |SFC 0.06923| |Material A1 |lifespan 5000
Turbofan_A |Efficiency 0.8765| [Material A1 |no of visits 4
Turbofan_A |no_of blades 36| [Material A1 |cost_per wisit 70000
Turbofan_A [Fnet 4963.31) |Material A1 |cost_per_blade 200
Turbofan B |SFC 0.06886]| |Material A2 |lifespan 4000
Turbofan B |Efficiency 0.887353| [Material &2 |no of visits 6
Turbofan_B |no_of blades 45| [Material A2 |cost per wisit 70000
Turbofan_B |Fnet 4989.81| |Material A2 |cost_per_blade 150
Turbofan_C |SFC 0.06833| |Material A3 |lifespan 7000
Turbofan_C |Efficiency 0.87547| [Mmaterial A3 [no of visits 3
Turbofan C |no of blades 42| [Material A3 |cost per wvisit 70000
Turbofan C |Fnet 3013.7| [Material A3 |cost per blade 255

9.3 Visualization

Updating the values will automatically update related tables and graphs based on which we
can identify the cost-effective material and key-value property which will affect the overall
cost of the engine.

71

72 + 9 Cost Analysis

10 Variant Management Template

10.1 Introduction

Variant management is used to identify the multiple variants in the product line and their
dependencies to manage complexity. This example shows a simplified view into identifying
the variants in a Tablet model by which the user can create new features to the tablet parts
and use it to create different variations for a tablet.

FeatureName
Component
= = =
£ t| E| 8
Parts s s Sl | 8| 8 2 g
=] o~ sl = m o = =
- = — <+ s} ~ 5] < =
Tablet WiFi Antenna
Tablet Camera X X X
Tablet TouchScreen Panel
Tablet Battery X X X
Tablet Speaker
Tablet Processor
Tablet Power Button
Tablet MIC
Tablet LED X X

10.2 FeatureMatrix

The FeatureMatrix shows the different features and their respective parts to which the feature
is related. For example, the 10MP feature is related to the part Camera of the tablet. To
create a new feature user can add a new entry in the FeatureName row and assign it to the
corresponding part. The VariantMatrix displays the available configuration that was created
in the model. To add a new variant the user can provide a unique name in the VariantModel
row and built it using the available features. VariantTable shows the information from
VariantMatrix in a tabular view for review.

73

74 <+ 10 Variant Management Template

VariantModel*
Component Parts
=T o
@ T
Features Bl E
- - | = =
Tablet Camera SMP
Tablet Camera 12 MP X
Tablet Camera 10MP X
Tablet Battery 7300mAh X X
Tablet Battery 8600mAh
Tablet Battery 4500mAh
Tablet LED AMOLED X X
Tablet LED MLED

10.3 VariantCheckTable

The VariantCheckTable is a validation to identify conflicts in the feature selection. To
verify the selections first the user has to sort the table. Right-click inside the table to Sort
Vertically. In case of conflicts, the row will be highlighted as shown.

Variant_Models Features Parts
Model A 7300mAh Battery
Model A 12 MP Camera
Model A AMOLED LED
Model B 7300mAh Battery
Model B 10MP Camera
Model B AMOLED LED
Model B MLED LED

The last row is highlighted because Model B has features AMOLED & MLED which are
selected by the user belongs to the same part LED.

10.4 References

Chami, Mohammad & Forlingieri, Marco & Oggier, Philipp. (2017). Model-Based Variab-
ility Management Solution with SysML.

11 Default Value Generation

11.1 Introduction

This is a MapleMBSE feature that is used to generate default values or a sequence of text
that is pre-defined in the configuration file. Use TWCSysML-DefaultValue. MSE to view
how default generation works. This sample has two worksheets: the BlocksTable and the
AutoGenerateTable. Using the BlocksTable sheet, a user can create components and sub-
components. In the Components column, provide the name of a component and the name
of a subcomponent. Once the Component and subcomponent have been entered, the other
fields will be automatically populated. This is illustrated in the default value generation

example, where a new Chassis component is created.

Component* PartPropertyName ™ SubComponent* Aggregation”™ Multiplicity ™~

Car
Car partPropertyl Door compasite 0.1
Car partProperty3 Engine compasite 0.1
Car partProperty2 Wheel compasite 0.1
Door
Engine
Wheel
Chassis

11.2 Generating the Default Values

Add Chassis as a part to Car as shown below.

Component* PartPropertyName ™ SubComponent* Aggregation”™ Multiplicity ™

Car
Car partPropertyl Door composite 0..1
Car partProperty3 Engine composite 0..1
Car partProperty2 Wheel composite 0..1
Door
Engine
Wheel
Chassis
Car Chassis|

New value in other columns are generated automatically as shown and these generated

values can be edited if needed.

Component* PartPropertyName ™ SubComponent* Aggregation”™ Multiplicity ™
Car
Car partPropertyl Door composite 0.1
Car partProperty3 Engine composite 0.1
Car partProperty2 Wheel composite 0..1
Door
Engine
Wheel
Chassis
Car partProperty4 Chassis composite 0.1

75

76

11 Default Value Generation

AutoGeneratedTable shows a simple BOM template using with when the name of a part is
entered rest of the column are auto-generated with a default value.

PartName* PartiD™

Description™ Quantity ™ Price™ Per™ MaterialType ™
Battery BT344A4 3500mAh, Li-ion 1 25|EA RawMaterial
Camera CA344A55 PrimaryCamera 12MP /Image Stabilization] 1 30|EA RawMaterial
Display PT4341T734 5.5 AMOLED, 455p,Touch Screen’ 1 90|EA RawMaterial
Enclosure PT3456A23 Al enclosure 1 50|EA RawMaterial
Memery PT33A343 *description 1 0|EA RawMaterial
Processor SNA53G45 Snapdragon, QuadCore 2.5GHz 1 30|EA RawMaterial
EarPhone *partlD *description 1 0|EA RawMaterial

11.3 Requirement ID generation

This feature extends the default value generation to generate IDs for requirements. Unlike
the above two sections, the ID values are calculated based on the latest ID in the model.
Use the TWCSysML-RequirementID.MSE to view how the IDs are auto generated. In the
RequirementsTree worksheet add a new requirement by typing a name to column B, this
will automatically get the latest ID in column C. Similarly add sub requirements to notice

the same.

ioquirement 2o | ool Hemquirement 2od §ewel
[1] Specilialion e [1e] Spedification

In the DerivedRequirements worksheet add a new requirement, the only thing different in
this worksheet is the modeling tool user has set a specific numbering format of the require-
ments in the package. MapleMBSE will use the same prefix and set an ID as shown in the

worksheet.
Requirement
Name* |ID | Specification
Range DR-100
Power DR-102
RegenerativeBraking |DR-105

12 Instance View

12.1 Introduction

This template is used to view different instances of blocks and their value properties and
allows the user to directly edit or create a new instance of the block.

12.2 The MatrixTemplate Worksheet

The MatrixTemplate worksheet displays the instances in the columns and rows represent
the blocks and their value properties. The intersection of row and column displays the value
of the block with respect to its instance. To create a new instance enter a name for the instance
in the Instances column. MapleMBSE will automatically create all the instances hierarchically
and display the related values in the cells which can be updated. New slot values can be
added to the empty cells, based on the value types defined. To delete a slot select the cell
and click on delete button. MapleMBSE will automatically parse these inputs to the right
value types.

In the image below, the L1 Sub-Component Column shows the subcomponents name along
with their multiplicity []. The component's multiplicity can be changed using the In-
stanceMulti Table. In this example, vehicle instancel is used as reference Instance to increase
or decrease the multiplicity.

Notes:

* When a user enters a string value and expected value is Real the cell will be updated with
default value as 0°.

 This template is used only when the structure of the block for which is the instance is
created is determined previously.

77

78 + 12 Instance View

Instances al]] e

(1] @ (] [+1]

gl 2| g| g

gl 8| 4| &

£l £| E| k£

o o o o

ol oYl el U

5| §| §| §

ValueProperty > > > >

Vehicle Battery[1] estimated 4] 0 0 0
Vehicle Battery[1] welght 50| 50| 50| 50
Vehicle Brakes[1] estimated 0 0 0 0
Vehicle Brakes[1] welght 22| 22| 22| 22
Vehicle Engine[1] estimated 0 0 0 0
Vehicle Engine[1] welght 350| 350| 350| 350
Vehicle Front Axle estimated 0 0 0 4]
Vehicle Front Axle weight 354| 354| 354| 354
Vehicle Fuel Tank[1] estimated 0 0 0 0
Vehicle Fuel Tank[1] weight 15| 15| 15/ 15
Vehicle Radiator estimated 0 0 0 0
Vehicle Radiator welght 12] 12| 12| 12
Vehicle Rear Axle estimated Q 0 0 0
Vehicle Rear Axle welght 350| 350| 350| 350
Vehicle Steering[1] estimated of 0] 0 ©
Vehicle Steering[1] weight 34| 34| 34| 34
Vehicle Suspension[l] |estimated Q 0 0 0
Vehicle Suspension[1] |weight 23| 23| 23| 23
Vehicle Transmission estimated 0 0 0 0
Vehicle Transmission weight 342(342| 342| 342
attachment Vehicle|VehicllVehicl|Vehicl:

Vehicle color Black |BlacKBlack Black
estimated 0 0 0 0

Vehicle totalwelght 90| 90| 90| 90

In the cell with hyperlinks, as shown in the Vehicle attachment property (see above figure),
a user can open the files by clicking on the hyperlink. An empty cell can only be referred
to existing files in other cells. When the file name is misspelled, a dialog box will appear
as below, with the list of files. Note that the files opened are read-only and cannot be edited.

12.2 The MatrixTemplate Worksheet « 79

Unable to find the file please select from the list

icleComponents.xlsx

Ok Cancel

Clicking cancel will display invalid attachment

Instances - o~ m o
g| gl g ¢
c c c c
Top Level % % g %
e L1 Sub-Component _EI 'E| E| .EI
2 2 Z 2
) = = =2
= = = =
ValueProperty g g g g
Vehicle Battery estimated 0 0 0 0
Vehicle Battery weight 50 50 50 50
Vehicle Brakes estimated 0 0 0 4]
Vehicle Brakes weight 22 22 22 22
Vehicle Engine estimated 0 0 0 Q
Vehicle Engine weight 350 350[350 350
Vehicle Front Axle estimated 0 0 0 Q
Vehicle Front Axle weight 354 354 354 354
Vehicle Fuel Tank estimated 0 0 0 Q
Vehicle Fuel Tank weight 15 15 15 15
Vehicle Radiator estimated 9] 0 0 Q
Vehicle Radiator weight 12 12 12 12
Vehicle Rear Axle estimated 0 0 0 0
Vehicle Rear Axle weight 350 350 350 350
Vehicle Steering estimated 0 0 0 0
Vehicle Steering weight 34 34 34 34
Vehicle Suspension estimated 4] Q 0 0
Vehicle Suspension weight 23 23 23 23
Vehicle Transmission estimated 0 0 0 0
Vehicle Transmission weight 342 342| 342 342
Vehicle attachment VehicledVehicle(|Vehicle({invalid Attachment
Vehicle color Black |Black |Black |Black
Vehicle estimated 0 0 0 Q
Vehicle totalweight 90 90 90 90

80 < 12 Instance View

12.3 Instance Multiplicity Table

This worksheet is used to increase or decrease the multiplicity of the reference Instance
(vehicle_instancel): To increase multiplicity of a part in the Multiplicity of Instance column,
update the number to the desired value, and then this will add new sub-instances as below.

Parts Muitiplicity of Instance

chicle Battery{1] 4

Parts Multiplicity of Instance Vehicla Brakes[1] 1

Vehicle Battery[1] 1 Vehicla Engine[lll 1

Vehicle Brakes[1] 1 Vehicle Frant Axle 1

Vehicle Engine[1] 1 Vehicle Fuel Tank{1] 1

Vehicla Front Axle 1 ge:‘::e Emafrl %
Vehicle |Fual Tank[1] 1| W [Vehice ear Axle

Vehicle Radiator 1 Vehicle Steering[1] 1

Vehicle Rear Axle 1 Vehicle Suspension{ 1] 1

Vahicle StPerirldl 1] 1 \feh!cle Transmission 1

Vehicle Suspension[1] 1 3?:?:3 E;:::—Emg} 3

Vehicle Transmission 1 Vohicls Rt 4

13 Spacecraft Model

13.1 Introduction

The template files in the Spacecraft model files folder require the Spacecraft SysML model,

which can be downloaded from http://sysml-models.com/spacecraft/models.html. (Note
that the use of this model is subject to the terms and conditions set by the copyright holders.)

The templates in the folder provide a different view of the model in tabular format.

13.2 SPCUseCase Template

The Mission Failure Modes worksheet shows the mission for the Spacecraft system and
associated mission breakdowns. Identified failure modes for the activities are displayed in
the Failure Modes column. The Operational Usecase worksheet displays the use cases,
included and extended use cases.

Activity - |Mission Activities - |Mission Activities - |Failure Modes

Perform Mission Launch S/C

Perform Mission Launch S/C Launch Failure

Perform Mission Maintain Spacecraft Operations

Perform Mission Maintain Spacecraft Operations Maintain Operations Fallure
Perform Mission Deploy Mechanisms

Perform Mission Deploy Mechanisms Deploy Mechanism Falure
Perform Mission Separate from L/V

Perform Mission Separate from L/V Separation Failure

Perform Mission Control Trajectory

Perform Mission Control Trajectory Control Acceleration Acceleration Control Failure
Perform Mission Contrel Trajectory Control Attitude-p Steady State Attitude Control Failure
Perform Mission Control Trajectory Control Attitude-p Attitude Rate Control Failure
Perform Mission Control Trajectory Control Attitude-p Attitude Control Failure
Perform Mission Control Trajectory Control Attitude Attitude Control Failure
Perform Mission Control Trajectory Trajectory Failure

Perform Mission Provide Observation Data

Perform Mission Provide Observation Data Provide Data Failure
Perform Mission Mission Failure

The RequirementsTree, FRMatrix and RequirementTreeSPC worksheet show the
spacecraft requirements displayed in the model.

13.3 SPCValueType Template

This template has worksheets that display all the signals and value types that are available
in the Spacecraft model. The Signals worksheet displays the components signals and its
reception. The IO definitions worksheet has the interface definitions the parameters that
types the interface and its owner. In the table below the I-O Definition command is typed
by the argument from Manage Power. The table displays only the parameters of the Beha-
vior that are of type displayed in the first column.

81

82 « 13 Spacecraft Model

I-O Definitions - |[Typed By - [Name

Alert Message

Attitude Adjust Command

Command

Command argument Manage Power

Command Generate System Commands
Control

Earth Track Data

Earth Track Data result Sense Earth Horizon Angle
Earth Track Data argument Generate Reaction Wheel Spin Command
Electrical Power

Emissions

Fire Data

Fluid

Fuel

Fuel TLM

Gnd CMD

GPS Data

Heater Control

IMU Data

IMU Data argument Generate Reaction Wheel Spin Command
IMU Data result Sense Spacecraft Angular Rate
LV to SC Data

13.4 SPCStructure template

This template displays the structural aspect of the Spacecraft System. The MissionContext
worksheet shows the hierarchy of where the Spacecraft system and its subsystems are defined
in the operating environment.

In the BlackBox worksheet the Value column displays the value properties of the Spacecraft
System while the Operations column has the list of operations for the Spacecraft. The Ports
column lists the different interfaces with which the system interacts with the external envir-

13.4 SPCStructure template <+ 83

onment. The Behaviors column shows the system behavior as activities.

Spacecraft | - Values T Operations T Ports % Behaviors T
Spacecraft cost
Spacecraft data capacity
Spacecraft deltaVv
Spacecraft life
Spacecraft mass
Spacecraft max radiation level
Spacecraft painting accuracy
Spacecraft power
Spacecraft probability of detection
Spacecraft probability of false alarm
Spacecraft reliability
Spacecraft size
Spacecraft collect observation data
Spacecraft return observation data
Spacecraft receive ground command
Spacecraft provide telemetry data
Spacecraft control attitude
Spacecraft control acceleration)
Spacecraft control thermal environment
Spacecraft provide electrical powver
Spacecraft manage faults
Spacecraft control separation
Spacecraft provide structural integrity
Spacecraft deploy antenna
Spacecraft deploy solar array
Spacecraft solar radiation i/f
Spacecraft em radiation i/f
Spacecraft observation sensor iff
Spacecraft thrust i/f
Spacecraft and and & data i/f
Spacecraft LV electrical iff
Spacecraft LV mechanical iff
Spacecraft thermal radiation i/f
Spacecraft sar tracker it
Spacecraft inertial sensor i/f
Spacecraft impact iff
Spacecraft aps i/f
Spacecraft horizon tracker iff
Spacecraft drag i/f
Spacecraft =un tracker iff
Spacecraft magnetometer i/f
Spacecraft Control Thermal Environment
Spacecraft Manage Fauls
Spacecraft Provide Telemetry Data
Spacecraft Receive Ground Command
Spacecraft Deploy Antenna
Spacecraft Deploy Solar Armay
Spacecraft Control Attitude
Spacecraft Control Separation
Spacecraft Control Acceleration
Spacecraft Track Orbit
Spacecraft Collect Observation Data
Spacecraft Provide Electrical Povver

The Constraint Parameter worksheet displays the constraints from the model. The Phys-
ical Decomposition worksheet shows the hierarchy of the components of the spacecratft.
The Spacecraft ConnectorMatrix and Spacecraft Connector worksheets display the same
information but as different views.

84 « 13 Spacecraft Model

5 5
1]
HEH R EEEEEHEEIE IR IR
uuuuuuuu::gg!!:ii-ﬁﬁﬁ,‘;,‘;
2212121221 2| 2| 22| 5| 5| B\ E| 2 2 5 8 5353
wwmwwwwuwwaEEEEuuﬁﬁS.ﬂ
= 3 =
218 | <|s
Ports g i El sl |22
c =] = s 8
HEE IR R HE
- clalale| sl ele alfa|elal2|lalE|ld| el slaldAs
IGNEC SW pS X
IGNEC SW p2 X
IGN&C SW pé X
IGNEC swW p7 X
GNEC SW 8 X
IGNEC SW pl
GNEC SW p3 X
GN&C sW pa X
IGPS Unit pl X
(GPS Unit LEpsi{f
Horizon Tracker pl X
Horizon Tracker horizon tracker iff
Inertial Measurement Urpl X
Inertial Measurement Urlintertial reference i/f
Magnetometer pl X
magnetometer i/f
Wheeal pl X
Reaction Wheel torgue i/f
Star Tracker pl X
Star Tracker star tracker i/f
Sun Tracker sun tracker iff
|Sun Tracker pl X

The GNCInformationFlow and GNC_InterfaceMatrix worksheets show only the details
of'the GNC Subsystem. The GNC Subsystem worksheet shows all the relevant information
of the different components.

14 Telescope Model

14.1 Introduction

The TMT model is available to download from: https://github.com/Open-MBEE/TMT-
SysMIL.-Model

(Note that the use of this model is subject to the terms and conditions set by the copyright
holders).The Template files in the TMT model folder provide a different view of the telescope
model. Using these templates with a model as big as the TMT, makes viewing the model
elements in a tabular format easier to visualize.

These templates will provide a compact view into the model. Since the TMT is a fairly large
model, before using the template, increase the RAM allocated to MapleMBSE. Refer to the
user guide and enable cache at login.

14.2 TMT_Predicate Template

This template is for review only and not for editing the model content. The predicates are
defined in the configuration file that effectively query the model based on Boolean conditions
and will display the results that match these conditions. In the Requirements worksheet
all the requirements in the TMT model is displayed. In the PredicateFilter worksheet, only
the requirements that don’t have Rationale are displayed. The AcceptedRequirements
worksheet will list the requirements that as a tagged value as “Accepted”.

ID* Name Tag = Accepted
3|Ambient Operating Temperature Accepted
5|APS User GUI Accepted
6|APS Responsibility Accepted
7| APS Starlight Accepted
8| APS Acquisition Camera FOV and plate scale Accepted
9|Segment Measurement Error Accepted

The ValueProperty worksheet has the value properties that don’t have a datatype. The IDs
of these values are displayed so that they can be easily found by searching in the modeling
tool.

85

86 « 14 Telescope Model

Value Property Component ID |

A/D bit CCD Detector 17 _0_2_3 _4leOlaa_1379087596098_221406_43317
arraylLength Procedure Executive and Analysis Sg_18_0_5_c0402fd_1470084213608_649914_168690
Decision Consequence M&S Risk Assessment 17_0_1_382a051a_1302712866646_684048_15580
ditExposure PEAS PIT Tracking 18_0_5_c0402fd_1463788548563_320834_148611
Electron Well size CCD Detector 17 0 2 3 4le0laa_ 1379087638392 256325 43321
Input Pedigree M&S Credibility Assessment 17_0_1_382a051a_1302712866646_787170_15584
M&S Management M&S Credibility Assessment 17_0_1_382a051a_1302712866647_296612_ 15588
People Qualifications M&S Credibility Assessment 17 0 1 382a051a_1302712866647 22710 15589
Pixel Pitch CCD Detector 17 0 2 3 4le0laa_1379087570399_162103 43313
Results Influence M&S Risk Assessment 17_0_1_382a051a 1302712866645 224565_15579
Results Robustness M&S Credibility Assessment 17_0_1_382a051a_1302712866647_549076_15586
Results Uncertainty M&S Credibility Assessment 17_0_1_382a051a_1302712866647_9514_ 15585
Use History M&S Credibility Assessment 17 01 382a051a_1302712866647_106737_15587
Validation M&S Credibility Assessment 17_0_1_382a051a_1302712866646_736398_15583
Verification M&S Credibility Assessment 17_0_1 382a051a_1302712866646_150481_15582

Similarly, the constraint blocks with parameters that don’t have a type are shown in the
ConstraintParameterType worksheet. The qualified name for these constraint blocks is
displayed so you can find them easily in the modeling tool.

Constraint Block QualifiedName Parameter
constraint StructureA::constraint s
Constraint Y Tests, Examples, and Braindumps::RKA|cpl
Constraint Y Tests, Examples, and Braindumps::RKA|cp2
Constraint Y Tests, Examples, and Braindumps::RKA|cp3

Convert Meters to Percent

TMT::Project::Work Packages::Telescop diameter

Convert Meters to Percent

TMT::Project::Work Packages::Telescoflcbe

Convert Meters to Percent

TMT::Project::Work Packages::TelescogcbelnPercent

14.3 TMT Activity Template

This template will display the information of activities of the APS system. The APSInter-
changFunction worksheet lists the different packages with activatations that send signals
to Component ports. In the figure below, Sub-Package cmd M1CS has activities that are
defined in the Activity Column. Calibrate Warping Harness has a Send Signal action, Cal-
ibrate Warping Harness cmd, that is received by port PEAS2M1CSOut which owned by
Procedure Executive and Analysis Software.

Package -|Sub-Package T|Activity -][Send Signal -|To Port - [Block. =
External Cmd_M1CS Calibrate Warping Harness Calibrate Warping Harness Cmd PEAS2M1CSOUL Procedure Executive and Analysis Software
External Cmd_m1cs Get Segment WH Pos Get Segment WH Pos Cmd PEASIMICSOuUt Procedure Executive and Analysis Software
External Cmd_m1cs Get_Installed_Segment Get installed_Segment_Query PEAS2M1CSOut Procedure Executive and Analysis Software
External Cmd_m1Cs [Save M1CS Configuration [Take Snapshot Cmd PEASZMICSOUt Procedure Executive and Analysis Software
External Cmd_m1Cs Send Segment PTT Move Segment PTT Cmd PEAS2MICSOUL procedure Executive and Analysis Software
External Cmd_m1Cs Send Segment WH Cmd Move Segment WH Cmd PEAS2MICSOUL Procedure Executive and Analysis Software
External Cmd_M1cS Set WH Strain Set WH Strain Cmd PEASIMICSOut Procedure Executive and Analysis Software
External Cmd_M1CS Turn Warping Harnesses Off [Turn WH Off Cmd PEAS2MICSOut Procedure Executive and Analysis Software
External cmd_m1cs [Turn Warping Harnesses On [Turn WH On Cmd PEAS2M1CSOut procedure Executive and Analysis Software
External Cmd_M1CS Zeroing Sensor Readings offloadsensoroffsets Cmd PEASZM1CSOuUt Procedure Executive and Analysis Software
[External [Cmd_M3CS Send M3 Offset M30ffset Cmd PEAS2TCSOut Procedure Executive and Analysis Software

The ActivityDecomposition worksheet shows activity breakdown up to 4 level.

- [Sub-Activity 1

- |Sub-Activity 2

- [Sub-Activity 3 ¥[Sub-Activity 4 -]

Top Level Activity
Rigid Body and Segment Figure correction

|Setup APS, Acquire and Start Guiding | Configure APS for SH Test |Center Shear Plate |

[Rigid Body and Segment Figure correction |Setup APS, Acquire and Start Guiding | Configure APS for SH Test |Center Shear Plate |Adjust Shear Plate PEAS |

14.4 Signal Interface « 87

Right-click on the table and select create merged view to create a worksheet that will remove
the redundant entries. Note that this new worksheet is only an excel sheet created to simplify
the view and is not linked with the MapleMBSE syncview.

Sub-Activity
2

Top Level Activity Sub-Activity 1 Sub-Activity 3 Sub-Activity 4

Rigid Body and Segment Figure Setup APS, Acquire and Configure
correction Start Guiding APS for SH Center Shear Plate Adjust Shear Plate PEAS

14.4 Signal Interface

This worksheet is similar to the APSInterchangeFunctions worksheet but table displays
the APSComponents and their interface (ports) which receive a signal and source of the
signal in the Send Action column

14.5 TMT_OBSE Template

This template file has the views of TMT Observatory System. TMTObservatorySystem
shows the components of the observatory system. Conceptual design template displays the
Components and their attributes like ports and values. The Owned Behaviors column has
the list of behaviors that are performed by the system.

Components - |Ports - |Values -1Signal - |Owned Behaviors =
Alignment and Phasing System
AQ Sequencer

AO Sequencer AOSeq2[SW
AO Sequencer AQSeq2ESW
AO Sequencer AcquirePointing
AQ Sequencer AcquireDone
AQ Sequencer Pointing acquisition
BTO

Common Services
Common Services CS2PEASIn
Common Service: CSZPEASOU!
Common Services QueryCompleted
—ommaon Services SendAck
Dala Management System
DM

nclosure

SEN

LSW Seq

ESW-ACQ

ESW-ACQ numloop
ESW-ACQ i

14.6 TMTInstance

The results of instances from the TMT model for different scenarios are shown in their re-
spective worksheets. For example, in the CalibrationsDurationInstances worksheet, the
components and their value properties are displayed. The column represents the different
instances for the calibration scenario and the intersecting cell has a value for that instance
of the component in the rows.

88 « 14 Telescope Model

Instances
calibrations

calibrations Duration

Duration Scenario at

Scenario at 2017.10.26
Components Values 2017.10.1819.22 [11.56
Acquisition Pointing and Tracking Assembly ditSetup 5 5
APS Mission Conceptual maxPhasingTime 300 300
APT Loop terminate FALSE FALSE
Executive Software adjustGC FALSE FALSE
Executive Software askOperator FALSE FALSE
Executive Software pErr 1 1
Executive Software tAcquisition 33 37
Executive Software tAcquisitionStart 8219 8249
Executive Software TBD 10 10
M3 Alignment Maximum Time m3AlignmentTimeLimit 36000 36000
Maintenance Alignment Maximum Time maintenanceAlignmentTimeLimit 1800 1800
Off-Axis Acquisition Maximum Time offAxisAcquisitionTimeLimit 36000 36000
On-axis alignment maximum time for Post SegmdpostSegXchgTimeLimit 7200 7200
Peak Power Limit Requirement JPL powerPeakLimitEnclosure 8100 8100
Peak Power Limit Requirement JPL powerPeakLimitSummitFacilityBuildi 4100 4100
Peak Power Limit Requirement TMT powerPeakLimitEnclosure 8500 8500
Peak Power Limit Requirement TMT powerPeakLimitSummitFacilityBuildi 4200 4200
PEAS PIT Tracking ditExposure 4 4
PEAS PIT Tracking numStopAck 0 0

The TMTInterfaceView template has the view of interface definitions and connectors

between the components of the APS system. The APSConceptual worksheet has a matrix
view of the interface between the APS components. The SSCAssociationClass worksheet
shows a view of the AssociationBlock and their flow properties.

15 Turbojet Model: Formula Evaluation

15.1 Introduction

A Turbojet Cycle Analysis context block as shown below is defined in the model. This
context block has all the constraints that are used to calculate the specific fuel consumption
(SFC). The inputs that can be changed to compute the best sfc are defined as value properties
in the component blocks. Instance specifications are created for the Turbofan Cycle Analysis
and these instances hold the values for that specific instance of the turbojet system.

89

90 « 15 Turbojet Model: Formula Evaluation

15.2 Instance Specifications and Constraint Properties

This example is used to calculate turbojet design points using the formula evaluation feature.
In this example, the user can see the block hierarchy used to define the turbojet system

model. The design point calculations are based on ideal gas turbine cycle analysis. To use
the formula evaluation, the following conditions are to be met: The formulas are defined in
constraint properties, instances are created based on a top-level analysis context. These in-
stances hold the components and its value properties in form of slots. A parametric diagram

is used to define the constraints between these properties.

compressor

bdd [Package] Evaluation Sample [Evaluation Sample1] J
«block»
Turbojet
Emt : Real = 0.99
Ca:Real=2396
Ta : Real = 223.3
Pa : Real = 0.265
Ei: Real = 0.93
f: Real=0.01%8
f
combustor
turbine «blocks
«blocks nozzle Combustor
Turbine ablocks o
values Nozzle Ec: Real = 0.93
Et:Real=0.9 ahes Ploss : Real = 0.04
T03 : Real = 1200.0 En : Real= 0.95 value1 : Real = 6.0

ablocks
Compressor

pressureRatio : Real = 8.0

Ec:Real=0.87

15.3 Instance Matrix ¢ 91

Component Sub-Component |Value Name [Default Value

Turbojet Combustor Ec 0.98
Turbojet Combustor Ploss 0.04
Turbojet Compressor pressureRatio 8
Turbojet Compressor Ec 0.87
Turbojet Nozzle En 0.95
Turbojet Turbine Et 0.9
Turbojet Turbine TO3 1200
Turbojet Cycle AnalTurbojet Emt 0.99
Turbojet Cycle AnalTurbojet Ca 239.6
Turbojet Cycle AnalTurbojet Ta 2233
Turbojet Cycle AnalTurbojet Pa 0.265
Turbojet Cycle AnalTurbojet Ei 0.93
Turbojet Cycle AnalTurbojet f 0.0198

The component hierarchy worksheet shows the top-level components and their value prop-
erties. The instance matrix displays the instance specification of the top-level Turbojet Cycle
Analysis

15.3 Instance Matrix

Formula evaluation can be used in the worksheet that displays the instance matrix with slots.
The rows of the matrix display the components and their value properties. The columns
display the names of the instances. The matrix displays the value in the slots corresponding
to the value properties and instances. The inputs and output values are not explicitly defined
but is understood based on the objective defined in the template or based on experience.

92 < 15 Turbojet Model: Formula Evaluation

Name turbojet turbojet turbojet turbojet
Cycle Cycle Cycle Cycle
Analysis3 Analysisd Analysisl Analysis2
Specification
Combustor Ec 0.98 0.97 0.975 0.98
Combustor Ploss 0.04 0.04 0.04 0.04
Compressor Ec 0.87 0.88 0.89 0.87
Compressor pressureRatio 8 7 7.5 8
Nozzle En 0.95 0.95 0.95 0.95
Turbine Et 0.9 0.93 0.9 0.95
Turbine T03 1200 1250 1200 1300
Turbojet Ca 239.6 239.6 239.6 239.6
Turbojet Ei 0.93 0.93 0.93 0.93
Turbojet Emt 0.99 0.99 0.99 0.99
Turbojet f 0.0198 0.0198 0.0198 0.0198
Turbojet Pa 0.265 0.265 0.265 0.265
Turbojet Ta 223.3 2233 223.3 2233
Turbojet Cycle AnalysisCp 1005 1005 1005 1005
Turbojet Cycle AnalysisCpg 1148 1148 1148 1148
Turhojet Cycle Analysigg 1.4 1.4 1.4 1.4
Turhojet Cycle Analysisgc 1.33 1.33 1.33 1.33
Turhojet Cycle AnalysigR 0.287 0.287 0.287 0.287
Turhojet Cycle Analysigsfc 0.12111692| 0.11500965| 0.12019785| 0.10977919

The input values of existing slots can be changed based on these values, the output values
will be calculated. New instances can be created by adding a name for the instance in the
column. To run the formula evaluation, use the shortcut Ctrl + Shift + K or Add-ins select
MapleMBSE and Formula Evaluation. MapleMBSE will use excel to call the values and

update the matrix.

16 Variant Management:MBPLE with
MapleMBSE

16.1 Introduction

Model-Based Product Line Engineering (MBPLE) is used to capture the 150% model that
is defined with all the features and different options a user has to configure a variant of a
product. This example requires the MBPLE profile to be used in the project. In MBPLE,
the user defines the Feature Model with all the available options. In the configuration part,
the user selects a set of features that make up the product variant. The 150% model is defined
and linked with the variation points that link the Feature model and 150% model from
which, based on the configuration defined, a user can generate a variant.

Feature Model 150 % Architecture

H
. =
7=~

Variation Points L)

100% Architecture/Variants

£ a4 & @
QQ mﬁﬁ-a

16.2 Feature Model

The RootFeatureTable worksheet displays the Root Feature Group and all of its features in
a hierarchy. This sheet is used to add new features to the feature Groups.

93

94 + 16 Variant Management:MBPLE with MapleMBSE

Features L1 |Features L2 Features L3
Vehicle Tires
Vehicle Seat
Vehicle Engine
Vehicle Engine V-Engine
Vehicle Engine V-Engine Engine Size
Vehicle Engine V-Engine V Type
Vehicle Engine Injection
Vehicle Engine turboCharged
Vehicle Engine Inline Engine
Vehicle Engine Inline Engine Engine Capacity
Vehicle Engine Inline Engine Inline Type
Vehicle Fuel Tank
Vehicle Body
Vehicle Interior
Vehicle Interior Steering wheel
Vehicle Interior CruiseControl
Vehicle Interior Vehicle audio
Vehicle Interior Heated Seats
Vehicle Interior Speedometer
Vehicle Transmission
Vehicle Transmission | Automatic Transmission
Vehicle Transmission |Manual transmission
Vehicle Brake
Vehicle Chassis
Vehicle Wheel
Vehicle Head Lights

The Existence List worksheet displays the types or variations for the feature. To add a new
type to a feature, enter the feature name in Feature Group Column and type in the Feature
Column.

16.3 Configurations * 95

FeatureGroup

Features

Automatic Transmission

Automatic Manual Transmission

Automatic Transmission

Continuously Variable Transmission

Automatic Transmission

Dual-Clutch Transmission

Body Hatchback

Body Sedan

Body Sports Car

Body Suv

Brake Ceramic Brake Pads
Brake Organic brake pads

| Brake Semi-Metallic Brake Pads
Chassis Conventional chassis
Chassis Unibody chassis
CruiseControl AdaptiveCruiseControl
CruiseControl Semi-autonomous cruise control

16.3 Configurations

Next, define the configuration of the Feature Model. In the configuration, the user specifies
the model with features that will define a variant. The ConfigurationMatrix worksheet dis-
plays existing configurations. To add a new configuration, enter a name for the configuration

in the column.

Root Festure

Feature Group

Imwm

| GiMadel

il
i

-Engine

[Engine Size

i
i

-Engine

[V Type

Inline Engine

Engine Capaciey

2 Liere

inline Engine

i i

lInline Tyg

-Engine

linjection

Direct Injection
TRUE

[Inline Engine

[Configurstioncinline Ergine_Base

52, wheel
[CruiseContral
le audio

[Adpstable S

Full Range

Tilt Stee

FALSE

Hoated Seats

i Mlanual

Maraal tramymingon

manual tranumission

E-speed manusl tranb-

Tires.

UAll-season Tires

All-season Tes [All-season TiredAll-seascn Tires

[Seat

4 Seater

2 Saater [M-n- as-m

[Engine
[Fusd Tank

5 liters capa
v

| Configuration:engind Conl

atlon::demo c uuﬁnc?‘[t
d‘b Iners cap

lIntevion

i wlm:lm(nﬁ-vlum

| T

; 5 e oy F55 s o |
MM% —_—

Chaiiin

Wheel

%Ha&&ﬂmw-hgﬂl“&nh? s.m-mnn« anic brake

G chavii{C: Unitody chanais | Unil chasyy
= t'w [Aoy

un Ughts LED Lights _|LED Lights [LED Uights LED Lights

Head £y

teake pats
|umuq chassis
el
LED Lights

MapleMBSE will automatically populate the column with the default values. The user can

select different value for a Feature by using the drop down menu in applicable cells. The

TransmissionConfigMatrix, InteriorConfigMatrix and EngineConfigMatrix offer a similar
view but give the user better control over individual configuration of the features.

96 + 16 Variant Management:MBPLE with MapleMBSE

[Configurations >
Root Feature Feature Group
GSMatrix GTTransmission transmission|transmissionl |transmission2
Transmission |Automatic Transmission Continuously VarialjContinuously Variable TransrlAutomatic Manual
Transmission |Manual transmission E-speed manual transmission |6-sieer.l manual transmission |
| Configurations —>
Root
Feature Group)) o i i N
Feature GSinterior |GTInterior |interior |interiorl |interior2
Interior CruiseControl AdaptiveCruigSemi-autoni|AdaptiveClAdaptive(jAdaptiveCruiseCont
Interior |Heated Seats TRUE TRUE TRUE TRUE FALSE |
Interior Speedometer Analog speedDigital spedAnalog spqDigital sp|Analog speedomett
Interior Steering wheel |Adjustable St|/Adjustable JAdjustablgTilt Steeri|Adjustable Steering
Interior Vehicle audio |Component |[Component|Full RangegComponeqFull Range |
| Configurations —>
Root
Feature Group , _ }))
Feature engine enginel engine2 |GSEngine GTEngine
Engine Injection Direct Injeq Direct InjecticlDirect InjgPort Injectior] Direct Injection
Engine Inline Engine Configuration:inline Engi|Configuration::inline Engine_Base
Engine turboCharged TRUE TRUE TRUE TRUE
Engine V-Engine Configuration:v-Engine

16.4 Variation Points

In the previous sections you defined the Features and configuration from which the variants
can be created. The 150% model is already defined and our goal now is to link the Feature

model with the 150% model.
The Existence worksheet lists all the existence that can be linked to the Feature Model using

the Feature Impact relations.

16.4 Variation Points ¢ 97

Existence

2 Litre

2 Seater

2.5 Litre

3 Litre

3.5 litre

4 Seater

6.4 litre

AdaptiveCruiseControl

Adjustable Steering Wheel

The FeatureImpactTable links the existence with the Feature Model as shown in the image
below. In the example below, the Variation Point/Existence 2 Litre links the Feature Group
Engine Capacity. The Test for column allows the user to select the type of feature that the

variation point represents.

Variation Point Feature Test For
2 Litre

2 Litre Engine Capacity 2 Litre

2 Seater

2 Seater Seat 2 Seater
2.5 Litre

2.5 Litre Engine Capacity 2.5 Litre
3 Litre

3 Litre Engine Capacity 3 Litre
3.5 litre

3.5 litre Engine Size 3.5 litre

The next step is to apply the Existence to the 150% model. ExistenceMatrix shows the Ex-
istence in the rows of the matrix and Components in the column, “X’ in the intersecting cell

represents that an existence is applied to a component.

98 -

16 Variant Management:MBPLE with MapleMBSE

Components

Existence/Variation

2 Litre

2Seater

25 Litre

3 Litre

35 litre

4 Seater

6.4 litre

AdaptiveCruiseControl

Adjustable Steering Wheel

Alloy Wheel

All-season Tires

Analog speedometer

Automatic Manual Transmission

2 Litre

2 Seater

2.5 Litre

3 Litre

4 Seater

45 liters capacity

55 liters capacity

65 liters capacity

6-speed manual transmission

AdaptiveCruiseControl

Adjustable Steering Wheel

Alloy

All-season Tires

Analog speedometer

Automatic Manual Transmission

16.5 Vehicle Analysis

The Analysis worksheet is used to find the time it takes for a vehicle to reach a certain speed
in the 1stand 2nd gear. The values time, time 1, time 2, al and a2 are calculated and results
are updated when Formula evaluation function is used. The user can update the other values
and run the evaluation when needed. The matrix display instances of the 150% model. The
block and value properties that are needed for the analysis are in the rows of the matrix.
The instances are displayed in the column. Add a new instance and enter the values that are
necessary, to run the evaluation use the shortcut Ctrl + Shift + K or Add-ins->MapleMBSE-

>Evaluate Formula. If the evaluation is successful, you will see a dialog box the current

worksheet was successfully evaluated.

16.5 Vehicle Analysis ¢

99

Instance

9

9
Tires diameter 0.6
Transmission finalDrive 3
Transmission gearRatio_1 -
Transmission gearRatio_2 2.5
Transmission peakTorque 140
Vehicle al 2.487
Vehicle a2 0.667
Vehicle avgTorrque 0.8
Vehicle massBudget 1500
Vehicle speedLoss 0.5
Vehicle speedLoss_2 1.2
Vehicle time 15.85
Vehicle time_1 3.351
Vehicle time_2 12.5
Vehicle VRange 30
Vehicle vRange 2 30

100 « 16 Variant Management:MBPLE with MapleMBSE

17 Downloading sysML Diagrams

17.1 Introduction

Using the MapleMBSE plugin a user can view the downloaded SysML diagram in the
MapleMBSE template. To configure the plugin please refer to the Getting Started with
the MapleMBSE sysML Diagram Plugin section of the MapleMBSE Installation and
Licensing Guide.

17.2 TWCsysML Example

To view the diagram of the TWCSysML example, launch the TWCSysML-Diagrams file
and connect to the project. Note that the same project should be opened in CSM/MD for
the diagrams to be downloaded. Click on the hyperlink to open the diagram.

PackageMame Diagram Type

Cost Analysis Diagram Cost Analysis SysML Block Definition Diagram
Evaluation Sample Diagram Analysis Context |5ysML Block Definition Diagram
Evaluation Sample Diagram Ewvaluation Sample |SysML Block Definition Diagram
Evaluation Sample Diagram Turbojet SysML Block Definition Diagram
Hiararchy Diagram Hierarchy SysML Block Definition Diagram
Instances Diagram Instances SysML Block Definition Diagram
InstanceView Diagram Instanceliew SysML Block Definition Diagram
Interface Diagram Interfacel SysML Block Definition Diagram
Interface Diagram Interface? SysML Block Definition Diagram
MestedHierarchy Diagram NestedHierarchy |SysML Block Definition Diagram
Obstacle Avoiding Robot | Diagram Context SysML Block Definition Diagram
PM Diagram PM SysML Block Definition Diagram
Requirements Diagram Reguirements Requirement Diagram
Structure Diagram Structure SysML Block Definition Diagram
Structure Logical Diagram Tablet Logical SysML Block Definition Diagram
Structure Physical Diagram Tablet Structure SysML Block Definition Diagram
Structure Physical Diagram Varant model SysML Block Definition Diagram
Tablet Diagram Tablat Profile Diagram

Note: In case of an error, you will see the "Unable to connect to MapleMBSE plugin" dialog.

101

102 « 17 Downloading sysML Diagrams

18 Relations Matrix
18.1 Verify Matrix with Hierarchy

Verify Matrix with Hierarchy

This example displays the Verify relation between Component Value property and Re-
quirements. The rows display the Component Turbofan and its subcomponents, displaying
the value properties in Column H. The column displays the Requirements in a nested hier-
archy as shown below.

= = = = = = 4 a a a 4 4 a a 4 4a a
System N Y Y Y T T T 3 T 3 T 3 3 3 3 3 5
Requirements B B B B B 3 ¢f 8| 5| 2| g 8 g g| z| g ¢
s 2| g g s g 7| & #| | #| # #| & #[#| #
Verity - Block Value Property --> Reguirements =| =| = | 2| < F| &| & & &l G| | & F| &l @&
& 2 a a & b1 a9 4] E] 9 4 4] 49 A 4
EIR T T I L - -] -
3| B E| 2| Z 5| 5| 2 B = B s 8 8 8 =
=| =| =| =| =| =| F| E| =| =| =| =| =| =| =| =| =
= w| a| =~ w| g - = o o = = | om
= = = 4| = = = Al N A WA |l e om
= = = = = = 4 a 4 Gl 4 4a a 4
pmponent Bloc| Component Parts Value Property ; -1 -] 3 = E 3 2 g il s z
a2 s 2l § 8
] R N R R R
H & | & w =] 8] =| < =| 5| =
TurboFan Engine
TurboFan Engine |Combustor
TurboFan Engine [Combustor mi_tuel
TurboFan Engine |Combustor 105
TurboFan Engine |Combustor FO5
TurboFan Engine [Combustar m_afmixture
TurboFan Engine [Combustor mi/ma x
TurboFan Engine [Combuster efficiency_combustion
Turbofan Engine [Combustor pressure,_io:
TurboFan Engine [Combustar POin_combustor
TurboFan Engine |Combustor [T0in_combustor
TurboFan Engine [Combustor m_incombustor
Turbof an Engine [Combust Cp_sir
TurboFan Engine [Combustor Cp,fuel
TurboFan Engine [Combustor heating value X
TurboFan Engine |Combustar m_bleed_acc
TurboFan Engine |Combuster Btair X X X
TurboFan Engine [High Pressure Axial Compre:
TurboFan Engine |High Pressure Axial CompredPoa
TurboFan Engine [High Pressure Axial Compredtarget Efficiency iof HPC X
TurboFan Engine |High Pressure Axial CompreqT04
TurboFan Engine [High Pressure Axial CompredW_hpc

18.2 Multiple Relations in Matrix

The TWCSysML-RelationMatrix. MSE contains the MultipleRelationMatrix worksheet.
Using this view, users can add different types of relations between elements in the same
view. Two types of relations are shown here: Verify relation (VER) and Satisfy relation
(SAT). To add a new VER dependency, in the matrix cell, enter VER and then click enter.
This will add a new verify relation.

103

104 < 18 Relations Matrix

VER: Verify Relation, SAT: Satisfy Relation
~ - m - - - - w m ~ ~
%> o | of ~| | w| || N B A~ m| b =]
©o| b o Ol S| w| v o] | v O] &S| S| W] i
L
o
w5 .
Requirement K % o gl & N
2 Z| 5| £ HE3 2 c
8 =| £| £ ol 2 £ 2
Componants® gl el 8lé . |z gl g .| 2 g
El a| © e = £
S| 8 e ¢ 2 8 gl gl £ B ¢ ¢ 20 8
sl 2 5] Z| 2| & =| =] §| 8| 3| € al o
S| = & @] 4 E >| 2| 5| S| 4] €| | v ®
Bl 2| ©] ¢| 2| G| » o]l 2| €| 3| 5| S| »| w
4] E Sl o= 21 o o & x| ¢
2| 5| & =| = % F gl 2| w a 8 o 5| 2
= = = - @ "
ValuePropery* HEEEEEEEE HEEE R
Oolal|l Jd| Il a|l 2| | T| <] 0| E| 3| F| @] <] 2
Combustor mf/ma
Combustor efficiency combustion VER|
Combustor pressure loss VER|
Combustor POin_combustor
Combustor TOin_combustor
Combustor m incombustor
Combustor Cp air
Combustor Cp fue
Combustor heating value VER
Combustor m bleed acc
Combustor Btair VER|VE
[Nozzle fan SAT
[Nozzle fan PO2/Pc
[Nozzle fan |PO2/Pa
[Nozzle fan Tfanexit
Nozzle fan Pexit
Nozzle fan |Vexit fan VER
Nozzle fan Aexit
Nozzle fan F fan VER
Nozzle fan efficiency nozzle VER

It is also possible to add multiple dependencies between the same elements. For example,
to add a satisfy relation between efficiency Combustion of Combustor and requirement
6.8.2 Combustor Efficiency, in the cell with VER, type VER, SAT and press Enter.

18.2 Multiple Relations in Matrix <« 105

VER: Verify Relation, SAT: Satisfy Relation
o~ — m — - - -
ID* > ©| ~l @l [=~
Qo V| | V| O O] 1| v o
o
w
bl 5 —| &
> c| o
Requirement = = é ° ‘E ;
gl <| 5| £ &l s
gl =| £| € z
vl ol of| =2 > | w
£l & 9 2 gl £
gl 5| of ¢f Bl g gl g =
sl Bl 5| 2| &1 © s sl €
el k| | 8| ¥ & 2 e g
G sl 9| @ gl W| «| 3| © 7
2l S| | = ol B £ 2
ValueProperty* ggﬂ-cﬁﬂzzgg
uePrope| s o ®| S
HHEEEIEHEIEE
Combustor mf/ma
Combustor efficiency combustion VER,SAT|
Combustor pressure loss VER|
Combustor POin_combustor
Combustor TOin_combustor
Combustor m incombustor
Combustor Cp air
Combustor Cp fuel
Combustor heating value VER|
Combustor m bleed acc
Combustor Btair
Nozzle fan
Nozzle fan P02/Pc
Nozzle fan P02/Pa
Nozzle fan Tfanexit
Nozzle fan Pexit
Nozzle fan Vexit fan
Nozzle fan Aexit
Nozzle fan F fan
Nozzle fan efficiency nozzle VER

106 < 18 Relations Matrix

19 Predicates

19.1 Introduction

In addition to the predicate samples in TMT folder, new enhancements to predicates defined
with stereotypes now allow you to add new elements to the model. Worksheet Requirements
displays all the requirements that are defined in the model. VerifiedRequirement shows
only the requirements which have verified Dependency. The ValueProperty and Constraint-
ParameterType worksheets display elements without a datatype defined. The Physical
Components table displays components that are “Blocks” with “Physical” stereotype. To
add a new element in the last two type a component name.

File Homu Insert Draw Page Formi Data Revie' View Autor Devel Help Power Team Maple 5 ~
QD X A =| % [conditional Formatting ~ = . Jo)
P:ste ng Font Alignment | Number a R Cells Editing Analyze
- < v v v ﬁ Cell Styles ~ R o Data
Chpboard [F1 Styles Analysis ~
F41 -
A B |C D E F G H =
1
2
3 List -
< 10MP
6 12 MP
7 4500mAh
8 SMP
3 7300mAh
10 8600mAh
1 AMOLED
12 Battery
13 Camera
14 LED
15 MIC
16 MLED
17 Power Button
18 Processor
19 Speaker
20 Tablet
21 TouchScreen Panel
22 WiFi Antenna
23
A hd
« » ...| VerifiedRequirements PhysicalComponet] ... () <] »
Ready Scolllock [@ [@ Display Settings 23] g ——B—+ 100%

107

108 < 19 Predicates

20 Matrices With Different Element Types

20.1 Introduction

When using matrices to illustrate relationships between elements, it is common to use the
same type of elements in either the rows or the columns. For example, when representing
a 'Satisfy' dependency, Requirements could be displayed in relation to either Classes or
Value Properties. However, grouping different types of elements and displaying existing
relations has traditionally been challenging.

With the recent feature update, it is now possible to group elements based on certain criteria
and display them in the rows or columns of matrices. The TWCSysML-MultipleTypes
example illustrates this capability by displaying Requirements in the rows and Blocks along
with Value Properties in the columns at the same level. This is achieved by grouping Blocks
and Properties and then displaying them together. It's important to note that the columns
will not allow new elements to be added to the model

\ N
e
=
™, 2
wme <
L o
[; =3
g |4 5
E1 A <
AR EIEE: sl 2
EE|E 5 % NEIR: vl 2l
|3 IS Zl -] ~| = 3 ala| & &) =
sl B B| B B B B| B
5| 5| 5| ¥ | | B| ®
E| Bl B| 8| B 8| 2| 5| 8| 5 8 E| 8| &
1+ Naime Speciflcation\Type | Ol Gl Ol G| G| G| 2] &1 & & & &| &[&
The Turbajet shall hawe basic single
34 Turbnjet Contiguration sponl contiguration £
& I
The maximum loss of pressure in
combustor shall be D.04
a5 Combusior loss i
The maximum temaerature of the
L] Turbine Maximum Temperature turbine inlet should e 12008 ®
The minimum pressure ratio of the
a7 Compressor Pressure Ratio |comprassor shall be & 1 | 1%

109

110 < 20 Matrices With Different Element Types

Index
B

Block Generalization, 7

Block Hierarcy, 9
Nested, 11

Blocks in MapleMBSE, 1

C

Constraint Blocks, 8
Cost Analysis
Overview, 71
Results, 71
Visualization, 71
Countdown Timer Model
ActivityNode Table, 51
Activity ControlFlow Table, 51
Activity ObjectFlow Table, 51
Opaque Behavior Table, 49
State Behavior Table, 55
State Behavior Table,State Behavior
ControlFlow Table, 54
State Behavior Table,State Control-
Flow Condition Table, 55
CountDownTimer Table, 45
Creating Requirements, 42
Overview, 41
Signal Table, 44
StateMachine Properties Table, 47
Transition Table, 48
Time BehaviorTable, 46
Time Event Table, 45
UseCase Table, 42
Creating a Block in MapleMBSE, 2
Creating Aggregation, 5
Creating Association Aggregation and
Composition, 3
Creating Composition, 5
Creating Direct Association, 5
Creating States and Transitions, 36, 39
Signal Events, 37

D

Default Value Generation
BlocksTable Worksheet
Creating Components and Subcompon-
ents, 75
Overview, 75
default value generation
AutoGeneratedTable, 76
Defining Blocks in MapleMBSE
List of Available Features, 1
Downloading sysML Diagrams
Example, 101
Introduction, 101

F

Feature Model
Variant Management, 93
Fitness Tracker Model
Activity Diagram, 28, 33
Adding New Duration Constraints, 29
Creating Actions for an Activity, 29
Creating Flows, 30
Blocks Table, 23
Block Property Table, 26
Block Satisfaction Matrix, 25
Blocks Tree, 18
Blocks Tree,BlockProperties work-
sheet, 21
Internal Blocks Table, 27
Creating Requirements, 14
Overview, 13
Packages Worksheet, 13
Requirements of the Systems, 15
Use Case Table, 17
Creating a Use Case Table, 17
FMEA process illustration, 65
FMEA Template
Overview, 65
FMEAMatrix Worksheet, 65

Instance View

111

112 « Index

Instance Multiplicity Table, 80 ConstraintProperties Worksheet, 58

MatrixTemplate Worksheet, 79 creating a verify relationship between

Overview, 77 system requirements and value properties,
Interface Definition Template 59

ComponentsinteractionTable, 68 Defining Units and Types of Values, 58

InterfaceRequirements Matrix, 68 Displaying Analysis Results, 58

Overview, 67 InstanceResults table, 58

InterfaceClasses worksheet, 67 Overview, 57

ItemFlow worksheet, 67

Matrix with mixed elements
Introduction, 109

P

Predicates
Introduction, 107

R

Relations Matrix
Multiple Relations, 105
Verify Matrix, 103
Requirements Table
Countdown Timer Model, 42

S

Spacecraft Model
Introduction, 81
SPCStructure Template, 83
SPCUseCase Template, 81
SPCValueType Template, 81

T

Telescope Model
Introduction, 85
Signal Interface, 87
TMT Activity Template, 86
TMT OBSE Template, 87
TMT Predicate Template, 85

System Model, 58
SystemRequirements Worksheet, 57
UnitQuantityKindTable Worksheet, 58
ValueTypesTable Worksheet, 58
VerifyRequirementsMatrix, 59

Turbojet Model

Instance Matrix, 91

Instance Specifications and Constraint
Properties, 90

Introduction, 89

Unmanned Aerial Vehicle Model

Determining Scope and Mission, 62
OperatingDomainUAV Worksheet, 62
Overview, 61
Stakeholder Needs Analysis, 61
System Behavior
UAVBIlackBox worksheet, 62
System Requirements, 62
System Behavior, 62
Weight Estimation, 62
Weight Estimation, WeightEstimationT-
able worksheet, 62
Wing Area Estimation, 63
Wing Area Estimation, WingAreaCon-
straint worksheet, 63
Wing Area Estimation, WingAreaEs-
timation worksheet, 63

UseCase Table

Associating Actors with Use Cases, 42

TMTInstance, 87 Vv
Turbofan Engine Model
Constraint Blocks, 58

Variant Management

Index + 113

Configurations, 95

Introduction, 93

Vehicle Analysis, 99
Variant Management Template

FeatureMatrix, 73

Overview, 73

VariantCheckTable, 74
Variant Points

Variation Management, 97

w

Working with State Machine Diagrams
Creating States and Transitions, 36, 39
Signal Events, 37
Overview, 35, 36

114 « Index

	MapleMBSE 2026.0 Application Guide
	Contents
	Introduction
	1 Blocks in MapleMBSE
	1.1 Blocks Table
	Creating a Block

	1.2 Creating Association, Aggregation and Composition
	1.3 Creating Direct Association, Aggregation and Composition
	1.4 Block Generalization, Values and Operation
	1.5 Constraint Blocks
	1.6 Blocks Hierarchy
	1.7 Nested Hierarchy

	2 The Fitness Tracker Model
	2.1 Packages
	2.2 Requirements Table
	Creating Requirements

	2.3 Use Case Table
	Creating a Use Case Table

	2.4 Blocks Table
	Blocks Tree
	Block Satisfaction Matrix

	2.5 Internal Blocks Table
	Block Property Table
	Property Connector Table

	2.6 Activity Diagram
	Creating Actions for an Activity
	Creating Actions for an Activity
	Adding New Duration Constraints
	Creating Flows

	3 State Machine Diagram
	3.1 How to Create a State Machine Diagram
	3.2 How to Create States and Transitions
	3.3 How to Create Transitions with Signal Events
	3.4 How to Create Triggers with Signal Events

	4 Countdown Timer Model
	4.1 Requirements Table
	4.2 UseCase Table
	4.3 CountDownTimer Table
	Signal Table
	Time Event Table

	4.4 Timer Behavior Table
	4.5 StateMachine Properties Table
	Transition Table

	4.6 ActivityNodeTable
	Opaque Behavior Table
	Activity ObjectFlow Table
	Activity ControlFlow Table

	4.7 State Behavior Table
	State Behavior ControlFlow Table
	State ControlFlow Condition Table

	5 Turbofan Engine Model
	5.1 Introduction
	5.2 Turbofan Model
	5.3 Requirements
	5.4 ValueType
	5.5 Constraint Blocks
	5.6 System Model
	5.7 Results
	5.8 References

	6 UAV Model
	6.1 Introduction
	6.2 Analyze Stakeholder Needs
	6.3 Mission Requirement
	6.4 System Requirements
	System Behavior
	Weight Estimation
	Wing Area Estimation

	6.5 References

	7 FMEA Template
	7.1 Introduction
	7.2 FMEA
	7.3 Recommended Action
	7.4 References

	8 Interface Definition Template
	8.1 Introduction
	8.2 The InterfaceRequirements Matrix
	8.3 ComponentsInteractionTable
	8.4 References

	9 Cost Analysis
	9.1 Introduction
	9.2 Results
	9.3 Visualization

	10 Variant Management Template
	10.1 Introduction
	10.2 FeatureMatrix
	10.3 VariantCheckTable
	10.4 References

	11 Default Value Generation
	11.1 Introduction
	11.2 Generating the Default Values
	11.3 Requirement ID generation

	12 Instance View
	12.1 Introduction
	12.2 The MatrixTemplate Worksheet
	12.3 Instance Multiplicity Table

	13 Spacecraft Model
	13.1 Introduction
	13.2 SPCUseCase Template
	13.3 SPCValueType Template
	13.4 SPCStructure template

	14 Telescope Model
	14.1 Introduction
	14.2 TMT_Predicate Template
	14.3 TMT Activity Template
	14.4 Signal Interface
	14.5 TMT_OBSE Template
	14.6 TMTInstance

	15 Turbojet Model: Formula Evaluation
	15.1 Introduction
	15.2 Instance Specifications and Constraint Properties
	15.3 Instance Matrix

	16 Variant Management:MBPLE with MapleMBSE
	16.1 Introduction
	16.2 Feature Model
	16.3 Configurations
	16.4 Variation Points
	16.5 Vehicle Analysis

	17 Downloading sysML Diagrams
	17.1 Introduction
	17.2 TWCsysML Example

	18 Relations Matrix
	18.1 Verify Matrix with Hierarchy
	Verify Matrix with Hierarchy

	18.2 Multiple Relations in Matrix

	19 Predicates
	19.1 Introduction

	20 Matrices With Different Element Types
	20.1 Introduction

	Index

